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Abstract

Despite progress in perceptual tasks such as image classification, computers still perform poorly

on cognitive tasks such as image description and question answering. Cognition is core to tasks

that involve not just recognizing, but reasoning about our visual world. However, models used to

tackle the rich content in images for cognitive tasks are still being trained using the same datasets

designed for perceptual tasks. To achieve success at cognitive tasks, models need to understand

the interactions and relationships between objects in an image. When asked “What vehicle is the

person riding?”, computers will need to identify the objects in an image as well as the relationships

riding(man, carriage) and pulling(horse, carriage) in order to answer correctly that “the person is

riding a horse-drawn carriage.”

My research goal in this thesis is to develop a structured knowledge representation of the visual

world and demonstrate its utility. This thesis develops the notion of a scene graph, the representation

used for a single image. This representation contains all the recognizable objects in the image along

with their attribute modifiers and pairwise relationships. It grounds visual information in a meaning

space that allows us to jointly reason about the contents of all images.

In the beginning of this thesis, I present the Visual Genome project. I led the project in col-

lecting the Visual Genome dataset, which maps images to its human generated scene graph. The

dataset contains dense annotations of objects, attributes, and relationships within each image to

learn cognitive models. The dataset also contains unconstrained image descriptions and visual ques-

tion answers. My colleagues and I canonicalize the objects, attributes, relationships, and noun

phrases in descriptions and questions answer pairs to WordNet synsets. Together, these annotations

represent the densest and largest dataset of image descriptions, objects, attributes, relationships,

and question answers.

Next, I describe the crowdsourcing techniques developed to collect the Visual Genome dataset.

I outline the lessons learned to transfer these strategies to collect other large scale language and

vision datasets. This thesis also introduces a new crowdsourcing technique inspired by rapid serial

visual processing. It evaluates the technique on a breadth of common labeling tasks such as image

verification, word similarity, sentiment analysis and topic classification. Where prior work typically

achieves a 0.25× to 1× speedup over fixed majority vote, this approach often achieves an order of
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magnitude (10×) speedup.

Once the data has been collected, I demonstrate how machine learning models can be built

to automatically detect the objects in images and also extract relationships between them. Com-

plementing relationship extraction from images, this thesis also explores how scene graphs can be

extracted from sentences alone. Together, we show how semantic image search can be improved by

converting natural language queries into scene graphs and then mapping them to images.

Finally, I suggest multiple future applications for the Visual Genome dataset. Overall, this

thesis focuses on how a visual knowledge representation allows for a multi-perspective study of an

image, from pixel-level information like objects, to relationships that require further inference and

cognition.
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Chapter 1

Introduction

1.1 Motivation

A holy grail of computer vision is the complete understanding of visual scenes: a model that is able to

name and detect objects, describe their attributes, and recognize their relationships and interactions.

Understanding scenes would enable important applications such as image search, question answering,

and robotic interactions. Much progress has been made in recent years towards this goal, including

image classification [40, 178, 217, 116, 231] and object detection [46, 71, 211, 70, 191]. An important

contributing factor is the availability of a large amount of data that drives the statistical models that

underpin today’s advances in computational visual understanding. While the progress is exciting,

we are still far from reaching the goal of comprehensive scene understanding. As Figure 1.1 shows,

existing models would be able to detect discreet objects in a photo but would not be able to explain

their interactions or the relationships between them. Such explanations tend to be cognitive in

nature, integrating perceptual information into conclusions about the relationships between objects

in a scene [17, 58]. A cognitive understanding of our visual world thus requires that we complement

computers’ ability to detect objects with abilities to describe those objects [93] and understand their

interactions within a scene [203].

There is an increasing effort to put together the next generation of datasets to serve as training

and benchmarking datasets for these deeper, cognitive scene understanding and reasoning tasks, the

most notable being MS-COCO [139] and VQA [3]. The MS-COCO dataset consists of 300K real-

world photos collected from Flickr. For each image, there is pixel-level segmentation of 91 object

classes (when present) and 5 independent, user-generated sentences describing the scene. VQA adds

to this a set of 614K question-answer pairs related to the visual contents of each image (see more

details in Chapter 2). With this information, MS-COCO and VQA provide a fertile training and

testing ground for models aimed at tasks for accurate object detection, segmentation, and summary-

level image captioning [108, 150, 106, 242] as well as basic QA [190, 3, 146, 66, 145]. For example,

1
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Figure 1.1: An overview of the data needed to move from perceptual awareness to cognitive un-
derstanding of images. We present a dataset of images densely annotated with numerous region
descriptions, objects, attributes, and relationships. Region descriptions (e.g. “girl feeding large ele-
phant” and “a man taking a picture behind girl”) are shown (top). The objects (e.g. elephant),
attributes (e.g. large) and relationships (e.g. feeding) are shown (bottom). Our dataset also
contains image related question answer pairs (not shown).

a state-of-the-art model [106] provides a description of one MS-COCO image in Figure 1.1 as “two

men are standing next to an elephant.” But what is missing is the further understanding of where

each object is, what each person is doing, what the relationship between the person and elephant

is, etc. Without such relationships, these models fail to differentiate this image from other images

of people next to elephants.

To understand images thoroughly, we believe three key elements need to be added to existing
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datasets: a grounding of visual concepts to language [108], a more complete set of de-

scriptions and QAs for each image based on multiple image regions [100], and a formalized

representation of the components of an image [80]. In the spirit of mapping out this complete

information of the visual world, we introduce the Visual Genome dataset. The first release of the

Visual Genome dataset uses 108, 249 images from the intersection of the YFCC100M [235] and MS-

COCO [139]. Chapter 2 provides a more detailed description of the dataset. We highlight below the

motivation and contributions of the three key elements that set Visual Genome apart from existing

datasets.

The Visual Genome dataset regards relationships and attributes as first-class citizens of the

annotation space, in addition to the traditional focus on objects. Recognition of relationships and

attributes is an important part of the complete understanding of the visual scene, and in many cases,

these elements are key to the story of a scene (e.g., the difference between “a dog chasing a man”

versus “a man chasing a dog”). The Visual Genome dataset is among the first to provide a detailed

labeling of object interactions and attributes, grounding visual concepts to language1.

An image is often a rich scenery that cannot be fully described in one summarizing sentence.

The scene in Figure 1.1 contains multiple “stories”: “a man taking a photo of elephants,” “a woman

feeding an elephant,” “a river in the background of lush grounds,” etc. Existing datasets such as

Flickr 30K [262] and MS-COCO [139] focus on high-level descriptions of an image2. Instead, for

each image in the Visual Genome dataset, we collect more than 42 descriptions for different regions

in the image, providing a much denser and complete set of descriptions of the scene. In

addition, inspired by VQA [3], we also collect an average of 17 question-answer pairs based on the

descriptions for each image. Region-based question answers can be used to jointly develop NLP and

vision models that can answer questions from either the description or the image, or both of them.

With a set of dense descriptions of an image and the explicit correspondences between visual

pixels (i.e. bounding boxes of objects) and textual descriptors (i.e. relationships, attributes), the

Visual Genome dataset is poised to be the first image dataset that is capable of providing a struc-

tured formalized representation of an image, in the form that is widely used in knowledge base

representations in NLP [268, 77, 37, 223]. For example, in Figure 1.1, we can formally express the

relationship holding between the woman and food as holding(woman, food)). Putting together

all the objects and relations in a scene, we can represent each image as a scene graph [100]. The

scene graph representation has been shown to improve semantic image retrieval [100, 209] and image

captioning [50, 24, 78]. Furthermore, all objects, attributes and relationships in each image in the

Visual Genome dataset are canonicalized to its corresponding WordNet [159] ID (called a synset ID).

This mapping connects all images in Visual Genome and provides an effective way to consistently

query the same concept (object, attribute, or relationship) in the dataset. It can also potentially

1The Lotus Hill Dataset [259] also provides a similar annotation of object relationships, see Chapter 1.2.
2COCO has multiple sentences generated independently by different users, all focusing on providing an overall,

one sentence description of the scene.
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help train models that can learn from contextual information from multiple images.

1.1.1 Thesis Outline

In this thesis, we introduce the Visual Genome dataset with the aim of training and benchmarking

the next generation of computer models for comprehensive scene understanding. The thesis proceeds

as follows: In Chapter 2, we provide a detailed description of each component of the Visual Genome

knowledge representation. Chapter 3 discusses the crowdsourcing strategies we deployed in the

ongoing effort of collecting this data. Chapter 4 focuses on a particular crowdsourcing technique

that we utilized to rapidly collect binary labels by modeling worker latency. Chapter 5 provides

a set of experimental results that use Visual Genome as a benchmark; Specifically, this chapter

presents experimental results for attribute classification, relationship classification, region description

generation and visual question answering. Chapter 6 presents a model for automatically extracting

visual relationships from images by leveraging existing language models. Chapter 7 demonstrate the

utility of the knowledge representation in semantic image search. The thesis concludes in Chapter 8

where we briefly list potential future directions and applications for Visual Genome.

Further visualizations, API access, dataset navigation and additional information on the Visual

Genome dataset can be found online3.

1.1.2 Previously Published Papers

Most contributions in this thesis have first appeared as various publications. These publications

are: [114] (Chapter 1, 2, 3, 5), [113] (Chapter 4), [142] (Chapter 6) and [100, 209] (Chapter 7). My

other publications [227] are out of the context of this thesis.

3https://visualgenome.org
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The man is almost bald

Park bench is made of gray 
weathered wood

A man and a woman sit on a park 
bench along a river.

Figure 1.2: An example image from the Visual Genome dataset. We show 3 region descriptions and
their corresponding region graphs. We also show the connected scene graph collected by combining
all of the image’s region graphs. The top region description is “a man and a woman sit on a park
bench along a river.” It contains the objects: man, woman, bench and river. The relationships
that connect these objects are: sits on(man, bench), in front of (man, river), and sits on(woman,
bench).
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Figure 1.3: An example image from our dataset along with its scene graph representation. The
scene graph contains objects (child, instructor, helmet, etc.) that are localized in the image
as bounding boxes (not shown). These objects also have attributes: large, green, behind,
etc. Finally, objects are connected to each other through relationships: wears(child, helmet),
wears(instructor, jacket), etc.
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1.2 Background and Related Work

We discuss existing datasets that have been released and used by the vision community for classifica-

tion and object detection. We also mention work that has improved object and attribute detection

models. Then, we explore existing work that has utilized representations similar to our relationships

between objects. In addition, we dive into literature related to cognitive tasks like image description,

question answering, and knowledge representation.

1.2.1 Datasets

Datasets (Table 1.1) have been growing in size as researchers have begun tackling increasingly compli-

cated problems. Caltech 101 [53] was one of the first datasets hand-curated for image classification,

with 101 object categories and 15-30 of examples per category. One of the biggest criticisms of

Caltech 101 was the lack of variability in its examples. Caltech 256 [75] increased the number of

categories to 256, while also addressing some of the shortcomings of Caltech 101. However, it still

had only a handful of examples per category, and most of its images contained only a single object.

LabelMe [201] introduced a dataset with multiple objects per category. They also provided a web in-

terface that experts and novices could use to annotate additional images. This web interface enabled

images to be labeled with polygons, helping create datasets for image segmentation. The Lotus Hill

dataset [259] contains a hierarchical decomposition of objects (vehicles, man-made objects, animals,

etc.) along with segmentations. Only a small part of this dataset is freely available. SUN [253],

just like LabelMe [201] and Lotus Hill [259], was curated for object detection. Pushing the size of

datasets even further, 80 Million Tiny Images [237] created a significantly larger dataset than its

predecessors. It contains tiny (i.e. 32 × 32 pixels) images that were collected using WordNet [159]

synsets as queries. However, because the data in 80 Million Images were not human-verified, they

contain numerous errors. YFCC100M [235] is another large database of 100 million images that is

still largely unexplored. It contains human generated and machine generated tags.

Pascal VOC [46] pushed research from classification to object detection with a dataset containing

20 semantic categories in 11, 000 images. Imagenet [40] took WordNet synsets and crowdsourced a

large dataset of 14 million images. They started the ILSVRC [197] challenge for a variety of computer

vision tasks. ILSVRC and PASCAL provide a test bench for object detection, image classification,

object segmentation, person layout, and action classification. MS-COCO [139] recently released

its dataset, with over 328, 000 images with sentence descriptions and segmentations of 91 object

categories. The current largest dataset for QA, VQA [3], contains 204, 721 images annotated with

one or more question answers. They collected a dataset of 614, 163 freeform questions with 6.1M

ground truth answers and provided a baseline approach in answering questions using an image and

a textual question as the input.

Visual Genome aims to bridge the gap between all these datasets, collecting not just annotations
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for a large number of objects but also scene graphs, region descriptions, and question answer pairs

for image regions. Unlike previous datasets, which were collected for a single task like image classifi-

cation, the Visual Genome dataset was collected to be a general-purpose representation of the visual

world, without bias toward a particular task. Our images contain an average of 21 objects, which is

almost an order of magnitude more dense than any existing vision dataset. Similarly, we contain an

average of 18 attributes and 18 relationships per image. We also have an order of magnitude more

unique objects, attributes, and relationships than any other dataset. Finally, we have 1.7 million

question answer pairs, also larger than any other dataset for visual question answering.

1.2.2 Image Descriptions

One of the core contributions of Visual Genome is its descriptions for multiple regions in an image. As

such, we mention other image description datasets and models in this subsection. Most work related

to describing images can be divided into two categories: retrieval of human-generated captions and

generation of novel captions. Methods in the first category use similarity metrics between image

features from predefined models to retrieve similar sentences [168, 85]. Other methods map both

sentences and their images to a common vector space [168] or map them to a space of triples [49].

Among those in the second category, a common theme has been to use recurrent neural networks

to produce novel captions [108, 150, 106, 242]. More recently, researchers have also used a visual

attention model [254].

One drawback of these approaches is their attention to describing only the most salient aspect of

the image. This problem is amplified by datasets like Flickr 30K [262] and MS-COCO [139], whose

sentence desriptions tend to focus, somewhat redundantly, on these salient parts. For example, “an

elephant is seen wandering around on a sunny day,” “a large elephant in a tall grass field,” and “a

very large elephant standing alone in some brush” are 3 descriptions from the MS-COCO dataset,

and all of them focus on the salient elephant in the image and ignore the other regions in the image.

Many real-world scenes are complex, with multiple objects and interactions that are best described

using multiple descriptions [106, 130]. Our dataset pushes toward a complete understanding of an

image by collecting a dataset in which we capture not just scene-level descriptions but also myriad

of low-level descriptions, the “grammar” of the scene.

1.2.3 Objects

Object detection is a fundamental task in computer vision, with applications ranging from identifi-

cation of faces in photo software to identification of other cars by self-driving cars on the road. It

involves classifying an object into a semantic category and localizing the object in the image. Visual

Genome uses objects as a core component on which each visual scene is built. Early datasets include

the face detectio [88] and pedestrian datasets [44]. The PASCAL VOC and ILSVRC’s detection

dataset [40] pushed research in object detection. But the images in these datasets are iconic and
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do not capture the settings in which these objects usually co-occur. To remedy this problem, MS-

COCO [139] annotated real-world scenes that capture object contexts. However, MS-COCO was

unable to describe all the objects in its images, since they annotated only 91 object categories. In

the real world, there are many more objects that the ones captured by existing datasets. Visual

Genome aims at collecting annotations for all visual elements that occur in images, increasing the

number of semantic categories to over 17,000.

1.2.4 Attributes

The inclusion of attributes allows us to describe, compare, and more easily categorize objects. Even

if we haven’t seen an object before, attributes allow us to infer something about it; for example,

“yellow and brown spotted with long neck” likely refers to a giraffe. Initial work in this area involved

finding objects with similar features [147] using examplar SVMs. Next, textures were used to study

objects [240], while other methods learned to predict colors [55]. Finally, the study of attributes

was explicitly demonstrated to lead to improvements in object classification [50]. Attributes were

defined to be paths (“has legs”), shapes (“spherical”), or materials (“furry”) and could be used to

classify new categories of objects. Attributes have also played a large role in improving fine-grained

recognition [73] on fine-grained attribute datasets like CUB-2011 [245]. In Visual Genome, we use a

generalized formulation [100], but we extend it such that attributes are not image-specific binaries

but rather object-specific for each object in a real-world scene. We also extend the types of attributes

to include size (“small”), pose (“bent”), state (“transparent”), emotion (“happy”), and many more.

1.2.5 Relationships

Relationship extraction has been a traditional problem in information extraction and in natural

language processing. Syntactic features [268, 77], dependency tree methods [37, 18], and deep neural

networks [223, 264] have been employed to extract relationships between two entities in a sentence.

However, in computer vision, very little work has gone into learning or predicting relationships.

Instead, relationships have been implicitly used to improve other vision tasks. Relative layouts

between objects have improved scene categorization [94], and 3D spatial geometry between objects

has helped object detection [33]. Comparative adjectives and prepositions between pairs of objects

have been used to model visual relationships and improved object localization [78].

Relationships have already shown their utility in improving cognitive tasks. A meaning space of

relationships has improved the mapping of images to sentences [49]. Relationships in a structured

representation with objects have been defined as a graph structure called a scene graph, where the

nodes are objects with attributes and edges are relationships between objects. This representation

can be used to generate indoor images from sentences and also to improve image search [24, 100].

We use a similar scene graph representation of an image that generalizes across all these previous

works [100]. Recently, relationships have come into focus again in the form of question answering
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about associations between objects [202]. These questions ask if a relationship, involving generally

two objects, is true, e.g. “do dogs eat ice cream?”. We believe that relationships will be necessary

for higher-level cognitive tasks [100, 142], so we collect the largest corpus of them in an attempt to

improve tasks by actually understanding relationships between objects.

1.2.6 Question Answering

Visual question answering (QA) has been recently proposed as a proxy task of evaluating a computer

vision system’s ability to understand an image beyond object recognition [68, 145]. Several visual

QA benchmarks have been proposed in the last few months. The DAQUAR [145] dataset was

the first toy-sized QA benchmark built upon indoor scene RGB-D images of NYU Depth v2 [163].

Most new datasets [263, 190, 3, 66] have collected QA pairs on MS-COCO images, either generated

automatically by NLP tools [190] or written by human workers [263, 3, 66].

In previous datasets, most questions concentrated on simple recognition-based questions about

the salient objects, and answers were often extremely short. For instance, 90% of DAQUAR an-

swers [145] and 87% of VQA answers [3] consist of single-word object names, attributes, and quan-

tities. This shortness limits their diversity and fails to capture the long-tail details of the images.

Given the availability of new datasets, an array of visual QA models have been proposed to tackle

QA tasks. The proposed models range from SVM classifiers [3] and probabilistic inference [145] to

recurrent neural networks [66, 146, 190] and convolutional networks [143]. Visual Genome aims to

capture the details of the images with diverse question types and long answers. These questions

should cover a wide range of visual tasks from basic perception to complex reasoning. Our QA

dataset of 1.7 million QAs is also larger than any currently existing dataset.

1.2.7 Knowledge Representation

A knowledge representation of the visual world is capable of tackling an array of vision tasks, from

action recognition to general question answering. However, it is difficult to answer “what is the

minimal viable set of knowledge needed to understand about the physical world?” [80]. It was

later proposed that there be a certain plurality to concepts and their related axioms [81]. These

efforts have grown to model physical processes [62] or to model a series of actions as scripts [206] for

stories—both of which are not depicted in a single static image but which play roles in an image’s

story. More recently, NELL [11] learns probabilistic horn clauses by extracting information from

the web. DeepQA [56] proposes a probabilistic question answering architecture involving over 100

different techniques. Others have used Markov logic networks [269, 164] as their representation to

perform statistical inference for knowledge base construction. Our work is most similar to that of

those [26, 270, 271, 202] who attempt to learn common-sense relationships from images. Visual

Genome scene graphs can also be considered a dense knowledge representation for images. It is

similar to the format used in knowledge bases in NLP.



Chapter 2

Knowledge Representation and

Statistics

2.1 Visual Genome Knowledge Representation

The Visual Genome dataset consists of seven main components: region descriptions, objects, at-

tributes, relationships, region graphs, scene graphs, and question-answer pairs. Figure 2.1 shows

examples of each component for one image. To enable research on comprehensive understanding

of images, we begin by collecting descriptions and question answers. These are raw texts without

any restrictions on length or vocabulary. Next, we extract objects, attributes and relationships from

our descriptions. Together, objects, attributes and relationships fabricate our scene graphs that

represent a formal representation of an image. In this section, we break down Figure 2.1 and explain

each of the seven components. In Chapter 3, we will describe in more detail how data from each

component is collected through a crowdsourcing platform.

2.1.1 Multiple regions and their descriptions

In a real-world image, one simple summary sentence is often insufficient to describe all the contents

of and interactions in an image. Instead, one natural way to extend this might be a collection of

descriptions based on different regions of a scene. In Visual Genome, we collect human-generated

image region descriptions, with each region localized by a bounding box. In Figure 2.2, we show

three examples of region descriptions. Regions are allowed to have a high degree of overlap with

each other when the descriptions differ. For example, “yellow fire hydrant” and “woman in shorts

is standing behind the man” have very little overlap, while “man jumping over fire hydrant” has a

very high overlap with the other two regions. Our dataset contains on average a total of 42 region

descriptions per image. Each description is a phrase ranging from 1 to 16 words in length describing

12
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that region.
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Legend: objects relationshipsattributes

fire hydrant

yellow

fire hydrant

man

woman

standing

jumping over

man shorts

inis behind

fire hydrant

man

jumping over

woman

standing
shorts

in

is behind

yellow

woman in shorts is 
standing behind 
the man

yellow fire hydrant 

Q. What is the woman standing next to? 

A. Her belongings.

Q. What color is the fire hydrant?

A. Yellow.

man jumping over 
fire hydrant

Region Based Question Answers Free Form Question Answers

Figure 2.1: A representation of the Visual Genome dataset. Each image contains region descriptions
that describe a localized portion of the image. We collect two types of question answer pairs (QAs):
freeform QAs and region-based QAs. Each region is converted to a region graph representation of
objects, attributes, and pairwise relationships. Finally, each of these region graphs are combined to
form a scene graph with all the objects grounded to the image. Best viewed in color
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Figure 2.2: To describe all the contents of and interactions in an image, the Visual Genome dataset
includes multiple human-generated image regions descriptions, with each region localized by a bound-
ing box. Here, we show three regions descriptions: “man jumping over a fire hydrant,” “yellow fire
hydrant,” and “woman in shorts is standing beghind the man.”

Figure 2.3: From all of the region descriptions, we extract all objects mentioned. For example, from
the region description “man jumping over a fire hydrant,” we extract man and fire hydrant.

2.1.2 Multiple objects and their bounding boxes

Each image in our dataset consists of an avarege of 21 objects, each delineated by a tight bounding

box (Figure 2.3). Furthermore, each object is canonicalized to a synset ID in WordNet [159].

For example, man and person would get mapped to man.n.03 (the generic use of the
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Figure 2.4: Some descriptions also provide attributes for objects. For example, the region description
“yellow fire hydrant” adds that the fire hydrant is yellow. Here we show two attributes:
yellow and standing.

word to refer to any human being). Similarly, person gets mapped to person.n.01

(a human being). Afterwards, these two concepts can be joined to person.n.01 since this is

a hypernym of man.n.03. This is an important standardization step to avoid multiple names for

one object (e.g. man, person, human), and to connect information across images.

2.1.3 A set of attributes

Each image in Visual Genome has an average of 16 attributes. Objects can have zero or more

attributes associated with them. Attributes can be color (yellow), states (standing), etc. (Fig-

ure 2.4). Just like we extract objects from region descriptions, we also extract the attributes attached

to these objects. In Figure 2.4, from the phrase “yellow fire hydrant,” we extract the attribute

yellow for the fire hydrant. As with objects, we canonicalize all attributes to WordNet [159];

for example, yellow is mapped to yellow.s.01 (of the color intermediate between

green and orange in the color spectrum; of something resembling the color

of an egg yolk).

2.1.4 A set of relationships

Relationships connect two objects together. These relationships can be actions (jumping over),

spatial (is behind), verbs (wear), prepositions (with), comparative (taller than), or prepo-

sitional phrases (drive on). For example, from the region description “man jumping over fire hy-

drant,” we extract the relationship jumping over between the objects man and fire hydrant

(Figure 2.5). These relationships are directed from one object, called the subject, to another, called
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Figure 2.5: Our dataset also captures the relationships and interactions between objects in our
images. In this example, we show the relationship jumping over between the objects man and
fire hydrant.

the object. In this case, the subject is the man, who is performing the relationship jumping over

on the object fire hydrant. Each relationship is canonicalized to a WordNet [159] synset ID;

i.e. jumping is canonicalized to jump.a.1 (move forward by leaps and bounds). On

average, each image in our dataset contains 18 relationships.

2.1.5 A set of region graphs

Combining the objects, attributes, and relationships extracted from region descriptions, we create

a directed graph representation for each of the 42 regions. Examples of region graphs are shown

in Figure 2.1. Each region graph is a structured representation of a part of the image. The nodes

in the graph represent objects, attributes, and relationships. Objects are linked to their respec-

tive attributes while relationships link one object to another. The links connecting two objects in

Figure 2.1 point from the subject to the relationship and from the relationship to the other object.

2.1.6 One scene graph

While region graphs are localized representations of an image, we also combine them into a single

scene graph representing the entire image (Figure 1.3). The scene graph is the union of all region

graphs and contains all objects, attributes, and relationships from each region description. By doing

so, we are able to combine multiple levels of scene information in a more coherent way. For example

in Figure 2.1, the leftmost region description tells us that the “fire hydrant is yellow,” while the

middle region description tells us that the “man is jumping over the fire hydrant.” Together, the

two descriptions tell us that the “man is jumping over a yellow fire hydrant.”
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2.1.7 A set of question answer pairs

We have two types of QA pairs associated with each image in our dataset: freeform QAs, based

on the entire image, and region-based QAs, based on selected regions of the image. We collect 6

different types of questions per image: what, where, how, when, who, and why. In Figure 2.1, “Q.

What is the woman standing next to?; A. Her belongings” is a freeform QA. Each image has at least

one question of each type listed above. Region-based QAs are collected by prompting workers with

region descriptions. For example, we use the region “yellow fire hydrant” to collect the region-based

QA: “Q. What color is the fire hydrant?; A. Yellow.” Region based QAs allow us to independently

study methods that use NLP and vision priors to answer questions.

2.2 Dataset Statistics and Analysis

In this section, we provide statistical insights and analysis for each component of Visual Genome.

Specifically, we examine the distribution of images (Chapter 2.2.1) and the collected data for region

descriptions (Chapter 2.2) and questions and answers (Chapter 2.2.7). We analyze region graphs and

scene graphs together in one section (Chapter 2.2.6), but we also break up these graph structures into

their three constituent parts—objects (Chapter 2.2.3), attributes (Chapter 2.2.4), and relationships

(Chapter 2.2.5)—and study each part individually. Finally, we describe our canonicalization pipeline

and results (Chapter 2.2.8).

2.2.1 Image Selection

The Visual Genome dataset consists of all 108, 249 images from the intersection of MS-COCO’s [139]

328, 000 images and YFCC’s [235] 100 million images. These images are real-world, non-iconic images

that were uploaded onto Flickr by users. The images range from as small as 72 pixels wide to as

large as 1280 pixels wide, with an average width of 500 pixels. We collected the WordNet synsets

into which our 108, 249 images can be categorized using the same method as ImageNet [40]. Visual

Genome images cover 972 synsets. Figure 2.6 shows the top synsets to which our images belong.

“ski” is the most common synset, with 2612 images; it is followed by “ballplayer” and “racket,”

with all three synsets referring to images of people playing sports. Our dataset is somewhat biased

towards images of people, as Figure 2.6 shows; however, they are quite diverse overall, as the top 25

synsets each have over 800 images, while the top 50 synsets each have over 500 examples.

2.2.2 Region Description Statistics

One of the primary components of Visual Genome is its region descriptions. Every image includes

an average of 42 regions with a bounding box and a descriptive phrase. Figure 2.7 shows an example

image from our dataset with its 50 region descriptions. We display bounding boxes for only 6 out of
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Figure 2.6: A distribution of the top 25 image synsets in the Visual Genome dataset. A variety
of synsets are well represented in the dataset, with the top 25 synsets having at least 800 example
images each.

the 50 descriptions in the figure to avoid clutter. These descriptions tend to be highly diverse and

can focus on a single object, like in “A bag,” or on multiple objects, like in “Man taking a photo of

the elephants.” They encompass the most salient parts of the image, as in “An elephant taking food

from a woman,” while also capturing the background, as in “Small buildings surrounded by trees.”

MS-COCO [139] dataset is good at generating variations on a single scene-level descriptor. Con-

sider three sentences from MS-COCO dataset on a similar image: “there is a person petting a very

large elephant,” “a person touching an elephant in front of a wall,” and “a man in white shirt petting

the cheek of an elephant.” These three sentences are single scene-level descriptions. In comparison,

Visual Genome descriptions emphasize different regions in the image and thus are less semantically

similar. To ensure diversity in the descriptions, we use BLEU score [171] thresholds between new

descriptions and all previously written descriptions. More information about crowdsourcing can be
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Girl feeding elephant
Man taking picture
Huts on a hillside
A man taking a picture.
Flip flops on the ground
Hillside with water below
Elephants interacting with people
Young girl in glasses with backpack
Elephant that could carry people
An elephant trunk taking two bananas.
A bush next to a river.
People watching elephants eating
A woman wearing glasses.
A bag
Glasses on the hair.
The elephant with a seat on top
A woman with a purple dress.
A pair of pink flip flops.
A handle of bananas.
Tree near the water
A blue short.
Small houses on the hillside
A woman feeding an elephant
A woman wearing a white shirt and shorts
A man taking a picture

A man wearing an orange shirt
An elephant taking food from a woman
A woman wearing a brown shirt
A woman wearing purple clothes
A man wearing blue flip flops
Man taking a photo of the elephants
Blue flip flop sandals
The girl's white and black handbag
The girl is feeding the elephant
The nearby river
A woman wearing a brown t shirt
Elephant's trunk grabbing the food
The lady wearing a purple outfit
A young Asian woman wearing glasses
Elephants trunk being touched by a hand
A man taking a picture holding a camera
Elephant with carrier on it's back
Woman with sunglasses on her head
A body of water
Small buildings surrounded by trees
Woman wearing a purple dress
Two people near elephants
A man wearing a hat
A woman wearing glasses
Leaves on the ground

(a) (b)

Figure 2.7: (a) An example image from the dataset with its region descriptions. We only display
localizations for 6 of the 42 descriptions to avoid clutter; all 50 descriptions do have corresponding
bounding boxes. (b) All 42 region bounding boxes visualized on the image.

found in Chapter 3.

Region descriptions must be specific enough in an image to describe individual objects, like in

the description “A bag,” but they must also be general enough to describe high-level concepts in an

image, like “An man being chased by a bear.” Qualitatively, we note that regions that cover large

portions of the image tend to be general descriptions of an image, while regions that cover only a

small fraction of the image tend to be more specific. In Figure 2.8 (a), we show the distribution of

regions over the width of the region normalized by the width of the image. We see that the majority

of our regions tend to be around 10% to 15% of the image width. We also note that there are a

large number of regions covering 100% of the image width. These regions usually include elements

like “sky,” “ocean,” “snow,” “mountains,” etc. that cannot be bounded and thus span the entire

image width. In Figure 2.8 (b), we show a similar distribution over the normalized height of the

region. We see a similar overall pattern, as most of our regions tend to be very specific descriptions

of about 10% to 15% of the image height. Unlike the distribution over width, however, we do not

see a increase in the number of regions that span the entire height of the image, as there are no

common visual equivalents that span images vertically. Out of all the descriptions gathered, only
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(a) (b)

Figure 2.8: (a) A distribution of the width of the bounding box of a region description normalized
by the image width. (b) A distribution of the height of the bounding box of a region description
normalized by the image height.

one or two of them tend to be global scene descriptions that are similar to MS-COCO [139].

After examining the distribution of the size of the regions described, it is also valuable to look at

the semantic information captured by these descriptions. In Figure 2.9 (a), we show the distribution

of the length (word count) of these region descriptions. The average word count for a description

is 5 words, with a minimum of 1 word and a maximum of 12 words. In Figure 2.10 (a), we plot

the most common phrases occurring in our region descriptions, with stop words removed. Common

visual elements like “green grass,” “tree [in] distance,” and “blue sky” occur much more often

than other, more nuanced elements like “fresh strawberry.” We also study descriptions with finer

precision in Figure 2.10 (b), where we plot the most common words used in descriptions. Again, we

eliminate stop words from our study. Colors like “white” and “black” are the most frequently used

words to describe visual concepts; we conduct a similar study on other captioning datasets including

MS-COCO [139] and Flickr 30K [262] and find a similar distribution with colors occurring most

frequently. Besides colors, we also see frequent occurrences of common objects like “man,” “tree,”

and “sign” and of universal visual elements like “sky.”

Semantic diversity. We also study the actual semantic contents of the descriptions. We use

an unsupervised approach to analyze the semantics of these descriptions. Specifically, we use

word2vec [158] to convert each word in a description to a 300-dimensional vector. Next, we re-

move stop words and average the remaining words to get a vector representation of the whole region

description. This pipeline is outlined in Figure 2.9 (b). We use hierarchical agglomerative clustering

on vector representations of each region description and find 71 semantic and syntactic groupings or

“clusters.” Figure 2.11 (a) shows four such example clusters. One cluster contains all descriptions re-

lated to tennis, like “A man swings the racquet” and “White lines on the ground of the tennis court,”

while another cluster contains descriptions related to numbers, like “Three dogs on the street” and
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(a) (b)

Figure 2.9: (a) A distribution of the number of words in a region description. The average number
of words in a region description is 5, with shortest descriptions of 1 word and longest descriptions
of 16 words. (b) The process used to convert a region description into a 300-dimensional vectorized
representation.

“Two people inside the tent.” To quantitatively measure the diversity of Visual Genome’s region

descriptions, we calculate the number of clusters represented in a single image’s region descriptions.

We show the distribution of the variety of descriptions for an image in Figure 2.11 (b). We find that

on average, each image contains descriptions from 17 different clusters. The image with the least

diverse descriptions contains descriptions from 4 clusters, while the image with the most diverse

descriptions contains descriptions from 26 clusters.

Finally, we also compare the descriptions in Visual Genome to the captions in MS-COCO. First

we aggregate all Visual Genome and MS-COCO descriptions and remove all stop words. After

removing stop words, the descriptions from both datasets are roughly the same length. We conduct

a similar study, in which we vectorize the descriptions for each image and calculate each dataset’s

cluster diversity per image. We find that on average, 2 clusters are represented in the captions for

each image in MS-COCO, with very few images in which 5 clusters are represented. Because each

image in MS-COCO only contains 5 captions, it is not a fair comparison to compare the number of

clusters represented in all the region descriptions in the Visual Genome dataset. We thus randomly

sample 5 Visual Genome region descriptions per image and calculate the number of clusters in an

image. We find that Visual Genome descriptions come from 4 or 5 clusters. We show our comparison

results in Figure 2.11 (c). The difference between the semantic diversity between the two datasets

is statistically significant (t = −240, p < 0.01).
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(a) (b)

Figure 2.10: (a) A plot of the most common visual concepts or phrases that occur in region descrip-
tions. The most common phrases refer to universal visual concepts like “blue sky,” “green grass,”
etc. (b) A plot of the most frequently used words in region descriptions. Colors occur the most
frequently, followed by common objects like “man” and “dog” and universal visual concepts like
“sky.”



CHAPTER 2. KNOWLEDGE REPRESENTATION AND STATISTICS 24

Numbers Cluster

Two people inside the tent.
Many animals crossing the road.
Five ducks almost in a row.
The number four.
Three dogs on the street.
Two towels hanging on racks.

Tennis Cluster

White lines on the ground of the tennis court.
A pair of tennis shoes.
Metal fence securing the tennis court.
Navy blue shorts on tennis player.
The man swings the racquet.
Tennis player preparing a backhand swing.

Ocean Cluster

Ocean is blue and calm.
Rows of waves in front of surfer.
A group of men on a boat.
Surfboard on the beach.
Woman is surfing in the ocean.
Foam on water’s edge.

Transportation Cluster

Ladder folded on fire truck.
Dragon design on the motorcycle.
Tall windshield on bike.
Front wheels of the airplane.
A bus rear view mirror.
The front tire of the police car.

(a)

(b) (c)

Figure 2.11: (a) Example illustration showing four clusters of region descriptions and their overall
themes. Other clusters not shown due to limited space. (b) Distribution of images over number of
clusters represented in each image’s region descriptions. (c) We take Visual Genome with 5 random
descriptions taken from each image and MS-COCO dataset with all 5 sentence descriptions per
image and compare how many clusters are represented in the descriptions. We show that Visual
Genome’s descriptions are more varied for a given image, with an average of 4 clusters per image,
while MS-COCO’s images have an average of 3 clusters per image.
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(a) (b)

Figure 2.12: (a) Distribution of the number of objects per region. Most regions have between 0 and
2 objects. (b) Distribution of the number of objects per image. Most images contain between 15
and 20 objects.

Visual
Genome

ILSVRC
Det. [197]

MS-
COCO [139]

Caltech256
[75]

PASCAL
Det. [46]

Abstract
Scenes [272]

Images 108,249 476,688 328,000 30,608 11,530 10,020
Total Objects 255,718 534,309 2,500,000 30,608 27,450 58
Total Cat. 18,136 200 91 257 20 11
Objects/Cat. 14.10 2671.50 27472.50 119 1372.50 5.27

Table 2.1: Comparison of Visual Genome objects and categories to related datasets.

2.2.3 Object Statistics

In comparison to related datasets, Visual Genome fares well in terms of object density and diversity.

Visual Genome contains approximately 21 objects per image, exceeding ImageNet [40], PASCAL [46],

MS-COCO [139], and other datasets by large margins. As shown in Figure 2.13, there are more object

categories represented in Visual Genome than in any other dataset. This comparison is especially

pertinent with regards to Microsoft MS-COCO [139], which uses the same images as Visual Genome.

The lower count of objects per category is a result of our higher number of categories. For a fairer

comparison with ILSVRC 2014 Detection [197], Visual Genome has about 2239 objects per category

when only the top 200 categories are considered, which is comparable to ILSVRC’s 2671.5 objects

per category. For a fairer comparison with MS-COCO, Visual Genome has about 3768 objects per

category when only the top 91 categories are considered. This is comparable to MS-COCO’s [139]

when we consider just the 108, 249 MS-COCO images in Visual Genome.

Objects in Visual Genome come from a variety of categories. As shown in Figure 2.14 (b), objects

related to WordNet categories such as humans, animals, sports, and scenery are most common; this

is consistent with the general bias in image subject matter in our dataset. Common objects like
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Figure 2.13: Comparison of object diversity between various datasets. Visual Genome far surpasses
other datasets in terms of number of object categories.

man, person, and woman occur especially frequently with occurrences of 24K, 17K, and 11K. Other

objects that also occur in MS-COCO [139] are also well represented with around 5000 instances on

average. Figure 2.14 (a) shows some examples of objects in images. Objects in Visual Genome span

a diverse set of Wordnet categories like food, animals, and man-made structures.

It is important to look not only at what types of objects we have but also at the distribution of

objects in images and regions. Figure 2.12 (a) shows, as expected, that we have between 0 and 2

objects in each region on average. It is possible for regions to contain no objects if their descriptions

refer to no explicit objects in the image. For example, a region described as “it is dark outside”

has no objects to extract. Regions with only one object generally have descriptions that focus on

the attributes of a single object. On the other hand, regions with two or more objects generally

have descriptions that contain both attributes of specific objects and relationships between pairs of

objects.

As shown in Figure 2.12 (b), each image contains on average around 21 unique objects. Few

images have a low number of objects, which we expect since images usually capture more than a

few objects. Moreover, few images have an extremely high number of objects (e.g. over 40).
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Street LightGlass

Bench Pizza

Stop Light Bird

Building Bear

Plane Truck

(a) (b)

Figure 2.14: (a) Examples of objects in Visual Genome. Each object is localized in its image with
a tightly drawn bounding box. (b) Plot of the most frequently occurring objects in images. People
are the most frequently occurring objects in our dataset, followed by common objects and visual
elements like building, shirt, and sky.
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(a) (b)

(c)

Figure 2.15: Distribution of the number of attributes (a) per image, (b) per region description, (c)
per object.

2.2.4 Attribute Statistics

Attributes allow for detailed description and disambiguation of objects in our dataset. About 45% of

objects in Visual Genome are annotated with at least one attribute; our dataset contains 1.6 million

total attributes with 13, 041 unique attributes. Attributes include colors (green), sizes (tall),

continuous action verbs (standing), materials (plastic), etc. Each attribute in our scene graphs

belongs to one object, while each object can have multiple attributes. We denote attributes as

attribute(object).

On average, each image in Visual Genome contains 21 attributes, as shown in Figure 2.15. Each

region contains on average 1 attribute, though about 42% of regions contain no attribute at all; this

is primarily because many regions are relationship-focused. Figure 2.16 (a) shows the distribution

of the most common attributes in our dataset. Colors (e.g. white, green) are by far the most

frequent attributes. Also common are sizes (e.g. large) and materials (e.g. wooden). Figure 2.16

(b) shows the distribution of attributes describing people (e.g. man, girls, and person). The

most common attributes describing people are intransitive verbs describing their states of motion

(e.g.standing and walking). Certain sports (skiing, surfboarding) are overrepresented due

to a bias towards these sports in our images.
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Attribute Graphs. We also qualitatively analyze the attributes in our dataset by constructing

co-occurrence graphs, in which nodes are unique attributes and edges connect those attributes that

describe the same object. For example, if an image contained a “large black dog” (large(dog),

black(dog)) and another image contained a “large yellow cat” (large(cat), yellow(cat)), its

attributes would form an incomplete graph with edges (large, black) and (large, yellow). We

create two such graphs: one for both the total set of attributes and a second where we consider

only objects that refer to people. A subgraph of the 16 most frequently connected (co-occurring)

person-related attributes is shown in Figure 2.17 (a).

Cliques in these graphs represent groups of attributes in which at least one co-occurrence exists

for each pair of attributes in that group. In the previous example, if a third image contained a

“black and yellow taxi” (black(taxi), yellow(taxi)), the resulting third edge would create a

clique between the attributes black, large, and yellow. When calculated across the entire Visual

Genome dataset, these cliques provide insight into commonly perceived traits of different types of

objects. Figure 2.17 (b) is a selected representation of three example cliques and their overlaps.

From just a clique of attributes, we can predict what types of objects are usually referenced. In

Figure 2.17 (b), we see that these cliques describe an animal (left), water body (top right), and

human hair (bottom right).

Other cliques (not shown) can also uniquely identify objects. In our set, one clique contains

athletic, young, fit, skateboarding, focused, teenager, male, skinny, and happy,

capturing some of the common traits of skateboarders in our set. Another such clique has shiny,

small, metal, silver, rusty, parked, and empty, most likely describing a subset of cars. From

these cliques, we can thus infer distinct objects and object types based solely on their attributes,

potentially allowing for highly specific object identification based on selected characteristics.
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(a) (b)

Figure 2.16: (a) Distribution showing the most common attributes in the dataset. Colors (white,
red) and materials (wooden, metal) are the most common. (b) Distribution showing the number
of attributes describing people. State-of-motion verbs (standing, walking) are the most common,
while certain sports (skiing, surfing) are also highly represented due to an image source bias in
our image set.
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(a)

(b)

Figure 2.17: (a) Graph of the person-describing attributes with the most co-occurrences. Edge
thickness represents the frequency of co-occurrence of the two nodes. (b) A subgraph showing the
co-occurrences and intersections of three cliques, which appear to describe water (top right), hair
(bottom right), and some type of animal (left). Edges between cliques have been removed for clarity.
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(a) (b)

(c)

Figure 2.18: Distribution of relationships (a) per image region, (b) per image object, (c) per image.

2.2.5 Relationship Statistics

Relationships are the core components that link objects in our scene graphs. Relationships are

directional, i.e. they involve two objects, one acting as the subject and one as the object of a

predicate relationship. We denote all relationships in the form relationship(subject, object). For

example, if a man is swinging a bat, we write swinging(man, bat). Relationships can be spa-

tial (e.g. inside of), action (e.g. swinging), compositional (e.g. part of), etc. More complex

relationships such as standing on, which includes both an action and a spatial aspect, are also

represented. Relationships are extracted from region descriptions by crowd workers, similarly to

attributes and objects. Visual Genome contains a total of 13, 894 unique relationships, with over

1.8 million total relationships.

Figure 2.18 (a) shows the distribution of relationships per region description. On average, we

have 1 relationship per region, with a maximum of 7. We also have some descriptions like “an old,

tall man,” which have multiple attributes associated with the man but no relationships. Figure 2.18

(b) is a distribution of relationships per image object. Finally, Figure 2.18 (c) shows the distribution

of relationships per image. Each image has an average of 19 relationships, with a minimum of 1

relationship and with ax maximum of over 60 relationships.

Top relationship distributions. We display the most frequently occurring relationships in Fig-

ure 2.19 (a). on is the most common relationship in our dataset. This is primarily because of

the flexibility of the word on, which can refer to spatial configuration (on top of), attachment
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(hanging on), etc. Other common relationships involve actions like holding and wearing and

spatial configurations like behind, next to, and under. Figure 2.19 (b) shows a similar distri-

bution but for relationships involving people. Here we notice more human-centric relationships or

actions such as kissing, chatting with, and talking to. The two distributions follow a Zipf

distribution.

Understanding affordances. Relationships allow us to also understand the affordances of ob-

jects. We show this using a specific distribution of subjects and objects involved in the relationship

riding in Figure 2.20. Figure 2.20 (a) shows the distribution for subjects while Figure 2.20 (b)

shows a similar distribution for objects. Comparing the two distributions, we find clear patterns

of people-like subject entities such as person, man, policeman, boy, and skateboarder that

can ride other objects; the other distribution contains objects that afford riding, such as horse,

bike, elephant, motorcycle, and skateboard. We can also learn specific common-sense

knowledge, like that skateboarders only ride skateboards and only surfers ride waves or

surfboards.

Related work comparison. It is also worth mentioning in this section some prior work on

relationships. The concept of visual relationships has already been explored in Visual Phrases [203],

who introduced a dataset of 17 such relationships such as next to(person, bike) and riding(person,

horse). However, their dataset is limited to just these 17 relationships. Similarly, the MS-COCO-a

dataset [194] introduced 140 actions that humans performed in MS-COCO’s dataset [139]. However,

their dataset is limited to just actions, while our relationships are more general and numerous, with

over 13K unique relationships. Finally, VisKE [202] introduced 6500 relationships, but in a much

smaller dataset of images than Visual Genome.
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(a) (b)

Figure 2.19: (a) A sample of the most frequent relationships in our dataset. In general, the most
common relationships are spatial (on top of, on side of, etc.). (b) A sample of the most
frequent relationships involving humans in our dataset. The relationships involving people tend to
be more action oriented (walk, speak, run, etc.).
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(a) (b)

Figure 2.20: (a) Distribution of subjects for the relationship riding. (b) Distribution of objects for
the relationship riding. Subjects comprise of people-like entities like person, man, policeman,
boy, and skateboarder that can ride other objects. On the other hand, objects like horse,
bike, elephant and motorcycle are entities that can afford riding.
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Figure 2.21: Example QA pairs in the Visual Genome dataset. Our QA pairs cover a spectrum of
visual tasks from recognition to high-level reasoning.

Objects Attributes Relationships

Region Graph 0.43 0.41 0.45
Scene Graph 21.26 16.21 18.67

Table 2.2: The average number of objects, attributes, and relationships per region graph and per
scene graph.

2.2.6 Region and Scene Graph Statistics

We describe, in this thesis, the largest dataset of scene graphs to date. We use these graph repre-

sentations of images as a deeper understanding of the visual world. In this section, we analyze the

properties of these representations, both at the region level through region graphs and at the image

level through scene graphs. We also briefly explore other datasets with scene graphs and provide

aggregate statistics on our entire dataset.

Scene graphs by asking humans to write triples about an image [100]. However, unlike them, we

collect graphs at a much more fine-grained level, the region graph. We obtained our graphs by asking

workers to create them from the descriptions we collected from our regions. Therefore, we end up

with multiple graphs for an image, one for every region description. Together, we can combine all

the individual region graphs to aggregate a scene graph for an image. This scene graph is made up

of all the individual region graphs. In our scene graph representation, we merge all the objects that

referenced by multiple region graphs into one node in the scene graph.

Each of our images has a distribution between 40 to 50 region graphs per image, with an average
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of 42. Each image has exactly one scene graph. Note that the number of region descriptions and the

number of region graphs for an image are not the same. For example, consider the description “it

is a sunny day”. Such a description contains no objects, which are the building blocks of a region

graph. Therefore, such descriptions have no region graphs associated with them.

Objects, attributes, and relationships occur as a normal distribution in our data. Table 2.2 shows

that in a region graph, there are an average of 0.43 objects, 0.41 attributes, and 0.45 relationships.

Each scene graph and consequently each image has average of 21.26 objects, 16.21 attributes, and

18.67 relationships.

2.2.7 Question Answering Statistics

We collected 1, 773, 258 question answering (QA) pairs on the Visual Genome images. Each pair

consists of a question and its correct answer regarding the content of an image. On average, every

image has 17 QA pairs. Rather than collecting unconstrained QA pairs as previous work has

done [3, 66, 145], each question in Visual Genome starts with one of the six Ws – what, where, when,

who, why, and how. There are two major benefits to focusing on six types of questions. First, they

offer a considerable coverage of question types, ranging from basic perceptual tasks (e.g. recognizing

objects and scenes) to complex common sense reasoning (e.g. inferring motivations of people and

causality of events). Second, these categories present a natural and consistent stratification of

task difficulty, indicated by the baseline performance in Chapter 5.5. For instance, why questions

that involve complex reasoning lead to the poorest performance (3.4% top-100 accuracy) of the six

categories. This enables us to obtain a better understanding of the strengths and weaknesses of

today’s computer vision models, which sheds light on future directions in which to proceed.

We now analyze the diversity and quality of our questions and answers. Our goal is to construct

a large-scale visual question answering dataset that covers a diverse range of question types, from

basic cognition tasks to complex reasoning tasks. We demonstrate the richness and diversity of our

QA pairs by examining the distributions of questions and answers in Figure 2.21.

Question type distributions. The questions naturally fall into the 6W categories via their

interrogative words. Inside each of the categories, the second and following words categorize the

questions with increasing granularity. Inspired by VQA [3], we show the distributions of the questions

by their first three words in Figure 2.22 (a). We can see that “what” is the most common of the

six categories. A notable difference between our question distribution and VQA’s is that we focus

on ensuring that all 7 question categories are adequately represented, while in VQA, 32.37% of

the questions are yes/no binary questions. As a result, a trivial model can achieve a reasonable

performance by just predicting “yes” or “no” as answers. We encourage more difficult QA pairs by

ruling out binary questions.
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Figure 2.22: (a) Distribution of question types by starting words. This figure shows the distribution
of the questions by their first three words. The angles of the regions are proportional to the number
of pairs from the corresponding categories. We can see that “what” questions are the largest category
with nearly half of the QA pairs. (b) Question and answer lengths by question type. The bars show
the average question and answer lengths of each question type. The whiskers show the standard
deviations. The factual questions, such as “what” and “how” questions, usually come with short
answers of a single object or a number. This is only because “how” questions are disproportionately
counting questions that start with “how many”. Questions from the “where” and “why” categories
usually have phrases and sentences as answers.

Question and answer length distributions. We also analyze the question and answer lengths

of each 6W category. Figure 2.22 (b) shows the average question and answer lengths of each category.

Overall, the average question and answer lengths are 5.7 and 1.8 words respectively. In contrast

to the VQA dataset, where .88%, 8.38%, and 3.25% of the answers consist of one, two, or three

words, our answers exhibit a long-tail distribution where 57.3%, 18.1%, and 15.7% of the answers

have one, two, or three words respectively. We avoid verbosity by instructing the workers to write

answers as concisely as possible. The coverage of long answers means that many answers contain

a short description that contains more details than merely an object or an attribute. It shows the

richness and complexity of our visual QA tasks beyond object-centric recognition tasks. We foresee

that these long-tail questions can motivate future research in common-sense reasoning and high-level

image understanding.
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carriage.n.02
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horse.n.01
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a human being

mapped synset derived synset

Q: What are the shamrocks doing there?

A: They are a symbol of St. Patrick’s day.

hop_clover.n.02
clover native to Ireland with 

yellowish flowers

symbol.n.01
an arbitrary sign that has 
acquired a conventional 
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st_patrick's_day.n.01
a day observed by the Irish to 
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saint of Ireland
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ride.v.02
be carried or travel on or in 

a vehicle

green.a.01
of the color between blue 

and yellow in the color 
spectrum

travel.v.01
change location; move, 

travel, or proceed

Figure 2.23: An example image from the Visual Genome dataset with its region descriptions, QA,
objects, attributes, and relationships canonicalized. The large text boxes are WordNet synsets refer-
enced by this image. For example, the carriage is mapped to carriage.n.02: a vehicle
with wheels drawn by one or more horses. We do not show the bounding boxes for the
objects in order to allow readers to see the image clearly. We also only show a subset of the scene
graph for this image to avoid cluttering the figure.

2.2.8 Canonicalization Statistics

In order to reduce the ambiguity in the concepts of our dataset and connect it to other resources

used by the research community, we canonicalize the semantic meanings of all objects, relationships,

and attributes in Visual Genome. By “canonicalization,” we refer to word sense disambiguation

(WSD) by mapping the components in our dataset to their respective synsets in the WordNet

ontology [159]. This mapping reduces the noise in the concepts contained in the dataset and also

facilitates the linkage between Visual Genome and other data sources such as ImageNet [40], which

is built on top of the WordNet ontology.

Figure 2.23 shows an example image from the Visual Genome dataset with its components canon-

icalized. For example, horse is canonicalized as horse.n.01: solid-hoofed herbivorous

quadruped domesticated since prehistoric times. Its attribute, clydesdale, is canon-

icalized as its breed clydesdale.n.01: heavy feathered-legged breed of draft horse

originally from Scotland. We also show an example of a QA from which we extract the

nouns shamrocks, symbol, and St. Patrick’s day, all of which we canonicalize to Word-

Net as well.

Related work. Canonicalization, or WSD [169], has been used in numerous applications, includ-

ing machine translation, information retrieval, and information extraction [193, 129]. In English

sentences, sentences like “He scored a goal” and “It was his goal in life” carry different meanings for
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Precision Recall

Objects 88.0 98.5
Attributes 85.7 95.9
Relationships 92.9 88.5

Table 2.3: Precision, recall, and mapping accuracy percentages for object, attribute, and relationship
canonicalization.

the word “goal.” Understanding these differences is crucial for translating languages and for return-

ing correct results for a query. Similarly, in Visual Genome, we ensure that all our components are

canonicalized to understand how different objects are related to each other; for example, “person”

is a hypernym of “man” and “woman.” Most past canonicalization models use precision, recall,

and F1 score to evaluate on the Semeval dataset [157]. The current state-of-the-art performance on

Semeval is an F1 score of 75.8% [27]. Since our canonicalization setup is different from the Semeval

benchmark (we have an open vocabulary and no annotated ground truth for evaluation), our canon-

icalization method is not directly comparable to these existing methods. We do however, achieve a

similar precision and recall score on a held-out test set described below.

Region descriptions and QAs. We canonicalize all objects mentioned in all region descriptions

and QA pairs. Because objects need to be extracted from the phrase text, we use Stanford NLP

tools [148] to extract the noun phrases in each region description and QA, resulting in 99% recall

of noun phrases from a subset of 200 region descriptions we manually annotated. After obtaining

the noun phrases, we map each to its most frequent matching synset (according to WordNet lexeme

counts). This resulted in an overall mapping accuracy of 86% and a recall of 98.5%. The most

common synsets extracted from region descriptions, QAs, and objects are shown in Figure 2.24.

Attributes. We canonicalize attributes from the crowd-extracted attributes present in our scene

graphs. The “attribute” designation encompasses a wide range of grammatical parts of speech.

Because part-of-speech taggers rely on high-level syntax information and thus fail on the disjoint

elements of our scene graphs, we normalize each attribute based on morphology alone (so-called

“stemming”). Then, as with objects, we map each attribute phrase to the most frequent match-

ing WordNet synset. We include 15 hand-mapped rules to address common failure cases in which

WordNet’s frequency counts prefer abstract senses of words over the spatial senses present in visual

data, e.g. “short.a.01: limited in duration” over short.a.02: lacking in length. For veri-

fication, we randomly sample 200 attributes, produce ground-truth mappings by hand, and compare

them to the results of our algorithm. This resulted in a recall of 95.9% and a mapping accuracy of

83.5%. The most common attribute synsets are shown in Figure 2.25 (a).

Relationships. As with attributes, we canonicalize the relationships isolated in our scene graphs.

We exclude prepositions, which are not recognized in WordNet, leaving a set primarily composed



CHAPTER 2. KNOWLEDGE REPRESENTATION AND STATISTICS 41

of verb relationships. Since the meanings of verbs are highly dependent upon their morphology

and syntactic placement (e.g. passive cases, prepositional phrases), we map the structure of each

relationship to the appropriate WordNet sentence frame and only consider those WordNet synsets

with matching sentence frames. For each verb-synset pair, we then consider the root hypernym

of that synset to reduce potential noise from WordNet’s fine-grained sense distinctions. We also

include 20 hand-mapped rules, again to correct for WordNet’s lower representation of concrete or

spatial senses; for example, the concrete hold.v.02: have or hold in one’s hand or

grip is less frequent in WordNet than the abstract hold.v.01: cause to continue in a

certain state. For verification, we again randomly sample 200 relationships and compare the

results of our canonicalization against ground-truth mappings. This resulted in a recall of 88.5%

and a mapping accuracy of 77.6%. While several datasets, such as VerbNet [208] and FrameNet [4],

include semantic restrictions or frames to improve classification, there is no comprehensive method

of mapping to those restrictions or frames. The most common relationship synsets are shown in

Figure 2.25 (b).



CHAPTER 2. KNOWLEDGE REPRESENTATION AND STATISTICS 42

(a) (b)

Figure 2.24: Distribution of the 25 most common synsets mapped from (a) region descriptions and
question answers and (b) objects.
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(a) (b)

Figure 2.25: Distribution of the 25 most common synsets mapped from (a) attributes and (b)
relationships.



Chapter 3

General Crowdsourcing Strategies

3.1 Introduction

Visual Genome was collected and verified entirely by crowd workers from Amazon Mechanical Turk.

In this section, we outline the pipeline employed in creating all the components of the dataset.

Each component (region descriptions, objects, attributes, relationships, region graphs, scene graphs,

questions and answers) involved multiple task stages. We mention the different strategies used to

make our data accurate and to enforce diversity in each component. We also provide background

information about the workers who helped make Visual Genome possible.

3.2 Crowd Workers

We used Amazon Mechanical Turk (AMT) as our primary source of annotations. Overall, a total of

over 33, 000 unique workers contributed to the dataset. The dataset was collected over the course of 6

months after 15 months of experimentation and iteration on the data representation. Approximately

800, 000 Human Intelligence Tasks (HITs) were launched on AMT, where each HIT involved creating

descriptions, questions and answers, or region graphs. Each HIT was designed such that workers

manage to earn anywhere between $6-$8 per hour if they work continuously, in line with ethical

research standards on Mechanical Turk [205]. Visual Genome HITs achieved a 94.1% retention rate,

meaning that 94.1% of workers who completed one of our tasks went ahead to do more. Table 3.1

outlines the percentage distribution of the locations of the workers. 93.02% of workers contributed

from the United States.

Figures 3.1 (a) and (b) outline the demographic distribution of our crowd workers. The majority

of our workers were between the ages of 25 and 34 years old. Our youngest contributor was 18 years

old and the oldest was 68 years old. We also had a near-balanced split of 54.15% male and 45.85%

female workers.

44
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Country Distribution

United States 93.02%
Philippines 1.29%
Kenya 1.13%
India 0.94%
Russia 0.50%
Canada 0.47%
(Others) 2.65%

Table 3.1: Geographic distribution of countries from where crowd workers contributed to Visual
Genome.

(a) (b)

Figure 3.1: (a) Age and (b) gender distribution of Visual Genome’s crowd workers.

3.3 Region Descriptions

Visual Genome’s main goal is to enable the study of cognitive computer vision tasks. The next

step towards understanding images requires studying relationships between objects in scene graph

representations of images. However, we observed that collecting scene graphs directly from an image

leads to workers annotating easy, frequently-occurring relationships like wearing(man, shirt) instead

of focusing on salient parts of the image. This is evident from previous datasets [100, 142] that

contain a large number of such relationships. After experimentation, we observed that when asked

to describe an image using natural language, crowd workers naturally start with the most salient

part of the image and then move to describing other parts of the image one by one. Inspired by this

finding, we focused our attention towards collecting a dataset of region descriptions that is diverse

in content.

When a new image is added to the crowdsourcing pipeline with no annotations, it is sent to

a worker who is asked to draw three bounding boxes and write three descriptions for the region

enclosed by each box. Next, the image is sent to another worker along with the previously written

descriptions. Workers are explicitly encouraged to write descriptions that have not been written

before. This process is repeated until we have collect 50 region descriptions for each image. To

prevent workers from having to skim through a long list of previously written descriptions, we only
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show them the top seven most similar descriptions. We calculate these most similar descriptions

using BLEU [171] (n-gram) scores between pairs of sentences. We define the BLEU score between

a description di and a previous description dj to be:

BLEUN (di, dj) = b(di, dj) exp(
1

N

N∑
n=1

log pn(di, dj)) (3.1)

where we enforce a brevity penalty using:

b(di, dj) =

 1 if len(di) > len(dj)

e
1−

len(dj)

len(di) otherwise
(3.2)

and pn calculates the percentage of n-grams in di that match n-grams in dj .

When a worker writes a new description, we programmatically enforce that it has not been

repeated by using BLEU score thresholds set to 0.7 to ensure that it is dissimilar to descriptions

from both of the following two lists:

1. Image-specific descriptions. A list of all previously written descriptions for that image.

2. Global image descriptions. A list of the top 100 most common written descriptions of all

images in the dataset. This prevents very common phrases like “sky is blue” from dominating

the set of region descriptions.

Finally, we ask workers to draw bounding boxes that satisfy one requirement: coverage. The

bounding box must cover all objects mentioned in the description. Figure 3.2 shows an example of

a good box that covers both the street as well the car mentioned in the description, as well as

an example of a bad box.

3.4 Objects

Once 50 region descriptions are collected for an image, we extract the visual objects from each

description. Each description is sent to one crowd worker, who extracts all the objects from the

description and grounds each object as a bounding box in the image. For example, from Figure 2.1,

let’s consider the description “woman in shorts is standing behind the man.” A worker would extract

three objects: woman, shorts, and man. They would then draw a box around each of the objects.

We require each bounding box to be drawn to satisfy two requirements: coverage and quality.

Coverage has the same definition as described above in Section 3.3, where we ask workers to make

sure that the bounding box covers the object completely (Figure 3.3). Quality requires that each

bounding box be as tight as possible around its object such that if the box’s length or height were
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Figure 3.2: Good (left) and bad (right) bounding boxes for the phrase “a street with a red car
parked on the side,” judged on coverage.

decreased by one pixel, it would no longer satisfy the coverage requirement. Since a one pixel error

can be physically impossible for most workers, we relax the definition of quality to four pixels.

Multiple descriptions for an image might refer to the same object, sometimes with different words.

For example, a man in one description might be referred to as person in another description. We

can thus use this crowdsourcing stage to build these co-reference chains. With each region description

given to a worker to process, we include a list of previously extracted objects as suggestions. This

allows a worker to choose a previously drawn box annotated as man instead of redrawing a new box

for person.

Finally, to increase the speed with which workers complete this task, we also use Stanford’s de-

pendency parser [148] to extract nouns automatically and send them to the workers as suggestions.

While the parser manages to find most of the nouns, it sometimes misses compound nouns, so we

avoided completely depending on this automated method. By combining the parser with crowd-

sourcing tasks, we were able to speed up our object extraction process without losing accuracy.

3.5 Attributes, Relationships, and Region Graphs

Once all objects have been extracted from each region description, we can extract the attributes

and relationships described in the region. We present each worker with a region description along

with its extracted objects and ask them to add attributes to objects or to connect pairs of objects

with relationships, based on the text of the description. From the description “woman in shorts

is standing behind the man”, workers will extract the attribute standing for the woman and

the relationships in(woman, shorts) and behind(woman, man). Together, objects, attributes, and

relationships form the region graph for a region description. Some descriptions like “it is a sunny

day” do not contain any objects and therefore have no region graphs associated with them. Workers
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Figure 3.3: Good (left) and bad (right) bounding boxes for the object fox, judged on both coverage
as well as quality.

.

are asked to not generate any graphs for such descriptions. We create scene graphs by combining

all the region graphs for an image by combining all the co-referenced objects from different region

graphs.

3.6 Scene Graphs

The scene graph is the union of all region graphs extracted from region descriptions. We merge

nodes from region graphs that correspond to the same object; for example, man and person in

two different region graphs might refer to the same object in the image. We say that objects from

different graphs refer to the same object if their bounding boxes have an overlap over union of 0.8.

However, this heuristic might contain false positives. So, before merging two objects, we ask workers

to confirm that a pair of objects with significant overlap are indeed the same object. For example,

in Figure 3.4 (right), the fox might be extracted from two different region descriptions. These

boxes are then combined together (Figure 3.4 (left)) when constructing the scene graph. Two region

graphs are combined together by merging objects that are co-referenced by both the graphs.

3.7 Questions and Answers

To create question answer (QA) pairs, we ask the AMT workers to write pairs of questions and

answers about an image. To ensure quality, we instruct the workers to follow three rules: 1) start

the questions with one of the “seven Ws” (who, what, where, when, why, how and which); 2)

avoid ambiguous and speculative questions; 3) be precise and unique, and relate the question to the

image such that it is clearly answerable if and only if the image is shown.
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Figure 3.4: Each object (fox) has only one bounding box referring to it (left). Multiple boxes
drawn for the same object (right) are combined together if they have a minimum threshold of 0.9
intersection over union.

.

We collected two separate types of QAs: freeform QAs and region-based QAs. In freeform QA,

we ask a worker to look at an image and write eight QA pairs about it. To encourage diversity,

we enforce that workers write at least three different Ws out of the seven in their eight pairs. In

region-based QA, we ask the workers to write a pair based on a given region. We select the regions

that have large areas (more than 5k pixels) and long phrases (more than 4 words). This enables us

to collect around twenty region-based pairs at the same cost of the eight freeform QAs. In general,

freeform QA tends to yield more diverse QA pairs that enrich the question distribution; region-based

QA tends to produce more factual QA pairs at a lower cost.

3.8 Verification

All Visual Genome data go through a verification stage as soon as they are annotated. This stage

helps eliminate incorrectly labeled objects, attributes, and relationships. It also helps remove region

descriptions and questions and answers that might be correct but are vague (“This person seems to

enjoy the sun.”), subjective (“room looks dirty”), or opinionated (“Being exposed to hot sun like

this may cause cancer”).

Verification is conducted using two separate strategies: majority voting [221] and rapid judg-

ments [113]. All components of the dataset except objects are verified using majority voting. Ma-

jority voting [221] involves three unique workers looking at each annotation and voting on whether

it is factually correct. An annotation is added to our dataset if at least two (a majority) out of the

three workers verify that it is correct.
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We only use rapid judgments to speed up the verification of the objects in our dataset. Mean-

while, rapid judgments [113] use an interface inspired by rapid serial visual processing that enable

verification of objects with an order of magnitude increase in speed than majority voting.

3.9 Canonicalization

All the descriptions and QAs that we collect are freeform worker-generated texts. They are not

constrained by any limitations. For example, we do not force workers to refer to a man in the

image as a man. We allow them to choose to refer to the man as person, boy, man, etc. This

ambiguity makes it difficult to collect all instances of man from our dataset. In order to reduce

the ambiguity in the concepts of our dataset and connect it to other resources used by the research

community, we map all objects, attributes, relationships, and noun phrases in region descriptions

and QAs to synsets in WordNet [159]. In the example above, person, boy, and man would map

to the synsets: person.n.01 (a human being), male child.n.01 (a youthful male

person) and man.n.03 (the generic use of the word to refer to any human being)

respectively. Thanks to the WordNet hierarchy it is now possible to fuse those three expressions of

the same concept into person.n.01 (a human being) since this is the lowest common ancestor

node of all aforementioned synsets.

We use the Stanford NLP tools [148] to extract the noun phrases from the region descrip-

tions and QAs. Next, we map them to their most frequent matching synset in WordNet accord-

ing to WordNet lexeme counts. We then refine this simple heuristic by hand-crafting mapping

rules for the 30 most common failure cases. For example according to WordNet’s lexeme counts

the most common semantic for “table” is table.n.01 (a set of data arranged in rows

and columns). However in our data it is more likely to see pieces of furniture and therefore

bias the mapping towards table.n.02 (a piece of furniture having a smooth flat

top that is usually supported by one or more vertical legs). The objects in

our scene graphs are already noun phrases and are mapped to WordNet in the same way.

We normalize each attribute based on morphology (so called “stemming”) and map them to

the WordNet adjectives. We include 15 hand-crafted rules to address common failure cases, which

typically occur when the concrete or spatial sense of the word seen in an image is not the most com-

mon overall sense. For example, the synset long.a.02 (of relatively great or greater

than average spatial extension) is less common in WordNet than long.a.01 (indicating

a relatively great or greater than average duration of time), even though in-

stances of the word “long” in our images are much more likely to refer to that spatial sense.

For relationships, we ignore all prepositions as they are not recognized by WordNet. Since the

meanings of verbs are highly dependent upon their morphology and syntactic placement (e.g. passive

cases, prepositional phrases), we try to find WordNet synsets whose sentence frames match with the
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context of the relationship. Sentence frames in WordNet are formalized syntactic frames in which

a certain sense of a word might appear; for example, play.v.01: participate in games

or sport occurs in the sentence frames “Somebody [play]s” and “Somebody [play]s something.”

For each verb-synset pair, we then consider the root hypernym of that synset to reduce poten-

tial noise from WordNet’s fine-grained sense distinctions. The WordNet hierarchy for verbs is seg-

mented and originates from over 100 root verbs. For example, draw.v.01: cause to move by

pulling traces back to the root hypernym move.v.02: cause to move or shift into

a new position, while draw.v.02: get or derive traces to the root get.v.01: come

into the possession of something concrete or abstract. We also include 20 hand-

mapped rules, again to correct for WordNet’s lower representation of concrete or spatial senses.

These mappings are not perfect and still contain some ambiguity. Therefore, we send all our

mappings along with the top four alternative synsets for each term to Amazon Mechanical Turk.

We ask workers to verify that our mapping was accurate and change the mapping to an alternative

one if it was a better fit. We present workers with the concept we want to canonicalize along

with our proposed corresponding synset with 4 additional options. To prevent workers from always

defaulting to the our proposed synset, we do not explicitly specify which one of the 5 synsets

presented is our proposed synset. Section 2.2.8 provides experimental precision and recall scores for

our canonicalization strategy.



Chapter 4

Embracing Error to Enable Rapid

Crowdsourcing

4.1 Introduction

Social science [110, 154], interactive systems [51, 119] and machine learning [40, 139] are becoming

more and more reliant on large-scale, human-annotated data. Increasingly large annotated datasets

have unlocked a string of social scientific insights [69, 19] and machine learning performance improve-

ments [116, 71, 242]. One of the main enablers of this growth has been microtask crowdsourcing [221].

Microtask crowdsourcing marketplaces such as Amazon Mechanical Turk offer a scale and cost that

makes such annotation feasible. As a result, companies are now using crowd work to complete

hundreds of thousands of tasks per day [151].

However, even microtask crowdsourcing can be insufficiently scalable, and it remains too expen-

sive for use in the production of many industry-size datasets [101]. Cost is bound to the amount of

work completed per minute of effort, and existing techniques for speeding up labeling (reducing the

amount of required effort) are not scaling as quickly as the volume of data we are now producing that

must be labeled [236]. To expand the applicability of crowdsourcing, the number of items annotated

per minute of effort needs to increase substantially.

In this chapter, we focus on one of the most common classes of crowdsourcing tasks [90]: binary

annotation. These tasks are yes-or-no questions, typically identifying whether or not an input

has a specific characteristic. Examples of these types of tasks are topic categorization (e.g., “Is

this article about finance?”) [207], image classification (e.g., “Is this a dog?”) [40, 139, 136], audio

styles [210] and emotion detection [136] in songs (e.g., “Is the music calm and soothing?”), word

similarity (e.g., “Are shipment and cargo synonyms?”) [160] and sentiment analysis (e.g., “Is this

tweet positive?”) [170].
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Figure 4.1: (a) Images are shown to workers at 100ms per image. Workers react whenever they see
a dog. (b) The true labels are the ground truth dog images. (c) The workers’ keypresses are slow
and occur several images after the dog images have already passed. We record these keypresses as
the observed labels. (d) Our technique models each keypress as a delayed Gaussian to predict (e)
the probability of an image containing a dog from these observed labels.

Previous methods have sped up binary classification tasks by minimizing worker error.A central

assumption behind this prior work has been that workers make errors because they are not trying

hard enough (e.g., “a lack of expertise, dedication [or] interest” [212]). Platforms thus punish errors

harshly, for example by denying payment. Current methods calculate the minimum redundancy

necessary to be confident that errors have been removed [212, 219, 220]. These methods typically

result in a 0.25× to 1× speedup beyond a fixed majority vote [175, 199, 212, 105].

We take the opposite position: that designing the task to encourage some error, or even make

errors inevitable, can produce far greater speedups.Because platforms strongly punish errors, workers

carefully examine even straightforward tasks to make sure they do not represent edge cases [153, 92].

The result is slow, deliberate work. We suggest that there are cases where we can encourage workers

to move quickly by telling them that making some errors is acceptable.Though individual worker

accuracy decreases, we can recover from these mistakes post-hoc algorithmically (Figure 4.1).

We manifest this idea via a crowdsourcing technique in which workers label a rapidly advancing

stream of inputs. Workers are given a binary question to answer, and they observe as the stream

automatically advances via a method inspired by rapid serial visual presentation (RSVP) [134, 54].

Workers press a key whenever the answer is “yes” for one of the stream items. Because the stream

is advancing rapidly, workers miss some items and have delayed responses. However, workers are

reassured that the requester expects them to miss a few items. To recover the correct answers,

the technique randomizes the item order for each worker and model workers’ delays as a normal

distribution whose variance depends on the stream’s speed. For example, when labeling whether

images have a “barking dog” in them, a self-paced worker on this task takes 1.7s per image on
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average. With our technique, workers are shown a stream at 100ms per image. The technique

models the delays experienced at different input speeds and estimates the probability of intended

labels from the key presses.

We evaluate our technique by comparing the total worker time necessary to achieve the same

precision on an image labeling task as a standard setup with majority vote. The standard approach

takes three workers an average of 1.7s each for a total of 5.1s. Our technique achieves identical

precision (97%) with five workers at 100ms each, for a total of 500ms of work. The result is an order

of magnitude speedup of 10×.

This relative improvement is robust across both simple tasks, such as identifying dogs, and com-

plicated tasks, such as identifying “a person riding a motorcycle” (interactions between two objects)

or “people eating breakfast” (understanding relationships among many objects). We generalize our

technique to other tasks such as word similarity detection, topic classification and sentiment analysis.

Additionally, we extend our method to categorical classification tasks through a ranked cascade of

binary classifications. Finally, we test workers’ subjective mental workload and find no measurable

increase.

Contributions. We make the following contributions:

1. We introduce a rapid crowdsourcing technique that makes errors normal and even inevitable.

We show that it can be used to effectively label large datasets by achieving a speedup of an

order of magnitude on several binary labeling crowdsourcing tasks.

2. We demonstrate that our technique can be generalized to multi-label categorical labeling tasks,

combined independently with existing optimization techniques, and deployed without increas-

ing worker mental workload.

4.2 Related Work

The main motivation behind our work is to provide an environment where humans can make decisions

quickly. We encourage a margin of human error in the interface that is then rectified by inferring

the true labels algorithmically. In this section, we review prior work on crowdsourcing optimization

and other methods for motivating contributions. Much of this work relies on artificial intelligence

techniques: we complement this literature by changing the crowdsourcing interface rather than

focusing on the underlying statistical model.

Our technique is inspired by rapid serial visual presentation (RSVP), a technique for consuming

media rapidly by aligning it within the foveal region and advancing between items quickly [134, 54].

RSVP has already been proven to be effective at speeding up reading rates [252]. RSVP users

can react to a single target image in a sequence of images even at 125ms per image with 75%

accuracy [181]. However, when trying to recognize concepts in images, RSVP only achieves an
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accuracy of 10% at the same speed [182]. In our work, we integrate multiple workers’ errors to

successfully extract true labels.

Many previous papers have explored ways of modeling workers to remove bias or errors from

ground truth labels [251, 249, 267, 175, 91]. For example, an unsupervised method for judging

worker quality can be used as a prior to remove bias on binary verification labels [91]. Individual

workers can also be modeled as projections into an open space representing their skills in labeling

a particular image [251]. Workers may have unknown expertise that may in some cases prove

adversarial to the task. Such adversarial workers can be detected by jointly learning the difficulty of

labeling a particular datum along with the expertises of workers [249]. Finally, a generative model

can be used to model workers’ skills by minimizing the entropy of the distribution over their labels

and the unknown true labels [267]. We draw inspiration from this literature, calibrating our model

using a similar generative approach to understand worker reaction times. We model each worker’s

reaction as a delayed Gaussian distribution.

In an effort to reduce cost, many previous papers have studied the tradeoffs between speed (cost)

and accuracy on a wide range of tasks [246, 15, 244, 198]. Some methods estimate human time

with annotation accuracy to jointly model the errors in the annotation process [246, 15, 244]. Other

methods vary both the labeling cost and annotation accuracy to calculate a tradeoff between the

two [95, 41]. Similarly, some crowdsourcing systems optimize a budget to measure confidence in

worker annotations [104, 105]. Models can also predict the redundancy of non-expert labels needed

to match expert-level annotations [212]. Just like these methods, we show that non-experts can

use our technique and provide expert-quality annotations; we also compare our methods to the

conventional majority-voting annotation scheme.

Another perspective on rapid crowdsourcing is to return results in real time, often by using a

retainer model to recall workers quickly [9, 128, 126]. Like our approach, real-time crowdsourcing

can use algorithmic solutions to combine multiple in-progress contributions [127]. These systems’

techniques could be fused with ours to create crowds that can react to bursty requests.

One common method for optimizing crowdsourcing is active learning, which involves learning

algorithms that interactively query the user. Examples include training image recognition [226] and

attribution recognition [173] with fewer examples. Comparative models for ranking attribute models

have also optimized crowdsourcing using active learning [137]. Similar techniques have explored

optimization of the “crowd kernel” by adaptively choosing the next questions asked of the crowd in

order to build a similarity matrix between a given set of data points [232]. Active learning needs to

decide on a new task after each new piece of data is gathered from the crowd. Such models tend

to be quite expensive to compute. Other methods have been proposed to decide on a set of tasks

instead of just one task [241]. We draw on this literature: in our technique, after all the images

have been seen by at least one worker, we use active learning to decide the next set of tasks. We

determine which images to discard and which images to group together and send this set to another
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Figure 4.2: (a) Task instructions inform workers that we expect them to make mistakes since the
items will be displayed rapidly. (b) A string of countdown images prepares them for the rate at
which items will be displayed. (c) An example image of a “dog” shown in the stream—the two
images appearing behind it are included for clarity but are not displayed to workers. (d) When the
worker presses a key, we show the last four images below the stream of images to indicate which
images might have just been labeled.

worker to gather more information.

Finally, there is a group of techniques that attempt to optimize label collection by reducing

the number of questions that must be answered by the crowd. For example, a hierarchy in label

distribution can reduce the annotation search space [41], and information gain can reduce the number

of labels necessary to build large taxonomies using a crowd [29, 13]. Methods have also been proposed

to maximize accuracy of object localization in images [229] and videos [243]. Previous labels can also

be used as a prior to optimize acquisition of new types of annotations [14]. One of the benefits of

our technique is that it can be used independently of these others to jointly improve crowdsourcing

schemes. We demonstrate the gains of such a combination in our evaluation.

4.3 Error-Embracing Crowdsourcing

Current microtask crowdsourcing platforms like Amazon Mechanical Turk incentivize workers to

avoid rejections [92, 153], resulting in slow and meticulous work. But is such careful work necessary

to build an accurate dataset? In this section, we detail our technique for rapid crowdsourcing by

encouraging less accurate work.

The design space of such techniques must consider which tradeoffs are acceptable to make. The

first relevant dimension is accuracy. When labeling a large dataset (e.g., building a dataset of ten

thousand articles about housing), precision is often the highest priority: articles labeled as on-topic

by the system must in fact be about housing. Recall, on the other hand, is often less important,

because there is typically a large amount of available unlabeled data: even if the system misses some

on-topic articles, the system can label more items until it reaches the desired dataset size. We thus

develop an approach for producing high precision at high speed, sacrificing some recall if necessary.
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The second design dimension involves the task characteristics. Many large-scale crowdsourcing

tasks involve closed-ended responses such as binary or categorical classifications. These tasks have

two useful properties. First, they are time-bound by users’ perception and cognition speed rather

than motor (e.g., pointing, typing) speed [28], since acting requires only a single button press.

Second, it is possible to aggregate responses automatically, for example with majority vote. Open-

ended crowdsourcing tasks such as writing [10] or transcription are often time-bound by data entry

motor speeds and cannot be automatically aggregated. Thus, with our technique, we focus on

closed-ended tasks.

4.3.1 Rapid crowdsourcing of binary decision tasks

Binary questions are one of the most common classes of crowdsourcing tasks. Each yes-or-no question

gathers a label on whether each item has a certain characteristic. In our technique, rather than letting

workers focus on each item too carefully, we display each item for a specific period of time before

moving on to the next one in a rapid slideshow. For example, in the context of an image verification

task, we show workers a stream of images and ask them to press the spacebar whenever they see

a specific class of image. In the example in Figure 4.2, we ask them to react whenever they see a

“dog.”

The main parameter in this approach is the length of time each item is visible. To determine

the best option, we begin by allowing workers to work at their own pace. This establishes an initial

average time period, which we then slowly decrease in successive versions until workers start making

mistakes [28]. Once we have identified this error point, we can algorithmically model workers’ latency

and errors to extract the true labels.

To avoid stressing out workers, it is important that the task instructions convey the nature of

the rapid task and the fact that we expect them to make some errors. Workers are first shown a set

of instructions (Figure 4.2(a)) for the task. They are warned that reacting to every single correct

image on time is not feasible and thus not expected. We also warn them that we have placed a small

number of items in the set that we know to be positive items. These help us calibrate each worker’s

speed and also provide us with a mechanism to reject workers who do not react to any of the items.

Once workers start the stream (Figure 4.2(b)), it is important to prepare them for pace of the

task. We thus show a film-style countdown for the first few seconds that decrements to zero at

the same interval as the main task. Without these countdown images, workers use up the first few

seconds getting used to the pace and speed. Figure 4.2(c) shows an example “dog” image that is

displayed in front of the user. The dimensions of all items (images) shown are held constant to avoid

having to adjust to larger or smaller visual ranges.

When items are displayed for less than 400ms, workers tend to react to all positive items with a

delay. If the interface only reacts with a simple confirmation when workers press the spacebar, many

workers worry that they are too late because another item is already on the screen. Our solution
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Figure 4.3: Example raw worker outputs from our interface. Each image was displayed for 100ms
and workers were asked to react whenever they saw images of “a person riding a motorcycle.” Images
are shown in the same order they appeared in for the worker. Positive images are shown with a blue
bar below them and users’ keypresses are shown as red bars below the image to which they reacted.

is to also briefly display the last four items previously shown when the spacebar is pressed, so that

workers see the one they intended and also gather an intuition for how far back the model looks.

For example, in Figure 4.2(d), we show a worker pressing the spacebar on an image of a horse. We

anticipate that the worker was probably delayed, and we display the last four items to acknowledge

that we have recorded the keypress. We ask all workers to first complete a qualification task in which

they receive feedback on how quickly we expect them to react. They pass the qualification task only

if they achieve a recall of 0.6 and precision of 0.9 on a stream of 200 items with 25 positives. We

measure precision as the fraction of worker reactions that were within 500ms of a positive cue.

In Figure 4.3, we show two sample outputs from our interface. Workers were shown images for

100ms each. They were asked to press the spacebar whenever they saw an image of “a person riding

a motorcycle.” The images with blue bars underneath them are ground truth images of “a person

riding a motorcycle.” The images with red bars show where workers reacted. The important element

is that red labels are often delayed behind blue ground truth and occasionally missed entirely. Both

Figures 4.3(a) and 4.3(b) have 100 images each with 5 correct images.

Because of workers’ reaction delay, the data from one worker has considerable uncertainty. We

thus show the same set of items to multiple workers in different random orders and collect inde-

pendent sets of keypresses. This randomization will produce a cleaner signal in aggregate and later

allow us to estimate the images to which each worker intended to react.

Given the speed of the images, workers are not able to detect every single positive image. For

example, the last positive image in Figure 4.3(a) and the first positive image in Figure 4.3(b) are

not detected. Previous work on RSVP found a phenomenon called “attention blink” [16], in which a
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worker is momentarily blind to successive positive images. However, we find that even if two images

of “a person riding a motorcycle” occur consecutively, workers are able to detect both and react

twice (Figures 4.3(a) and 4.3(b)). If workers are forced to react in intervals of less than 400ms,

though, the signal we extract is too noisy for our model to estimate the positive items.

4.3.2 Multi-Class Classification for Categorical Data

So far, we have described how rapid crowdsourcing can be used for binary verification tasks. Now

we extend it to handle multi-class classification. Theoretically, all multi-class classification can be

broken down into a series of binary verifications. For example, if there are N classes, we can ask N

binary questions of whether an item is in each class. Given a list of items, we use our technique to

classify them one class at a time. After every iteration, we remove all the positively classified items

for a particular class. We use the rest of the items to detect the next class.

Assuming all the classes contain an equal number of items, the order in which we detect classes

should not matter. A simple baseline approach would choose a class at random and attempt to

detect all items for that class first. However, if the distribution of items is not equal among classes,

this method would be inefficient. Consider the case where we are trying to classify items into 10

classes, and one class has 1000 items while all other classes have 10 items. In the worst case, if

we classify the class with 1000 examples last, those 1000 images would go through our interface 10

times (once for every class). Instead, if we had detected the large class first, we would be able to

classify those 1000 images and they would only go through our interface once. With this intuition,

we propose a class-optimized approach that classifies the most common class of items first. We

maximize the number of items we classify at every iteration, reducing the total number of binary

verifications required.

4.4 Model

To translate workers’ delayed and potentially erroneous actions into identifications of the positive

items, we need to model their behavior. We do this by calculating the probability that a particular

item is in the positive class given that the user reacted a given period after the item was displayed.

By combining these probabilities across several workers with different random orders of the same

images, these probabilities sum up to identify the correct items.

We use maximum likelihood estimation to predict the probability of an item being a positive

example. Given a set of items I = {I1, . . . , In}, we send them to W workers in a different random

order for each. From each worker w, we collect a set of keypresses Cw = {cw1 , . . . , cwk } where w ∈W
and k is the total number of keypresses from w. Our aim is to calculate the probability of a given

item P (Ii) being a positive example. Given that we collect keypresses from W workers:
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P (Ii) =
∑
w

P (Ii|Cw)P (Cw) (4.1)

where P (C) =
∏
k P (Ck) is the probability of a particular set of items being keypresses. We set

P (Ck) to be constant, asssuming that it is equally likely that a worker might react to any item.

Using Bayes’ rule:

P (Ii|Cw) =
P (Cw|Ii)P (Ii)

P (Cw)
. (4.2)

P (Ii) models our estimate of item Ii being positive. It can be a constant, or it can be an estimate

from a domain-specific machine learning algorithm [103]. For example, to calculate P (Ii), if we were

trying to scale up a dataset of “dog” images, we would use a small set of known “dog” images to

train a binary classifier and use that to calculate P (Ii) for all the unknown images. With image

tasks, we use a pretrained convolutional neural network to extract image features [216] and train a

linear support vector machine to calculate P (Ii).

We model P (Cw|Ii) as a set of independent keypresses:

P (Cw|Ii) = P (cw1 , . . . , c
w
k |Ii) =

∏
k

P (Cwk |Ii). (4.3)

Finally, we model each keypress as a Gaussian distribution N (µ, σ) given a positive item. We

train the mean µ and variance σ by running rapid crowdsourcing on a small set of items for which

we already know the positive items. Here, the mean and variance of the distribution are modeled to

estimate the delays that a worker makes when reacting to a positive item.

Intuitively, the model works by treating each keypress as creating a Gaussian “footprint” of

positive probability on the images about 400ms before the keypress (Figure 4.1). The model combines

these probabilities across several workers to identify the images with the highest overall probability.

Now that we have a set of probabilities for each item, we need to decide which ones should be

classified as positive. We order the set of items I according to likelihood of being in the positive class

P (Ii). We then set all items above a certain threshold as positive. This threshold is a hyperparameter

that can be tuned to trade off precision vs. recall.

In total, this model has two hyperparameters: (1) the threshold above which we classify images as

positive and (2) the speed at which items are displayed to the user. We model both hyperparameters

in a per-task (image verification, sentiment analysis, etc.) basis. For a new task, we first estimate

how long it takes to label each item in the conventional setting with a small set of items. Next, we

continuously reduce the time each item is displayed until we reach a point where the model is unable

to achieve the same precision as the untimed case.

4.5 Calibration: Baseline Worker Reaction Time

Our technique hypothesizes that guiding workers to work quickly and make errors can lead to results

that are faster yet with similar precision. We begin evaluating our technique by first studying worker
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Figure 4.4: We plot the change in recall as we vary percentage of positive items in a task. We
experiment at varying display speeds ranging from 100ms to 500ms. We find that recall is inversely
proportional to the rate of positive stimuli and not to the percentage of positive items.

reaction times as we vary the length of time for which each item is displayed. If worker reaction times

have a low variance, we accurately model them. Existing work on RSVP estimated that humans

usually react about 400ms after being presented with a cue [248, 188]. Similarly, the model human

processor [22] estimated that humans perceive, understand and react at least 240ms after a cue. We

first measure worker reaction times, then analyze how frequently positive items can be displayed

before workers are unable to react to them in time.

Method. We recruited 1,000 workers on Amazon Mechanical Turk with 96% approval rating and

over 10,000 tasks submitted. Workers were asked to work on one task at a time. Each task contained

a stream of 100 images of polka dot patterns of two different colors. Workers were asked to react by

pressing the spacebar whenever they saw an image with polka dots of one of the two colors. Tasks

could vary by two variables: the speed at which images were displayed and the percentage of the

positively colored images. For a given task, we held the display speed constant. Across multiple

tasks, we displayed images for 100ms to 500ms. We studied two variables: reaction time and recall.

We measured the reaction time to the positive color across these speeds. To study recall (percentage

of positively colored images detected by workers), we varied the ratio of positive images from 5% to

95%. We counted a keypress as a detection only if it occurred within 500ms of displaying a positively

colored image.

Results. Workers’ reaction times corresponded well with estimates from previous studies. Work-

ers tend to react an average of 378ms (σ = 92ms) after seeing a positive image. This consistency is

an important result for our model because it assumes that workers have a consistent reaction delay.



CHAPTER 4. EMBRACING ERROR TO ENABLE RAPID CROWDSOURCING 62

Task Conventional Approach Our Technique Speedup

Time (s) Precision Recall Time (s) Precision Recall

Image Verification

Easy 1.50 0.99 0.99 0.10 0.99 0.94 9.00×
Medium 1.70 0.97 0.99 0.10 0.98 0.83 10.20×
Hard 1.90 0.93 0.89 0.10 0.90 0.74 11.40×
All Concepts 1.70 0.97 0.96 0.10 0.97 0.81 10.20×

Sentiment Analysis 4.25 0.93 0.97 0.25 0.94 0.84 10.20×
Word Similarity 6.23 0.89 0.94 0.60 0.88 0.86 6.23×
Topic Detection 14.33 0.96 0.94 2.00 0.95 0.81 10.75×

Table 4.1: We compare the conventional approach for binary verification tasks (image verification,
sentiment analysis, word similarity and topic detection) with our technique and compute precision
and recall scores. Precision scores, recall scores and speedups are calculated using 3 workers in the
conventional setting. Image verification, sentiment analysis and word similarity used 5 workers using
our technique, while topic detection used only 2 workers. We also show the time taken (in seconds)
for 1 worker to do each task.

As expected, recall is inversely proportional to the speed at which the images are shown. A

worker is more likely to miss a positive image at very fast speeds. We also find that recall decreases

as we increase the percentage of positive items in the task. To measure the effects of positive

frequency on recall, we record the percentage threshold at which recall begins to drop significantly

at different speeds and positive frequencies. From Figure 4.4, at 100ms, we see that recall drops when

the percentage of positive images is more than 35%. As we increase the time for which an item is

displayed, however, we notice that the drop in recall occurs at a much higher percentage. At 500ms,

the recall drops at a threshold of 85%. We thus infer that recall is inversely proportional to the rate

of positive stimuli and not to the percentage of positive images. From these results we conclude that

at faster speeds, it is important to maintain a smaller percentage of positive images, while at slower

speeds, the percentage of positive images has a lesser impact on recall. Quantitatively, to maintain

a recall higher than 0.7, it is necessary to limit the frequency of positive cues to one every 400ms.

4.6 Study 1: Image Verification

In this study, we deploy our technique on image verification tasks and measure its speed relative to

the conventional self-paced approach. Many crowdsourcing tasks in computer vision require verifying

that a particular image contains a specific class or concept. We measure precision, recall and cost

(in seconds) by the conventional approach and compare against our technique.

Some visual concepts are easier to detect than others. For example, detecting an image of a “dog”

is a lot easier than detecting an image of “a person riding a motorcycle” or “eating breakfast.” While

detecting a “dog” is a perceptual task, “a person riding a motorcycle” requires understanding of the
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Figure 4.5: We study the precision (left) and recall (right) curves for detecting “dog” (top), “a person
on a motorcycle” (middle) and “eating breakfast” (bottom) images with a redundancy ranging from
1 to 5. There are 500 ground truth positive images in each experiment. We find that our technique
works for simple as well as hard concepts.

interaction between the person and the motorcycle. Similarly, “eating breakfast” requires workers to

fuse concepts of people eating a variety foods like eggs, cereal or pancakes. We test our technique on

detecting three concepts: “dog” (easy concept), “a person riding a motorcycle” (medium concept)

and “eating breakfast” (hard concept). In this study, we compare how workers fare on each of these

three levels of concepts.

Method. In this study, we compare the conventional approach with our technique on three (easy,

medium and hard) concepts. We evaluate each of these comparisons using precision scores, recall

scores and the speedup achieved. To test each of the three concepts, we labeled 10,000 images,

where each concept had 500 examples. We divided the 10,000 images into streams of 100 images

for each task. We paid workers $0.17 to label a stream of 100 images (resulting in a wage of $6

per hour [205]). We hired over 1,000 workers for this study satisfying the same qualifications as the

calibration task.

The conventional method of collecting binary labels is to present a crowd worker with a set

of items. The worker proceeds to label each item, one at a time. Most datasets employ multiple

workers to label each task because majority voting [221] has been shown to improve the quality of

crowd annotations. These datasets usually use a redundancy of 3 to 5 workers [213]. In all our
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experiments, we used a redundancy of 3 workers as our baseline.

When launching tasks using our technique, we tuned the image display speed to 100ms. We used

a redundancy of 5 workers when measuring precision and recall scores. To calculate speedup, we

compare the total worker time taken by all the 5 workers using our technique with the total worker

time taken by the 3 workers using the conventional method. Additionally, we vary redundancy on

all the concepts to from 1 to 10 workers to see its effects on precision and recall.

Results. Self-paced workers take 1.70s on average to label each image with a concept in the

conventional approach (Table 4.1). They are quicker at labeling the easy concept (1.50s per worker)

while taking longer on the medium (1.70s) and hard (1.90s) concepts.

Using our technique, even with a redundancy of 5 workers, we achieve a speedup of 10.20× across

all concepts. We achieve order of magnitude speedups of 9.00×, 10.20× and 11.40× on the easy,

medium and hard concepts. Overall, across all concepts, the precision and recall achieved by our

technique is 0.97 and 0.81. Meanwhile the precision and recall of the conventional method is 0.97 and

0.96. We thus achieve the same precision as the conventional method. As expected, recall is lower

because workers are not able to detect every single true positive example. As argued previously,

lower recall can be an acceptable tradeoff when it is easy to find more unlabeled images.

Now, let’s compare precision and recall scores between the three concepts. We show precision

and recall scores in Figure 4.5 for the three concepts. Workers perform slightly better at finding

“dog” images and find it the most difficult to detect the more challenging “eating breakfast” concept.

With a redundancy of 5, the three concepts achieve a precision of 0.99, 0.98 and 0.90 respectively

at a recall of 0.94, 0.83 and 0.74 (Table 4.1). The precision for these three concepts are identical to

the conventional approach, while the recall scores are slightly lower. The recall for a more difficult

cognitive concept (“eating breakfast”) is much lower, at 0.74, than for the other two concepts. More

complex concepts usually tend to have a lot of contextual variance. For example, “eating breakfast”

might include a person eating a “banana,” a “bowl of cereal,” “waffles” or “eggs.” We find that while

some workers react to one variety of the concept (e.g., “bowl of cereal”), others react to another

variety (e.g., “eggs”).

When we increase the redundancy of workers to 10 (Figure 4.6), our model is able to better

approximate the positive images. We see diminishing increases in both recall and precision as

redundancy increases. At a redundancy of 10, we increase recall to the same amount as the con-

ventional approach (0.96), while maintaining a high precision (0.99) and still achieving a speedup of

5.1×.

We conclude from this study that our technique (with a redundancy of 5) can speed up image

verification with easy, medium and hard concepts by an order of magnitude while still maintaining

high precision. We also show that recall can be compensated by increasing redundancy.
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Figure 4.6: We study the effects of redundancy on recall by plotting precision and recall curves
for detecting “a person on a motorcycle” images with a redundancy ranging from 1 to 10. We see
diminishing increases in precision and recall as we increase redundancy. We manage to achieve the
same precision and recall scores as the conventional approach with a redundancy of 10 while still
achieving a speedup of 5×.

4.7 Study 2: Non-Visual Tasks

So far, we have shown that rapid crowdsourcing can be used to collect image verification labels. We

next test the technique on a variety of other common crowdsourcing tasks: sentiment analysis [170],

word similarity [221] and topic detection [133].

Method. In this study, we measure precision, recall and speedup achieved by our technique over

the conventional approach. To determine the stream speed for each task, we followed the prescribed

method of running trials and speeding up the stream until the model starts losing precision. For

sentiment analysis, workers were shown a stream of tweets and asked to react whenever they saw a

positive tweet. We displayed tweets at 250ms with a redundancy of 5 workers. For word similarity,

workers were shown a word (e.g., “lad”) for which we wanted synonyms. They were then rapidly

shown other words at 600ms and asked to react if they see a synonym (e.g., “boy”). Finally, for topic

detection, we presented workers with a topic like “housing” or “gas” and presented articles of an

average length of 105 words at a speed of 2s per article. They reacted whenever they saw an article

containing the topic we were looking for. For all three of these tasks, we compare precision, recall

and speed against the self-paced conventional approach with a redundancy of 3 workers. Every task,

for both the conventional approach and our technique, contained 100 items.

To measure the cognitive load on workers for labeling so many items at once, we ran the widely-

used NASA Task Load Index (TLX) [36] on all tasks, including image verification. TLX measures

the perceived workload of a task. We ran the survey on 100 workers who used the conventional

approach and 100 workers who used our technique across all tasks.

Results. We present our results in Table 4.1 and Figure 4.7. For sentiment analysis, we find that

workers in the conventional approach classify tweets in 4.25s. So, with a redundancy of 3 workers,

the conventional approach would take 12.75s with a precision of 0.93. Using our method and a
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Figure 4.7: Precision (left) and recall (right) curves for sentiment analysis (top), word similarity
(middle) and topic detection (bottom) images with a redundancy ranging from 1 to 5. Vertical lines
indicate the number of ground truth positive examples.

redundancy of 5 workers, we complete the task in 1250ms (250ms per worker per item) and 0.94

precision. Therefore, our technique achieves a speedup of 10.2×.

Likewise, for word similarity, workers take around 6.23s to complete the conventional task, while

our technique succeeds at 600ms. We manage to capture a comparable precision of 0.88 using

5 workers against a precision of 0.89 in the conventional method with 3 workers. Since finding

synonyms is a higher-level cognitive task, workers take longer to do word similarity tasks than

image verification and sentiment analysis tasks. We manage a speedup of 6.23×.

Finally, for topic detection, workers spend significant time analyzing articles in the conventional

setting (14.33s on average). With 3 workers, the conventional approach takes 43s. In comparison,

our technique delegates 2s for each article. With a redundancy of only 2 workers, we achieve a

precision of 0.95, similar to the 0.96 achieved by the conventional approach. The total worker time

to label one article using our technique is 4s, a speedup of 10.75×.

The mean TLX workload for the control condition was 58.5 (σ = 9.3), and 62.4 (σ = 18.5) for our

technique. Unexpectedly, the difference between conditions was not significant (t(99) = −0.53, p =

0.59). The temporal demand scale item appeared to be elevated for our technique (61.1 vs. 70.0),

but this difference was not significant (t(99) = −0.76, p = 0.45). We conclude that our technique can

be used to scale crowdsourcing on a variety of tasks without statistically increasing worker workload.
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4.8 Study 3: Multi-class Classification

In this study, we extend our technique from binary to multi-class classification to capture an even

larger set of crowdsourcing tasks. We use our technique to create a dataset where each image is

classified into one category (“people,” “dog,” “horse,” “cat,” etc.). We compare our technique with

a conventional technique [40] that collects binary labels for each image for every single possible class.

Method. Our aim is to classify a dataset of 2,000 images with 10 categories where each category

contains between 100 to 250 examples. We compared three methods of multi-class classification: (1)

a naive approach that collected 10 binary labels (one for each class) for each image, (2) a baseline

approach that used our interface and classified images one class (chosen randomly) at a time, and

(3) a class-optimized approach that used our interface to classify images starting from the class with

the most examples. When using our interface, we broke tasks into streams of 100 images displayed

for 100ms each. We used a redundancy of 3 workers for the conventional interface and 5 workers for

our interface. We calculated the precision and recall scores across each of these three methods as

well as the cost (in seconds) of each method.

Results. (1) In the naive approach, we need to collect 20,000 binary labels that take 1.7s each.

With 5 workers, this takes 102,000s ($170 at a wage rate of $6/hr) with an average precision of

0.99 and recall of 0.95. (2) Using the baseline approach, it takes 12,342s ($20.57) with an average

precision of 0.98 and recall of 0.83. This shows that the baseline approach achieves a speedup of

8.26× when compared with the naive approach. (3) Finally, the class-optimized approach is able to

detect the most common class first and hence reduces the number of times an image is sent through

our interface. It takes 11,700s ($19.50) with an average precision of 0.98 and recall of 0.83. The

class-optimized approach achieves a speedup of 8.7× when compared to the naive approach. While

the speedup between the baseline and the class-optimized methods is small, it would be increased

on a larger dataset with more classes.

4.9 Application: Building ImageNet

Our method can be combined with existing techniques [41, 226, 173, 12] that optimize binary ver-

ification and multi-class classification by preprocessing data or using active learning. One such

method [41] annotated ImageNet (a popular large dataset for image classification) effectively with a

useful insight: they realized that its classes could be grouped together into higher semantic concepts.

For example, “dog,” “rabbit” and “cat” could be grouped into the concept “animal.” By utilizing

the hierarchy of labels that is specific to this task, they were able to preprocess and reduce the

number of labels needed to classify all images. As a case study, we combine our technique with their

insight and evaluate the speedup in collecting a subset of ImageNet.

Method. We focused on a subset of the dataset with 20,000 images and classified them into 200

classes. We conducted this case study by comparing three ways of collecting labels: (1) The naive
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approach asked 200 binary questions for each image in the subset, where each question asked if the

image belonged to one of the 200 classes. We used a redundancy of 3 workers for this task. (2) The

optimal-labeling method used the insight to reduce the number of labels by utilizing the hierarchy of

image classes. (3) The combined approach used our technique for multi-class classification combined

with the hierarchy insight to reduce the number of labels collected. We used a redundancy of 5

workers for this technique with tasks of 100 images displayed at 250ms.

Results. (1) Using the naive approach, this would result in asking 4 million binary verification

questions. Given that each binary label takes 1.7s (Table 4.1), we estimate that the total time to

label the entire dataset would take 6.8 million seconds ($11,333 at a wage rate of $6/hr). (2) The

optimal-labeling method is estimated to take 1.13 million seconds ($1,888) [41]. (3) Combining the

hierarchical questions with our interface, we annotate the subset in 136,800s ($228). We achieve a

precision of 0.97 with a recall of 0.82. By combining our 8× speedup with the 6× speedup from

intelligent question selection, we achieve a 50× speedup in total.

4.10 Discussion

We focused our technique on positively identifying concepts. We then also test its effectiveness at

classifying the absence of a concept. Instead of asking workers to react when they see a “dog,” if

we ask them to react when they do not see a “dog,” our technique performs poorly. At 100ms,

we find that workers achieve a recall of only 0.31, which is much lower than a recall of 0.94 when

detecting the presence of “dog”s. To improve recall to 0.90, we must slow down the feed to 500ms.

Our technique achieves a speedup of 2× with this speed. We conclude that our technique performs

poorly for anomaly detection tasks, where the presence of a concept is common but its absence, an

anomaly, is rare. More generally, this exercise suggests that some cognitive tasks are less robust

to rapid judgments. Preattentive processing can help us find “dog”s, but ensuring that there is no

“dog” requires a linear scan of the entire image.

To better understand the active mechanism behind our technique, we turn to concept typicality.

A recent study [89] used fMRIs to measure humans’ recognition speed for different object categories,

finding that images of most typical examplars from a class were recognized faster than the least

typical categories. They calculated typicality scores for a set of image classes based on how quickly

humans recognized them. In our image verification task, 72% of false negatives were also atypical.

Not detecting atypical images might lead to the curation of image datasets that are biased towards

more common categories. For example, when curating a dataset of dogs, our technique would be more

likely to find usual breeds like “dalmatians” and “labradors” and miss rare breeds like “romagnolos”

and “otterhounds.” More generally, this approach may amplify biases and minimize clarity on edge

cases. Slowing down the feed reduces atypical false negatives, resulting in a smaller speedup but

with a higher recall for atypical images.
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4.11 Conclusion

We have suggested that crowdsourcing can speed up labeling by encouraging a small amount of

error rather than forcing workers to avoid it. We introduce a rapid slideshow interface where items

are shown too quickly for workers to get all items correct. We algorithmically model worker errors

and recover their intended labels. This interface can be used for binary verification tasks like

image verification, sentiment analysis, word similarity and topic detection, achieving speedups of

10.2×, 10.2×, 6.23× and 10.75× respectively. It can also extend to multi-class classification and

achieve a speedup of 8.26×. Our approach is only one possible interface instantiation of the concept

of encouraging some error; we suggest that future work may investigate many others. Speeding

up crowdsourcing enables us to build larger datasets to empower scientific insights and industry

practice. For many labeling goals, this technique can be used to construct datasets that are an order

of magnitude larger without increasing cost.



Chapter 5

Visual Genome Experiments

5.1 Introduction

Thus far, we have presented the Visual Genome dataset and analyzed its individual components.

With such rich information provided, numerous perceptual and cognitive tasks can be tackled. In

this chapter, we aim to provide baseline experimental results using components of Visual Genome

that have not been extensively studied. Object detection is already a well-studied problem [46, 71,

211, 70, 191]. We therefore focus on the remaining components, i.e. attributes, relationships, region

descriptions, and question answer pairs.

In Chapter 5.2, we present results for two experiments on attribute prediction. In the first, we

treat attributes independently from objects and train a classifier for each attribute, i.e. a classifier

for red or a classifier for old, as in [147, 240, 55, 50, 100]. In the second experiment, we learn object

and attribute classifiers jointly and predict object-attribute pairs (e.g. predicting that an apple is

red), as in [203].

In Chapter 5.3, we present two experiments on relationship prediction. In the first, we aim to pre-

dict the predicate between two objects, e.g. predicting the predicate kicking or wearing between

two objects. This experiment is synonymous with existing work in action recognition [79, 187]. In

another experiment, we study relationships by classifying jointly the objects and the predicate (e.g.

predicting kicking(man, ball)); we show that this is a very difficult task due to the high variability

in the appearance of a relationship (e.g. the ball might be on the ground or in mid-air above the

man). These experiment are generalizations of tasks that study spatial relationships between objects

and ones that jointly reason about the interaction of humans with objects [257, 183].

In Chapter 5.4 we present results for region captioning. This task is closely related to image

captioning [25]; however, results from the two are not directly comparable, as region descriptions are

short, incomplete sentences. We train one of the top 16 state-of-the-art image caption generator [106]

on (1) our dataset to generate region descriptions and on (2) Flickr30K [262] to generate sentence

70
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“playing” (predicted “grazing”) “beautiful” (predicted “concrete”)

“metal” (predicted “closed”)

“dark” (predicted “dark”) “parked” (predicted “parked”)

“white” (predicted “stuffed”)

(a)

“green leaves” (predicted “white snow”) “flying bird” (predicted “black jacket”)

“brown grass” (predicted “green grass”)

“red bus” (predicted “red bus”) “skiing person” (predicted “skiing person”)

“white stripe” (predicted “black and white zebra”)

(b)

Figure 5.1: (a) Example predictions from the attribute prediction experiment. Attributes in the first
row are predicted correctly, those in the second row differ from the ground truth but still correctly
classify an attribute in the image, and those in the third row are classified incorrectly. The model
tends to associate objects with attributes (e.g. elephant with grazing). (b) Example predictions
from the joint object-attribute prediction experiment.

descriptions. To compare results between the two training approaches, we use simple templates to

convert region descriptions into complete sentences. For a more robust evaluation, we validate the

descriptions we generate using human judgment.

Finally, in Chapter 5.5, we experiment on visual question answering, i.e. given an image and a

question, we attempt to provide an answer for the question. We report results on the retrieval of

the correct answer from a list of existing answers.

5.2 Attribute Prediction

Attributes are becoming increasingly important in the field of computer vision, as they offer higher-

level semantic cues for various problems and lead to a deeper understanding of images. We can ex-

press a wide variety of properties through attributes, such as form (sliced), function (decorative),

sentiment (angry), and even intention (helping). Distinguishing between similar objects [93] leads

to finer-grained classification, while describing a previously unseen class through attributes shared

with known classes can enable “zero-shot” learning [50, 125]. Visual Genome is the largest dataset

of attributes, with 18 attributes per image for a total of 1.8 million attributes.
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Setup. For both experiments, we focus on the 100 most common attributes in our dataset. We

only use objects that occur at least 100 times and are associated with one of the 100 attributes in at

least one image. For both experiments, we follow a similar data pre-processing pipeline. First, we

lowercase, lemmatize, and strip excess whitespace from all attributes. Since the number of examples

per attribute class varies, we randomly sample 500 attributes from each category (if fewer than 500

are in the class, we take all of them).

We end up with around 50, 000 attribute instances and 43, 000 object-attribute pair instances in

total. We use 80% of the images for training and 10% each for validation and testing. Because each

image has about the same number of examples, this results in an approximately 80%-10%-10% split

over the attributes themselves. The input data for this experiment is the cropped bounding box of

the object associated with each attribute.

We train an attribute predictor by using features learned from a convolutional neural network.

Specifically, we fine-tune a 16-layer VGG network [217] for both of these experiments using the

50, 000 attribute and 43, 000 object-attribute pair instances respectively. We modify the network so

that the learning rate of the final fully-connected layer is 10 times that of the other layers, as this

improves convergence time. We use a base learning rate of 0.001, which we scale by 0.1 every 200

iterations, and momentum and weight decays of 0.9 and 0.0005 respectively. We use the fine-tuned

features from the network and train 100 individual SVMs [82] to predict each attribute. We output

multiple attributes for each bounding box input. For the second experiment, we also output the

object class.

Results. Table 5.1 shows results for both experiments. For the first experiment on attribute

prediction, we converge after around 700 iterations with 18.97% top-one accuracy and 43.11% top-five

accuracy. Thus, attributes (like objects) are visually distinguishable from each other. For the second

experiment where we also predict the object class, we converge after around 400 iterations with

43.17% top-one accuracy and 71.97% top-five accuracy. Predicting objects jointly with attributes

increases the top-one accuracy from 18.97% to 43.17%. This implies that some attributes occur

exclusively with a small number of objects. Additionally, by jointly learning attributes with objects,

we increase the inter-class variance, making the classification process an easier task.

Figure 5.1 (a) shows example predictions for the first attribute prediction experiment. In general,

the model is good at associating objects with their most salient attributes, for example, animal

with stuffed and elephant with grazing. However, there is some difference between the

user-provided result and the correct ground truth, so the model incorrectly classifies some correct

predictions. For example, the white stuffed animal is correct but evaluated as incorrect.

Figure 5.1 (b) shows example predictions for the second experiment in which we also predict

the object. While the results in the second row might be considered correct, to keep a consistent

evaluation, we mark them as incorrect. For example, the predicted “green grass” might be considered

subjectively correct even though it is annotated as “brown grass”. For cases where the objects are
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Top-1 Accuracy Top-5 Accuracy

Attribute 18.97% 43.11%
Object-Attribute 43.17% 71.97%

Table 5.1: (First row) Results for the attribute prediction task where we only predict attributes for
a given image crop. (Second row) Attribute-object prediction experiment where we predict both the
attributes as well as the object from a given crop of the image.

not clearly visible but are abstract outlines, our model is unable to predict attributes or objects

accurately. For example, it thinks that the “flying bird” is actually a “black jacket”.

The attribute clique graphs in Chapter 2.2.4 clearly show that learning attributes can help us

identify types of objects. This experiment strengthens that insight. We learn that studying attributes

together with objects can improve attribute prediction.

5.3 Relationship Prediction

While objects are the core building blocks of an image, relationships put them in context. These

relationships help distinguish between images that contain the same objects but have different holistic

interpretations. For example, an image of “a man riding a bike” and “a man falling off a bike” both

contain man and bike, but the relationship (riding vs. falling off) changes how we perceive

both situations. Visual Genome is the largest known dataset of relationships, with a total of 1.8

million relationships and an average of 18 relationships per image.

Setup. The setups of both experiments are similar to those of the experiments we performed on

attributes. We again focus on the top 100 most frequent relationships. We lowercase, lemmatize,

and strip excess whitespace from all relationships. We end up with around 34, 000 relationships

and 27, 000 subject-relationship-object triples for training, validation, and testing. The input data

to the experiment is the image region containing the union of the bounding boxes of the subject

and object (essentially, the bounding box containing the two object boxes). We fine-tune a 16-layer

VGG network [217] with the same learning rates mentioned in Chapter 5.2.

Results. Overall, we find that relationships are not visually distinct enough for our discriminative

model to learn effectively. Table 5.2 shows results for both experiments. For relationship classifi-

cation, we converge after around 800 iterations with 8.74% top-one accuracy and 29.69% top-five

accuracy. Unlike attribute prediction, the accuracy results for relationships are much lower because

of the high intra-class variability of most relationships. For the second experiment jointly predicting

the relationship and its two object classes, we converge after around 450 iterations with 25.83%

top-one accuracy and 65.57% top-five accuracy. We notice that object classification aids relation-

ship prediction. Some relationships occur with some objects and never others; for example, the
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Dog “carrying” frisbee (predicted: “laying on”)

Boy “playing” soccer (predicted “playing”) Sheep “eating” grass (predicted “eating”)

Bike “attached to” rack (predicted “riding”)

Bag “inside” rickshaw (predicted “riding”) Shadow “from” zebra (predicted “drinking”)

(a)

“glass on table” (predicted “plate on table”)

“car on road” (predicted “bus on street”)

“train on tracks” (predicted “train on tracks”)

“leaf on tree” (predicted “building in background”)

“boat in water” (predicted “boat in water”)

“boy has hair” (predicted “woman wearing glasses”)

(b)

Figure 5.2: (a) Example predictions from the relationship prediction experiment. Relationships in
the first row are predicted correctly, those in the second row differ from the ground truth but still
correctly classify a relationship in the image, and those in the third row are classified incorrectly.
The model learns to associate animals leaning towards the ground as eating or drinking and
bikes with riding. (b) Example predictions from the relationship-objects prediction experiment.
The figure is organized in the same way as Figure (a). The model is able to predict the salient
features of the image but fails to distinguish between different objects (e.g. boy and woman and
car and bus in the bottom row).

relationship drive only occurs with the object person and never with any other objects (dog,

chair, etc.).

Figure 5.2 (a) shows example predictions for the relationship classification experiment. In general,

the model associates object categories with certain relationships (e.g. animals with eating or

drinking, bikes with riding, and kids with playing).

Figure 5.2 (b), structured as in Figure 5.2 (a), shows example predictions for the joint prediction

of relationships with its objects. The model is able to predict the salient features of the image (e.g.

“boat in water”) but fails to distinguish between different objects (e.g. boy vs. woman and car vs.

bus in the bottom row).
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Top-1 Accuracy Top-5 Accuracy

Relationship 8.74% 26.69%
Sub./Rel./Obj. 25.83% 65.57%

Table 5.2: Results for relationship classification (first row) and joint classification (second row)
experiments.

“a black motorcycle”

“trees in background”

“train is visible”

“the umbrella is red”

“black and white cow”

“a kite in the sky”

Figure 5.3: Example predictions from the region description generation experiment. Regions in
the first column (left) accurately describe the region, and those in the second column (right) are
incorrect and unrelated to the corresponding region.

5.4 Generating Region Descriptions

Generating sentence descriptions of images has gained popularity as a task in computer vision [108,

150, 106, 242]; however, current state-of-the-art models fail to describe all the different events cap-

tured in an image and instead provide only a high-level summary of the image. In this section, we

test how well state-of-the-art models can caption the details of images. For both experiments, we

use the NeuralTalk model [106], since it not only provides state-of-the-art results but also is shown

to be robust enough for predicting short descriptions. We train NeuralTalk on the Visual Genome

dataset for region descriptions and on Flickr30K [262] for full sentence descriptions. As a model

trained on other datasets would generate complete sentences and would not be comparable [25] to

our region descriptions, we convert all region descriptions generated by our model into complete

sentences using predefined templates [87].
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Setup. For training, we begin by preprocessing region descriptions; we remove all non-alphanumeric

characters and lowercase and strip excess whitespace from them. We have 4, 158, 841 region descrip-

tions in total. We end up with 3, 150, 000 region descriptions for training – 504, 420 each for valida-

tion and testing. Note that we ensure descriptions of regions from the same image are exclusively

in the training, validation, or testing set. We feed the bounding boxes of the regions through the

pretrained VGG 16-layer network [217] to get the 4096-dimensional feature vectors of each region.

We then use the NeuralTalk [106] model to train a long short-term memory (LSTM) network [84]

to generate descriptions of regions. We use a learning rate of 0.001 trained with rmsprop [38]. The

model converges after four days.

For testing, we crop the ground-truth region bounding boxes of images and extract their 4096-

dimensional 16-layer VGG network [217] features. We then feed these vectors through the pretrained

NeuralTalk model to get predictions for region descriptions.

Results. Table 5.3 shows the results for the experiment. We calculate BLEU, CIDEr, and ME-

TEOR scores [25] between the generated descriptions and their ground-truth descriptions. In all

cases, the model trained on VisualGenome performs better. Moreover, we asked crowd workers to

evaluate whether a generated description was correct—we got 1.6% and 43.03% for models trained

on Flickr30K and on Visual Genome, respectively. The large increase in accuracy when the model

trained on our data is due to the specificity of our dataset. Our region descriptions are shorter and

cover a smaller image area. In comparison, the Flickr30K data are generic descriptions of entire

images with multiple events happening in different regions of the image. The model trained on our

data is able to make predictions that are more likely to concentrate on the specific part of the image

it is looking at, instead of generating a summary description. The objectively low accuracy in both

cases illustrates that current models are unable to reason about complex images.

Figure 5.3 shows examples of regions and their predicted descriptions. Since many examples have

short descriptions, the predicted descriptions are also short as expected; however, this causes the

model to fail to produce more descriptive phrases for regions with multiple objects or with distinctive

objects (i.e. objects with many attributes). While we use templates to convert region descriptions

into sentences, future work can explore smarter approaches to combine region descriptions and

generate a paragraph connecting all the regions into one coherent description.

5.5 Question Answering

Visual Genome is currently the largest dataset of visual question answers with 1.7 million question

and answer pairs. Each of our 108, 249 images contains an average of 17 question answer pairs.

Answering questions requires a deeper understanding of an image than generic image captioning.

Question answering can involve fine-grained recognition (e.g. “What is the breed of the dog?”),
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BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr METEOR Human

Flickr8K 0.09 0.01 0.002 0.0004 0.05 0.04 1.6%
VG 0.17 0.05 0.02 0.01 0.30 0.09 43.03%

Table 5.3: Results for the region description generation experiment. Scores in the first row are for
the region descriptions generated from the NeuralTalk model trained on Flickr8K, and those in the
second row are for those generated by the model trained on Visual Genome data. BLEU, CIDEr,
and METEOR scores all compare the predicted description to a ground truth in different ways.

top-100 top-500 top-1000

What 0.420 0.602 0.672
Where 0.096 0.324 0.418
When 0.714 0.809 0.834
Who 0.355 0.493 0.605
Why 0.034 0.118 0.187
How 0.780 0.827 0.846

Overall 0.411 0.573 0.641

Table 5.4: Baseline QA performances (in accuracy).

object detection (e.g. “Where is the kite in the image?”), activity recognition (e.g. “What is this

man doing?”), knowledge base reasoning (e.g. “Is this glass full?”), and common-sense reasoning

(e.g. “What street will we be on if we turn right?”).

By leveraging the detailed annotations in the scene graphs in Visual Genome, we envision building

smart models that can answer a myriad of visual questions. While we encourage the construction

of smart models, in this chapter, we provide some baseline metrics to help others compare their

models.

Setup. We split the QA pairs into a training set (60%) and a test set (40%). We ensure that all

images are exclusive to either the training set or the test set. We implement a simple baseline model

that relies on answer frequency. The model counts the top k most frequent answers (similar to the

ImageNet challenge [197]) in the training set as the predictions for all the test questions, where

k = 100, 500, and 1000. We let a model make k different predictions. We say the model is correct

on a QA if one of the k predictions matches exactly with the ground-truth answer. We report the

accuracy over all test questions. This evaluation method works well when the answers are short,

especially for single-word answers. However, it causes problems when the answers are long phrases

and sentences. Other evaluation methods require word ontologies [145], multiple choices [3, 263], or

human judges [66].
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Results. Table 5.4 shows the performance of the open-ended visual question answering task. These

baseline results imply the long-tail distribution of the answers. Long-tail distribution is common in

existing QA datasets as well [3, 145]. The top 100, 500, and 1000 most frequent answers only cover

41.1%, 57.3%, and 64.1% of the correct answers. In comparison, the corresponding sets of frequent

answers in VQA [3] cover 63%, 75%, and 80% of the test set answers. The “where” and “why”

questions, which tend to involve spatial and common sense reasoning, tend to have more diverse

answers and hence perform poorly, with performances of 0.096% and 0.024% top-100 respectively.

The top 1000 frequent answers cover only 41.8% and 18.7% of the correct answers from these two

question types respectively.



Chapter 6

Visual Relationship Extraction

6.1 Introduction

While objects are the core building blocks of an image, it is often the relationships between objects

that determine the holistic interpretation. For example, an image with a person and a bicycle

might involve the man riding, pushing, or even falling off the bicycle (Figure 6.1). Understanding this

diversity of relationships is central to accurate image retrieval and to a richer semantic understanding

of our visual world.

Visual relationships are a pair of localized objects connected via a predicate (Figure 6.2). We

denote relationships as predicate(object1, object2) 1. Visual relationship detection involves detecting

and localizing pairs of objects in an image and also classifying the predicate or interaction between

each pair (Figure 6.2). While it poses similar challenges as object detection [46], one critical

difference is that the size of the semantic space of possible relationships is much larger than that of

objects. Since relationships are composed of two objects, there is a greater skew of rare relationships

as object co-occurrence is infrequent in images. So, a fundamental challenge in visual relationship

detection is learning from very few examples.

Visual Phrases [203] studied visual relationship detection using a small set of 13 common relation-

ships. Their model requires enough training examples for every possible predicate(object1, object2)

combination, which is difficult to collect owing to the infrequency of relationships. If we have N

objects and K predicates, Visual Phrases [203] would need to train O(N2K) unique detectors sepa-

rately. We use the insight that while relationships (e.g.“person jumping over a fire hydrant”) might

occur rarely in images, its objects (e.g.person and fire hydrant) and predicate (e.g.jumping

over) appear more frequently. We propose a visual appearance module that learns the appear-

ance of objects and predicates and fuses them together to jointly predict relationships. We show

1In natural language processing [268, 77, 37, 223], relationships are defined as predicate(subject, object). In this
chapter, we define them as predicate(object1, object2) for simplicity.

79
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Figure 6.1: Images of a person and a bicycle. Even though they contain the same objects, it is
the relationship between the objects that determine the holistic interpretation of the image.

Figure 6.2: Visual Relationship Detection: Given an image as input, we detect multiple relationships
in the form of relationship(object1, object2). Both the objects are localized in the image as bounding
boxes. In this example, we detect the following relationships: on(person, motorcycle), wear(person,
helmet) and has(motorcycle, wheel).

that our model only needs O(N +K) detectors to detect O(N2K) relationships.

Another key observation is that relationships are semantically related to each other. For example,

a “person riding a horse” and a “person riding an elephant” are semantically similar because both

elephant and horse are animals. Even if we haven’t seen many examples of “person riding an

elephant”, we might be able to infer it from “person riding a horse”. Word vectors [158] naturally

lend themselves in linking such relationships because they capture semantic similarity in language

(e.g.elephant and horse are cast close together in a word vector space). Therefore, we also pro-

pose a knowledge transfer module that uses pre-trained word vectors [158] to cast relationships

into a vector space where similar relationships are optimized to be close to each other. Using this

semantic space, we can transfer knowledge from frequent relationships and improve the prediction

of relationships that occur infrequently.

In this chapter, we propose a model that can learn to detect visual relationships by learning (1)

visual appearance models for its objects and predicates and (2) transferring knowledge using the
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Figure 6.3: (left) A log scale distribution of the number of instances to the number of relationships
in our dataset. Only a few relationships occur frequently and there is a long tail of infrequent
relationships. (right) Relationships in our dataset can be divided into many categories, 5 of which
are shown here: verb, spatial, preposition, comparative and action.

relationship vector space learnt from word vectors [158]. We train our model by optimizing a bi-

convex function. To benchmark the task of visual relationship detection, we introduce a new dataset

that contains 5000 images with 37,993 relationships. Existing datasets that contain relationships

were designed for improving object detection [203] or image retrieval [100] and hence, don’t contain

sufficient variety of relationships or predicate diversity per object class. Our model outperforms

all previous models in visual relationship detection. We further study how our model can be used

to perform zero shot visual relationship prediction. Finally, we demonstrate that understanding

relationships can improve image-based retrieval.

6.2 Related Work

Visual relationship prediction involves detecting the objects that occur in an image as well as under-

standing the interactions between them. There has been a series of work related to improving object

detection by leveraging object co-occurrence statistics [155, 204, 120, 185, 65, 64]. Structured

learning approaches have improved scene classification along with object detection using hierarchial

contextual data from co-occurring objects [30, 94, 57, 218]. Unlike these methods, we study the

context or relationships in which these objects co-occur.

Some previous works have attempted to learn spatial relationships between objects [74, 65]

to improve multi-class segmentation [74]. They have specifically attempted to learn four spatial

relationships: “above”, “below”, “inside”, and “around” [65]. While we believe that that learning

spatial relationships is important, we also study non-spatial relationships such as pull (actions),

taller than (comparative), etc.

There have been numerous efforts in human-object interaction [192, 257, 144] and action

recognition [79]. These efforts have attempted to learn discriminative models that distinguish be-

tween relationships where object1 is a human, e.g.“playing violin” [256]. Visual relationship pre-

diction is more general as object1 is not constrained to be a human and the predicate doesn’t
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Visual Phrases Scene Graph
[203] [100] Ours

Images 2,769 5,000 5,000
Relationship types 13 23,190 6,672
Relationship instances 2,040 109,535 37,993
Predicates per object 120 2.3 24.25

Table 6.1: Comparison between our visual relationship benchmarking dataset with existing datasets
that contain relationships.

have to be a verb.

Visual relationships are not a new concept. Some papers explicitly collected relationships in

images [187, 76, 189, 233, 260] and videos [189, 117, 273] and helped models map these relationships

from images to language. Relationships have also improved object localization [78, 118, 203, 200].

A meaning space of relationships have aided the cognitive task of mapping images to captions [49,

6, 86, 47]. Finally, relationships have been used to generate indoor images from sentences [24] and

also to improve image search [100, 209]. In this chapter, we formalize visual relationship prediction

as a task onto itself and demonstrate further improvements in image retrieval.

The most recent attempt at relationship prediction has been in the form of visual relationships

called visual phrases. Learning appearance models for visual phrases have shown to improve

individual object detection, i.e. detecting “a person riding a horse” improves the detection and

localization of “person” and “horse” [203, 33]. Unlike our model, all previous works have attempted

to detect only a handful of visual relationships and do not scale because most relationships are

infrequent. We propose a model that manages to scale and detect millions of types of relationships.

Additionally, our model is able to detect unseen relationships.

6.3 Visual Relationship Dataset

Visual relationships put objects in context; they capture the different interactions between pairs of

objects. These interactions (shown in Figure 6.3) might be verbs (e.g.wear), spatial (e.g.on top

of), prepositions (e.g.with), comparative (e.g.taller than), actions (e.g.kick) or a preposition

phrase (e.g.drive on). A dataset for visual relationship prediction is fundamentally different from a

dataset for objects detection. A relationship dataset should contain more than just objects localized

in images; it should capture the rich variety of interactions between pairs of objects (predicates

per object category). For example, a person can be associated with predicates such as ride,

wear, kick etc. Additionally, the dataset should contain a large number of possible relationships

(relationship types).

Existing datasets that contain relationships were designed to improve object detection [203] or

image retrieval [100]. The Visual Phrases [203] dataset focuses on 13 relationship types. But, our
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Figure 6.4: A overview of our visual relationship detection pipeline. Given an image as input,
RCNN [72] generates a set of object proposals. Each pair of object proposals is then scored using
a (1) visual appearance module and a (2) knowledge transfer module [158]. These scores are then
thresholded to output a set of relationship labels (e.g.riding(person, horse)). Both objects in a
relationship (e.g.person and horse) are localized as bounding boxes. The parameters of those two
modules (W and Θ) are iteratively learnt in Chapter 6.4.1.

goal is to understand the rich variety of infrequent relationships. On the other hand, even though

the Scene Graph dataset [100] has 23,190 relationship types 2, it only has 2.3 predicates per object.

Detecting relationships on the Scene Graph dataset [100] essentially boils down to object detection.

Therefore, we designed a dataset specifically for benchmarking visual relationship prediction.

Our dataset (Table 6.1) contains 5000 images with 100 object categories and 70 predicates. In

total, the dataset contains 37,993 relationships with 6,672 relationship types and 24.25 predicates

per object. Some example relationships are shown in Figure 6.3. The distribution of relationships

in our dataset highlights the long tail of infrequent relationships (Figure 6.3(left)). We use 4000

images in our training set and test on the remaining 1000 images. 1,877 relationships occur in the

test set but never occur in the training set.

6.4 Visual Relationship Prediction Model

The goal of our model is to detect visual relationships from an image. During training (Chap-

ter 6.4.1), the input to our model is a fully supervised set of images with relationship annotations

where the objects are localized as bounding boxes and labelled as predicate(object1, object2). At test

time (Chapter 6.4.2), our input is an image with no annotations. We predict multiple relationships

and localize the objects as bounding boxes in the image. Figure 6.4 illustrates a high level overview

of our detection pipeline.

2Note that the Scene Graph dataset [100] was collected using unconstrained language, resulting in multiple an-
notations for the same relationship (e.g.kick(man, ball) and is kicking(person, soccer ball)). Therefore, 23,190 is an
inaccurate estimate of the number of unique relationship types in their dataset.
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6.4.1 Training Approach

In this section, we describe how we train our visual appearance module (Chapter 6.4.1) and knowl-

edge transfer module (Chapter 6.4.1). Both the modules are combined together in our objective

function (Chapter 6.4.1).

Visual Appearance Module

While Visual Phrases [203] learned a separate detector for every single relationship, we model the

appearance of visual relationships V () by learning the individual appearances of its comprising

objects and predicate. While relationships are infrequent in real world images, the objects and

predicates can be learnt as they individually occur more frequently. Furthermore, we demonstrate

that our model outperforms Visual Phrases [203] in Table 6.2.

First, we finetune a convolutional neural network (CNN) (VGG net [217]) to classify each of

our N = 100 objects. Similarly, we train a second CNN (VGG net [217]) to classify each of our

K = 70 predicates using the union of the bounding boxes of the two participating objects in that

relationship. Now, for each ground truth relationship R〈i,k,j〉 where i and j are the object classes

(with bounding boxes O1 and O2) and k is the predicate class, we model V (shown in Figure 6.4)

as:

V (R〈i,k,j〉,Θ|〈O1, O2〉) =

Pi(O1)(zTk CNN(O1, O2) + sk)Pj(O2) + κkGk(O1, O2) (6.1)

where Θ is the parameter set of {zk, sk, κk}, k = 1, . . . ,K. Pi(O1) and Pj(O2) are the CNN like-

lihoods of categorizing box O1 as i and box O2 as j. CNN(O1, O2) is the predicate CNN features

extracted from the union of the O1 and O2 boxes.

To model the spatial relationship (Gk(O1, O2)) between the boxes O1 and O2, we train a Gaussian

Mixture Model (GMM) learnt using a 4 dim. feature representation: {xo1−xo2

L , yo1−yo2H , Ao1

Ao1∪o2
, Ao2

Ao1∪o2
},

where Ao1, Ao2 and Ao1∪o2 are the area of O1, O2 and O1∪O2, respectively; H and L are the height

and width of O1 ∪O2; xo1, yo1 and xo2, yo2 are the centroid of the O1 and O2 respectively.

Knowledge Transfer Module

One of our key observations is that relationships are semantically related to one another. For exam-

ple, ride(person, horse) is semantically similar to ride(person, elephant). Even if we have not seen

any examples of ride(person, elephant), we should be able to infer it from similar relationships that

occur more frequently (e.g.ride(person, horse)). Our knowledge transfer module projects relation-

ships into a relationship vector space where similar relationships are optimized to be close together.

We first describe the function that projects a relationship to the vector space and then explain how

we train this function.
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Relationship projection function First, we use pre-trained word vectors [158] to cast the two

objects in a relationship into an word embedding space [158]. Next, we concatenate these two vectors

together and transform it into the relationship vector space using a learnt projection parameterized

by W. These projections present how two objects interact with each other under different predicates.

We denote w2vec() as the function that converts a word to its 300 dim. vector. The relationship

projection function (shown in Figure 6.4) is defined as:

f(R〈i,k,j〉,W) = wT
k [w2vec(ti),w2vec(tj)] + bk (6.2)

where tj is the word (in text) of the jth object category. wk is a 600 dim. vector and bk is a bias

term. W is the set of {{w1, b1}, . . . , {wk, bk}}, f(〈i, k, j〉, {wk, bk}) where each row presents one of

our K predicates.

Knowledge Transfer We want to optimize the projection function f() such that it projects similar

relationships closer to one another. We formulate this by using a heuristic where the distance between

two relationships is proportional to the distance between its component objects and predicate:

[f(R,W)− f(R′,W)]2 ∝ d(R,R′), ∀R,R′ (6.3)

where d(R,R′) is the sum of the cosine distances between of the two objects and the predicates of

the two relationships R and R′ in the pretrained word vector space [158]. We can rewrite Eq 6.3 in

the form of a ratio as:

ρ〈R,R′〉 =
[f(R,W)− f(R′,W)]2

d(R,R′)
(6.4)

Now, to satisfy Eq 6.3, we expect the ratio in Eq 6.4 to be constant for all pairs of relationships.

So, we randomly sample pairs of distinct relationships (〈R,R′〉) and minimize their variance:

K(W) = var({ρ〈R,R′〉(W) ∀R,R′}) (6.5)

where var() is a variance function.

Likelihood of a Relationship The output of our projection function should also indicate the

likelihood of a visual relationship. For example, our model should not assign a high likelihood score

to a relationships like drive(dog, car). We model this by enforcing that if R occurs more frequently

thanR′ in our training data, then it should have a higher likelihood of occurring again. We formulate

this as a rank loss function:

L(W) =
∑
{R,R′}

max{f(R,W)− f(R′,W) + 1} (6.6)

While we only enforce this likelihood prior for the relationships that occur in our training data,

the project function f() generalizes it for all predicate(object1, object2) combinations, even if they



CHAPTER 6. VISUAL RELATIONSHIP EXTRACTION 86

are not present in our training data.

Objective function

So far we have presented our visual appearance module (V ()) and the knowledge transfer module

(f()) indicating likelihood of relationship. They are combined to maximize the rank of the ground

truth relationship R with bounding boxes O1 and O2 using the following rank loss function:

C(Θ,W) =
∑

〈O1O2〉,R

max{1 + V (R,Θ|〈O1, O2〉)f(R,W)

− max
〈O′

1,O
′
2〉6=〈O1,O2〉,R′ 6=R

V (R′,Θ|〈O′1, O′2〉)f(R′,W), 0} (6.7)

Therefore, our objective function combines Eq 6.7 with Eqs 6.5 and 6.6:

min
Θ,W
{C(Θ,W) + λ1L(W) + λ2K(W)}, (6.8)

where λ1 and λ2 are hyper-parameters that were obtained though grid search to maximize per-

formance on the validation set. Note that both Eqs 6.7 and 6.6 are convex functions. Eq 6.5 is

a biqudratic function with respect to W. So our objective function Eq 6.8 has a quadratic closed

form. We perform SGD iteratively on Eqs 6.7 and 6.6. It usually converges in 20 ∼ 25 iterations.

6.4.2 Testing

At test time, we use RCNN to produce a set of candidate object proposals for every test image.

Next, we use the parameters learnt from the visual appearance model (Θ) and the knowledge trans-

fer module (W) to predict visual relationships (R∗〈i,k,j〉) for every pair of RCNN object proposals

〈O1, O2〉 using:

R∗ = arg max
R

V (R,Θ|〈O1, O2〉)f(R,W) (6.9)

6.5 Experiments

We evaluate our model by detecting visual relationships from images. We show that our proposed

method outperforms previous state-of-the-art methods. We also measure how our model performs

in zero-shot learning of visual relationships. Finally, we demonstrate that understanding visual

relationship can improve common computer vision tasks like content based image retrieval.

6.5.1 Visual Relationship Prediction

Setup. Given an input image, our task is to extract a set of visual relationships predicate(object1,

object2) and localize the objects as bounding boxes in the image. We train our model using the 4000
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Figure 6.5: We evaluate visual relationship detection using three conditions: predicate detection
(where we only predict the predicate given the object classes and boxes), phrase detection (where
we label a region of an image with a relationship) and relationship detection (where we detect the
objects and label the predicate between them).

Visual Relationship Prediction (Chapter 6.5.1) Zero Shot Prediction (Chapter 6.5.2)
Phrase Det. Rel. Det. Pred. Det. Phrase Det. Rel. Det. Pred. Det.

R@100 R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100 R@50

Visual Phrases [203] 0.07 0.04 - - 1.02 0.97 - - - - - -
Joint CNN [217] 0.09 0.07 0.09 0.07 1.16 1.04 - - - - - -

Ours - V only 3.92 3.47 4.02 3.87 8.45 7.03 0.85 0.73 0.72 0.63 1.49 1.05
Ours L only 0.08 0.08 0.08 0.08 17.43 14.21 0.01 0.00 0.01 0.00 1.23 1.17
Ours - V + naive FC 5.01 4.46 4.82 4.15 27.56 22.41 - - - - - -
Ours - V + L only 6.87 6.44 7.86 7.05 34.17 29.69 2.76 2.54 2.45 2.13 4.57 4.02
Ours - V + L + K 13.65 11.17 12.46 10.68 44.28 41.26 4.71 4.42 4.65 4.21 8.21 7.84

Table 6.2: Results for visual relationship extraction. R@100 and R@50 are abbreviation Recall @
100 and 50.

training images and perform visual relationship prediction on the 1000 test images.

The evaluation metrics we report is recall @ 100 and recall @ 50 [1]. We do not use mean

average precision (mAP) scores because it is difficult to collect an exhaustive set of all possible

relationships between all objects in an image. Consider the case where our model predicts taller
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than(person, person). Even if the prediction is correct, mAP would penalize the prediction if we do

not have that ground truth annotation.

Detecting a visual relationship involves classifying both the objects, predicting the predicate and

localization both the objects. To study how our model performs on each of these tasks, we measure

visual relationship prediction under the following conditions:

1. In predicate detection (Figure 6.5(top)), our input is an image and set of localized objects.

The task is to predict a set of possible predicates between pairs of objects. This condition

allows us to study how difficult it is to predict relationships without the limitations of object

detection [72].

2. In phrase detection (Figure 6.5(middle)), our input is an image and our task is to output a

label predicate(object1, object1) and localize the entire relationship as one bounding box having

at least 0.5 overlap with ground truth box. This is the evaluation used in Visual Phrases [203].

3. In relationship detection (Figure 6.5(bottom)), our input is an image and our task is to

output a set of predicate(object1, object1) and localize both object1 and object2 in the image

having at least 0.5 overlap with their ground truth boxes simultaneously.

Comparison Models We compare our method with some state-of-that-art approaches [203, 217].

We further perform ablation studies on our model, considering just the visual appearance, the

likelihood term and knowledge transfer components to study their contributions.

• Visual Phrases. Similar to Visual Phrases [203], we train deformable parts models for each

of the 6,672 relationships (e.g.“chair under table”) in our training set.

• Joint CNN. We train a CNN model [217] to predict the three components of a relationship

together. Specifically, we train a 270 (100+100+70) way classification model that learns to

score the two objects (100 categories each) and predicate (70 categories).

• Visual Appearance (Ours - V only). We only use the visual appearance module of our

model described in Eq 6.7 by optimizing V ().

• Likelihood of a Relationship (Ours - L only). We only use the likelihood of a relationship

described in Eq 6.6 by optimizing L().

• Visual Appearance + Naive Frequency (Ours - V + naive FC ). One of the contri-

butions of our model is the ability to transfer knowledge via our semantic projection function

f() (Eq 6.2). Here, we replace f() with a function that maps a relationship to its frequency

in our training data. Using this naive function, we hope to test the effectiveness of f().

• Visual Appearance + Likelihood (Our - V + L only). We use both the visual appear-

ance module (Eq 6.7) and the likelihood term (Eq 6.6) by optimizing both V () and L(). The

only part of our model missing is K() Eq 6.5, which projects similar relationships closer.
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• Full Model (Ours - V + L + K ). This is our full model. It contains the visual appearance

module (Eq 6.7), the likelihood term (Eq 6.6) and the knowledge transferred (Eq 6.5) from

similar relationships.

Results. In Table 6.2, Visual Phrases [203] and Joint CNN [217] train an individual detector for

every relationship. Since the space of all possible relationships is large (we have 6,672 relationship

types in the training set), there is a shortage of training examples for infrequent relationships, causing

both models to perform poorly on predicate, phrase and relationship detection. (Ours - V only)

can’t can’t discriminative between similar relationships by itself resulting 4.2 R@100 for relationship

detection. Similarly, (Ours - L only) always predicts the most frequent relationship wear(person,

shirt) and results in recall of 0.08 R@100 which is the percentage of that relationship in our testing

data. These problems are remedied when both V and L are combined in (Ours - V + L only) with

an increase of 3% R@100 in on both phrase and relationship detection and more than 10% increase

in predicate detection. We notice that (Ours - V + Naive FC) performs worse than (Ours - V + L

only) and (Ours - V + L + K). (V + Naive FC) is missing our relationship projection function f(),

which learns to predict the likelihood of a predicted relationship. Also, we observe that (Ours - V

+ L + K) has an 11% improvement in comparison to (Ours - V + L only) in predicate detection,

demonstrating that knowledge transfer from similar relationships significantly helps improve visual

relationship detection. By comparing the performance of all the models between relationship and

predicate detection, We notice a 30% R@100 drop. This drop in recall is largely because we have

to localize two objects simultaneously, amplifying the object detection errors. Note that even when

we have ground truth object proposals (in predicate detection), predicting relationships is still a

difficult task with 44.28 at R@100.

Qualitative Results. In Figure 6.6(a)(b)(c), Visual Phrase and Joint CNN incorrectly predict

a common relationship: drive(person, car) and next to(car, tree). These models tend to predict

the most common relationship as they see a lot of them during training. In comparison, our model

correctly predicts and localizes the objects in the image. Figure 6.6(d)(e)(f) compares the various

components of our model. Without the relationship likelihood score, (Ours - V only) incorrectly

classifies a wheel as a clock in (d) and mislabels the predicate in (e) and (f). Without any visual

priors, (Ours - L only) always reports the most frequent relationship wear(person, shirt). (Ours - V

+ L) fixes (d) by correcting the visual model’s misclassification of the wheel as a clock. But it still

does not predict the correct predicate for (e) and (f) because ride(person, elephant) and hold(hand,

phone) rarely occur in our training set. However, our full model (Ours - V + L + K) leverages

similar relationships it has seen before (e.g. ride(man, horse)) and is able to correctly detect the

relationships in (e) and (f).
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Figure 6.6: Examples of comparative results. (a), (b) and (c) show our, Visual Phrases [203] and
Joint CNN [217] results respectively on the same image. All ablation studies results for (d), (e)
and (f) are report below corresponding image. Tick and cross mark the correct and incorrect result
respectively. Phrase, object1 and object2 boxes are in blue, red and green respectively.

Figure 6.7: We can predict “elephant stand on street” (which we haven’t seen in the training set)
using similar seen relationships like “dog stand on street”.

6.5.2 Zero-shot Learning

Owing to the long tail of relationships in real world images, it is difficult to build a dataset with

every possible relationship. Therefore, a model that detects visual relationships should also be able
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Our Model

CNN SIFT

Visual Phrases

Query

Figure 6.8: Examples retrieval results using an image as the query.

to perform zero-shot learning and predict relationships it has never seen before. Our model is able

to leverage similar relationships it has already seen to detect unseen relationships.

Setup. Our test set contains 1,877 relationships that never occur in our training set (e.g.stand

on(elephant, street)). These unseen relationships can be inferred by our model using similar rela-

tionships (e.g.stand on(dog, street)) from our training set (Figure 6.7). We report recall @ 50 and

recall @ 100 for detecting unseen relationships in Table 6.2 (right) for predicate detection, phrase

detection, and relationship detection.

Results. Since Visual Phrases [203], Joint CNN [217] and (Ours - V + Naive FC) require training

examples to detect any unseen relationship, it is unable to perform zero shot learning. (Ours -

V) achieves a low 1.49 R@100 because visual appearances are not discriminative enough to predict

unseen relationships. (Ours - L only) performs poorly in predicate detection (1.23 R@100) because

it automatically returns the most common predicate. Naturally, it performs worse for relationship

detection (0.01 R@100). By comparing (Ours - V+ L+ K) and (Ours - V + L only), we find the use

of K can gain an improvement of 30% since it is utilizing similar relationships to enable zero shot

predictions.

6.5.3 Image based Retrieval

An important task in computer vision is image retrieval. An improved retrieval model should be

able to infer the relationships between the objects in an image. We will demonstrate that the use of

visual relationship prediction can improve the quality of the retrieved results.

Setup. Recall that our test set contains 1000 images. Every query uses 1 of these 1000 images and

ranks the remaining 999. We use 54 query images in our experiments. Two annotators were asked to
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R@1 R@5 R@10 Median r
GIST [167] 0.00 5.60 8.70 68
SIFT [141] 0.70 6.10 10.3 54
CNN [217] 3.15 7.70 11.5 20
Visual Phrases [203] 8.72 18.12 28.04 12
Our Model 10.82 30.02 47.00 4

Table 6.3: Example image retrieval query using a image of a ride(person, horse). Note that a higher
recall and lower median rank indicates better performance.

rank image results for each of the 54 queries. To avoid bias, we consider the results for a particular

query as ground truth only if it was selected by both annotators. We evaluate our image retrieval

performance using recall @ 1, recall @ 5 and recall @ 10 and median rank [100]. For comparison, we

use three image descriptors that are commonly used in image retrieval: CNN [217], GIST [167] and

SIFT [141]. We rank results for a query in ascending order of L2 distance from the query image.

Given a query image, our model predicts a set of visual relationships {R1, . . . , Rn} with a prob-

ability of {P q1 , . . . , P qn} respectively. Next, for every image Ii in our test set, it predicts R1, . . . , Rn

with a confidence of {P i1, . . . , P in}. We calculate a matching score between an image with the query

as
∑n
j=1 P

q
j ∗ P ij . We also compare our model with Visual Phrases’ [203].

Results. SIFT [141] and GIST [167] descriptors perform poorly with a median rank of 54 and

68 (Table 6.3) because they measure structural similarity between images and not the semantic

contents themselves. The CNN [217] descriptor can capture object-level information, so it performs

much better with a median rank of 20. However, it still fails to understand visual relationships

with higher-level semantic information. Our method captures the visual relationships present in the

query image, which is important for high quality image retrieval, improving retrieval with a median

rank of 4.

When queried using an image of a ”person riding a horse” (Figure 6.8), SIFT [141] returns

images that are visually similar but are not semantically relevant. CNN [217] retrieves one image

that contains a horse and one that contains both a man and a horse but neither of them capture

the relationship: “person riding a horse”. Visual Phrases [203] and our model are able to detect the

relationship ride(person, horse) and perform better.

6.6 Conclusion

In this chapter, we have proposed a model to detect multiple visual relationships in a single image

Our model learns to detect thousands of relationships even when there are very few training examples

by (1) learning the visual appearance of the component objects and predicates of the relationship and

(2) by utilizing knowledge transferred from similar relationships. This model outperforms previous
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state of the art [203] on visual relationship detection. We have also demonstrated that our model can

be used for zero shot learning of visual relationships. We introduce a new dataset of 5,000 images

and 37,993 relationships that can be used for further benchmarking. Finally, by understanding visual

relationships, our model improves content based image retrieval.



Chapter 7

Semantic Image Retrieval

7.1 Image Retrieval using Scene Graphs

7.1.1 Introduction

Retrieving images by describing their contents is one of the most exciting applications of computer

vision. An ideal system would allow people to search for images by specifying not only objects

(“man”, “boat”) but also structured relationships (“man on boat”) and attributes (“boat is white”)

involving these objects. Unfortunately current systems fail for these types of queries because they

do not utilize the structured nature of the query, as shown in Fig. 7.1.

To solve this problem, a computer vision system must explicitly represent and reason about the

objects, attributes, and relationships in images, which we refer to as detailed semantics. Recently

Zitnick et al. have made important steps toward this goal by studying abstract scenes composed

of clip-art [272, 273, 63]. They show that perfect recognition of detailed semantics benefits image

understanding and improves image retrieval.

Bringing this level of semantic reasoning to real-world scenes would be a major leap forward,

but doing so involves two main challenges: (1) interactions between objects in a scene can be highly

complex, going beyond simple pairwise relations, and (2) the assumption of a closed universe where

all classes are known beforehand does not hold.

In order to address these challenges, this chapter proposes a novel framework for detailed semantic

image retrieval, based on a conditional random field (CRF [122]) model of visual scenes. Our model

draws inspiration from recent work in computer graphics that uses graph-based formulations to

compare [59] and generate [23] scenes. We use the notion of a scene graph to represent the detailed

semantics of a scene.

Our scene graphs capture the detailed semantics of visual scenes by explicitly modeling objects,

94
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(a) (b)

Figure 7.1: Image search using a complex query like “man holding fish and wearing hat on white
boat” returns unsatisfactory results in (a). Ideal results (b) include correct objects (“man”, “boat”),
attributes (“boat is white”) and relationships (“man on boat”).

attributes of objects, and relationships between objects. Our model performs semantic image re-

trieval using scene graphs as queries. Replacing textual queries with scene graphs allows our queries

to describe the semantics of the desired image in precise detail without relying on unstructured

text. This formulation is related to a number of methods for object and scene recognition using

context [78, 42]. But by using scene graphs, we can model multiple modes of interaction between

pairs of objects while traditional CRF models are more restricted, and encode a fixed relation given

two nodes (e.g. think of “dog [eating, or playing, or being on the right of] a keyboard” in a scene

graph versus. dog on the right of a keyboard in a CRF).

Specifically, our contributions are:

• We introduce a CRF model (Chapter 7.1.5) for semantic image retrieval using scene graph

(Chapter 7.1.3) queries. We show that our model outperforms baseline models that reason

only about objects, and simple content-based image retrieval methods based on low-level visual

features (Chapter 7.1.6). This addresses challenge (1) above.

• We introduce a novel dataset1 (Chapter 7.1.4) of 5, 000 human-annotated scene graphs grounded

to images that use an open-world vocabulary to describe images in great detail, addressing

challenge (2) above.

We set out to demonstrate the importance and utility of modeling detailed semantics using a

scene graph representation for an image retrieval task. But as our experiments demonstrate, an

advantage of this representation is its ability to offer deeper and detailed insights into images in a

general framework. Our model can perform semantically meaningful image retrieval based on an

entire scene (Chapter 7.1.6), or only parts of scenes (Chapter 7.1.6), and localizes specific objects

(Chapter 7.1.6). This differentiates our intention and system from traditional content-based image

retrieval work, which is not the focus of our chapter.

1Available at the first author’s website.
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7.1.2 Related Works

Image retrieval. Content-based image retrieval methods typically use low-level visual feature

representations [177, 21], indexing [35, 265, 96, 97, 228], efficient sub-image search [124], object-

category based retrieval [8, 238, 7], and other methods of modeling image similarity [184] to retrieve

images based on their contents.

Text-based scene representations. There has been much recent interest in models that can

jointly reason about images and natural language descriptions, ranging from Flickr tags [135] over

sentences with canonical structure [117, 161, 273] to unaligned text corpora [222, 107, 225, 262].

While these models achieve impressive results in scene classification and object recognition using

only weak supervision, they are typically limited in terms of expressiveness.

In contrast, our scene graphs are a structured representation of visual scenes. Each node is

explicitly grounded in an image region, avoiding the inherent referential uncertainty of text-based

representations. We currently use strong supervision in the form of a crowd-sourced data set (Chap-

ter 7.1.4), but ultimately envision a system that learns novel scene graphs via active learning, like

NEIL [26] or LEVAN [43].

Structured scene representations. More structured representations of visual scenes explicitly

encode certain types of properties, such as attributes [55, 50, 48, 172, 123], object co-occurrence [156],

or spatial relationships between pairs of objects [31, 42, 203, 32]. Our scene graphs generalize

these representations, since they allow us to express each of them in a unified way (Chapter 7.1.3).

Concretely, our CRF (Chapter 7.1.5) learns models for particular relations between pairs of objects,

similar in spirit to [78] or [258]. However, we consider a much larger, open vocabulary of objects

and relationships.

Graph-structured representations have attained wide-spread use in computer graphics to effi-

ciently represent compositional scenes. Fisher et al. [60] use graph kernels to compare 3D scenes,

and Chang et al. [23] generate novel 3D scenes from natural language descriptions using a scene

graph representation. Parse graphs obtained in scene parsing [266, 255] are typically the result of

applying a grammar designed for a particular domain (such as indoor scenes [266]), in contrast to

our generic scene graphs.

Recent work by Lin et al. [138] constructs semantic graphs from text queries using hand-defined

rules to transform parse trees and uses these semantic graphs to retrieve videos in the context of

autonomous driving. Their system is constrained to the six object classes from KITTI [67] while our

system uses an open-world vocabulary; our scene graphs also tend to be more complex than their

semantic graphs.

Zitnick et al. have studied detailed semantics using abstract scenes built from clip-art aligned to

a corpus of sentences [272, 273, 63]. Our Chapter extends this work as follows: first, we explicitly
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address real-world scenes, replacing the idealistic setting of perfect object and attribute recogni-

tion [272] by uncertain detections. Second, our scene graphs go beyond pairwise relations: we model

and discover meaningful higher-order interactions between multiple objects and attributes (these

sub-graphs can be seen as a generalization of visual phrases [203, 32]). Third, our CRF for scene

graph grounding (Chapter 7.1.5) can ground a query scene graph to an unannotated test image.

Real-world scene datasets. Datasets have been a driving force of computer vision algorithms,

ranging from classification [253] to object recognition and segmentation [52, 40, 201, 46]. More

recently, there has been a shift away from iconic images toward datasets depicting objects in the

context of entire scenes, e.g., SUN09 [31], PASCAL-Context [162], and the COCO [139] datasets.

Our novel dataset of real-world scene graphs advances in this direction by adding attributes and

relationships. In contrast to previous work, the current version of our dataset with 5, 000 images

focuses on depth rather than breadth (Chapter 7.1.4), resulting in a level of semantic detail that has

not been achieved before. While this level of detail is similar in spirit to the Lotus Hill dataset [261],

our dataset is based on an open universe assumption and is freely available.

7.1.3 Scene Graphs

To retrieve images containing particular semantic contents, we need a formalized way of representing

the contents of a scene. This representation must be powerful enough to describe the rich variety

of scenes that can exist, without being too cumbersome. To this end, we define two abstractions: a

scene graph, which is a way of describing a scene, and a scene graph grounding, which is a concrete

association of a scene graph to an image.

Definition

A scene graph is a data structure that describes the contents of a scene. A scene graph encodes

object instances, attributes of objects, and relationships between objects.

This simple formulation is powerful enough to describe visual scenes in great detail because it

places no restriction on the types of objects, attributes, and relationships that can be represented.

Fig. 7.2 (bottom) shows an example of a scene graph. In this example we see that object instances

may be people (“girl”), places (“tennis court”), things (“shirt”), or parts of other objects (“arm”).

Attributes can describe color (“cone is orange”), shape (“logo is round”), and pose (“arm is bent”).

Relationships can encode geometry (“fence behind girl”), actions (“girl swinging racket”), and object

parts (“racket has handle”).

Formally, given a set of object classes C, a set of attribute types A, and a set of relationship

types R, we define a scene graph G to be a tuple G = (O,E) where O = {o1, . . . , on} is a set of

objects and E ⊆ O×R×O is a set of edges. Each object has the form oi = (ci, Ai) where ci ∈ C is

the class of the object and Ai ⊆ A are the attributes of the object.
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Figure 7.2: An example of a scene graph (bottom) and a grounding (top). The scene graph encodes
objects (“girl”), attributes, (“girl is blonde”), and relationships (“girl holding racket”). The ground-
ing associates each object of the scene graph to a region of an image. The image, scene graph, and
grounding are drawn from our real-world scene graphs dataset (Chapter 7.1.4).

Grounding a scene graph in an image

A scene graph on its own is not associated to an image; it merely describes a scene that could be

depicted by an image. However a scene graph can be grounded to an image by associating each

object instance of the scene graph to a region in an image. Fig. 7.2 (top) shows an example of part

of a scene graph grounded to an image.

Formally, we represent an image by a set of candidate bounding boxes B. A grounding of a scene

graph G = (O,E) is then a map γ : O → B. For ease of notation, for o ∈ O we frequently write

γ(o) as γo.

Given a scene graph and an image, there are many possible ways of grounding the scene graph

to the image. In Chapter 7.1.5 we formulate a method for determining the best grounding of a scene

graph to an image.
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COCO ILSVRC Pascal
Full Experiments 2014 2014 (Det) VOC

dataset Chapter 7.1.6 [139] [196] [46]

Object classes 6,745 266 80 200 20
Attribute types 3,743 145 - - -

Relationship types 1,310 68 - - -

Object instances 93,832 69,009 886,284 534,309 27,450
Attribute instances 110,021 94,511 - - -

Relationship instances 112,707 109,535 - - -

Instances per obj. class 13.9 259.4 11,087.5 2,672.5 1,372
Instances per attr. type 29.4 651.8 - - -
Instances per rel. type 86.0 1,610.8 - - -

Objects per image 18.8 13.8 7.2 1.1 2.4
Attributes per image 22.0 18.9 - - -

Relationships per image 22.5 21.9 - - -

Attributes per object 1.2 1.0 - - -
Relationships per object 2.4 2.3 - - -

Table 7.1: Aggregate statistics for our real-world scene graphs dataset, for the full dataset and the restricted
sets of object, attribute, and relationship types used in experiments.

Why scene graphs?

An obvious alternative choice for representing the content of scenes is natural language. However, in

order to represent visual scenes at the level of detail shown in Fig. 7.2, a full paragraph of description

would be necessary:

A blonde white girl is standing in front of an orange cone on a lined tennis court and is holding a long

heavy yellow wide racket that has a black handle. The girl is wearing a white shirt; there is a bent arm in

front of the shirt and another bent arm beside the first. There is a round yellow logo on the shirt, and the

logo is beside hands that are on the handle of the racket. There is a black fence behind the girl, and the girl

has brown eyes above a closed mouth. There are butterflies barrettes in long blonde hair, and the hair is in

a ponytail.

To make use of such a description for image retrieval, we would need to resolve co-references

in the text [186, 102, 132], perform relationship extraction to convert the unstructured text into

structured tuples [165], and ground the entities of the tuples into regions of the image described by

the text [115]. Such pipelines are challenging even in constrained settings [115], and would not scale

to text of the detail shown above.

We can avoid these complexities by working directly with grounded scene graphs. We find that

with careful user interface design, non-expert workers can quickly construct grounded scene graphs

of arbitrary complexity. Details can be found in Sec. 7.1.4 and in our supplementary material.

7.1.4 Real-World Scene Graphs Dataset

To use scene graphs as queries for image retrieval, we need many examples of scene graphs grounded

to images. To our knowledge no such dataset exists. To this end, we introduce a novel dataset of
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Figure 7.3: Examples of scene sub-graphs of increasing complexity (top to bottom) from our dataset, with
attributes and up to 4 different objects.
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Figure 7.4: Objects, attributes and relations reveal a Zipf distribution when ordered by number of
labeled instances.

real-world scene graphs.

Data collection

We manually selected 5,000 images from the intersection of the YFCC100m [235] and Microsoft

COCO [139] datasets, allowing our dataset to build upon rather than compete with these existing

datasets.

For each of these images, we use Amazon’s Mechanical Turk (AMT) to produce a human-

generated scene graph. For each image, three workers write (object, attribute) and (object, re-

lationship, object) tuples using an open vocabulary to describe the image, and draw bounding boxes

for all objects. Bounding boxes for objects are corrected and verified using a system similar to [230],

and all tuples are verified by other workers. A detailed explanation of our data collection pipeline

can be found in the supplementary material.

Analysis and statistics

Our full dataset of 5,000 images contains over 93,000 object instances, 110,000 instances of attributes,

and 112,000 instances of relationships. For our experiments (Chapter 7.1.6), we consider only object

classes and attribute types that appear at least 50 times in our training set and relationship types

that occur at least 30 times in our training set. Even when we consider only the most common

categories, as shown in Table 7.1, the dataset is still very rich with a mean of 13.8 objects, 18.9

attributes and 21.9 relationships per image.

A comparison of our dataset and other popular datasets can be found in Table 7.1. Compared

to other datasets we prioritize detailed annotations of individual images over sheer quantity of

annotated images. Our dataset contains significantly more labeled object instances per image than
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Figure 7.5: An aggregate scene graph computed using our entire dataset. We visualize the 150 most
frequently occurring (object, relationship, object) and (object, attribute) tuples. We also provide 3
examples of scene graphs grounded in images that contribute to the sub-graphs within the dashed
rectangles of the aggregated graph. Best viewed with magnification.

existing datasets, and also provides annotated attributes and relationships for individual object

instances; these types of annotations are simply not available in other datasets. In addition, our

decision to use an open vocabulary allows annotators to label the most meaningful features of each

image instead of being constrained to a fixed set of predefined classes.

In contrast to previous work that looks at individual relations between pairs of objects in isola-

tion [203], the deeply connected nature of our scene graph representation allows us to study object

interactions of arbitrary complexity. Fig. 7.3 shows examples of scene-subgraphs that occur multiple

times in our dataset, ranging from simple (“kite”) to complex (“man on skateboard wearing red

shirt”). These subgraphs also showcase the rich diversity expressed by our scene graphs. Attributes

can for example encode object state (“umbrella is open”), material (“wooden table”) and color (“red

shirt”, “black helmet”). Relationships can encode geometry (“lamp on table”) as well as actions

(“man riding motorcycle”).

Fig. 7.5 uses our dataset to construct an aggregate scene graph, revealing the deeply connected

nature of objects in the visual world. For example buses are frequently large and red, have black

tires, are on streets, and have signs; signs can also appear on walls, which often occur behind men,

who often wear white shirts and jeans. The high density of the aggregate scene graph around the

“man”, “woman”, “sky”, and “building” nodes suggest that these objects are prominent elements

of the visual world, but for different reasons: sky and building occur in nearly every image, while

the attributes and relationships of people in scenes carries a huge semantic weight.
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7.1.5 Image Retrieval by Scene Graph Grounding

We wish to use a scene graph as a query to retrieve images portraying scenes similar to the one

described by the graph. To do so, we need to measure the agreement between a query scene graph

and an unannotated test image. We assume that this agreement can be determined by examining

the best possible grounding of the scene graph to the image.

To this end we construct a conditional random field (CRF [122]) that models the distribution

over all possible groundings. We perform maximum a posteriori (MAP) inference to find the most

likely grounding; the likelihood of this MAP solution is taken as the score measuring the agreement

between the scene graph and the image.

Reusing notation from Chapter 7.1.3, let G = (O,E) be a scene graph, B be a set of bounding

boxes in an image, and γ a grounding of the scene graph to the image. Each object o ∈ O gives

rise to a variable γo in the CRF, where the domain of γo is B and setting γo = b ∈ B corresponds

to grounding object o in the scene graph to box b in the image. We model the distribution over

possible groundings as

P (γ | G,B) =
∏
o∈O

P (γo | o)
∏

(o,r,o′)∈E

P (γo, γo′ | o, r, o′). (7.1)

We use Bayes’ rule to rewrite the term P (γo | o) as P (o | γo)P (γo)/P (o). Assuming uniform

priors over bounding boxes and object classes, P (γo) and P (o) are constants and can be ignored

when performing MAP inference. Therefore our final objective has the form

γ∗ = arg max
γ

∏
o∈O

P (o | γo)
∏

(o,r,o′)∈E

P (γo, γo′ | o, r, o′). (7.2)

Unary potentials. The term P (o | γo) in Equation 7.2 is a unary potential modeling how well

the appearance of the box γo agrees with the known object class and attributes of the object o. If

o = (c, A) then we decompose this term as

P (o | γo) = P (c | γo)
∏
a∈A

P (a | γo). (7.3)

The terms P (c | γo) and P (a | γo) are simply the probabilities that the bounding box γo

shows object class c and attribute a. To model these probabilities, we use R-CNN [72] to to train

detectors for each of the |C| = 266 and |A| = 145 object classes and attribute types. We apply

Platt scaling [179] to convert the SVM classification scores for each object class and attribute into

probabilities.

Binary potentials. The term P (γo, γo′ | o, r, o′) in Equation 7.2 is a binary potential that models

how well the pair of bounding boxes γo, γo′ express the tuple (o, r, o′). Let γo = (x, y, w, h) and
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γo′ = (x′, y′, w′, h′) be the coordinates of the bounding boxes in the image. We extract features

f(γo, γo′) encoding their relative position and scale:

f(γo, γo′) =
(

(x− x′)/w, (y − y′)/h, w′/w, h′/h
)

(7.4)

Suppose that the objects o and o′ have classes c and c′ respectively. Using the training data, we

train a Gaussian mixture model (GMM) to model P (f(γo, γo′) | c, r, c′). If there are fewer than 30

instances of the tuple (c, r, c′) in the training data then we instead fall back on an object agnostic

model P (f(γo, γo′) | r). In either case, we use Platt scaling to convert the value of the GMM density

function evaluated at f(γo, γo′) to a probability P (γo, γo′ | o, r, o′).

Implementation details

We compared the performance of several methods for generating candidate boxes for images, includ-

ing Objectness [1], Selective Search (SS [239]), and Geodesic Object Proposals (GOP [112]). We

found that SS achieves the highest object recall on our dataset; however we use GOP for all experi-

ments as it provides the best trade-off between object recall (≈ 70% vs ≈ 80% for SS) and number of

regions per image (632 vs 1720 for SS). We perform approximate inference using off-the-shelf belief

propagation [2].

7.1.6 Experiments

We perform image retrieval experiments using two types of scene graphs as queries. First, we use

full ground-truth scene graphs as queries; this shows that our model can effectively make sense of

extremely precise descriptions to retrieve images. Second, we jump to the other end of the query

complexity spectrum and use extremely simple scene graphs as queries; this shows that our model

is flexible enough to retrieve relevant images when presented with more open-ended and human-

interpretable queries.

In addition, we directly evaluate the groundings found by our model and show that our model

is able to take advantage of scene context to improve object localization.

Setup. We randomly split our dataset into 4, 000 training images and 1, 000 test images. Our final

vocabulary for object classes and attribute types is selected by picking all terms mentioned at least

50 times in the training set, and our vocabulary for relationship types is the set of relationships

appearing at least 30 times in the training set. Statistics of our dataset when restricted to this

vocabulary are shown in the second column of Table. 7.1.

In our experiments we compare the following methods:

• SG-obj-attr-rel : Our model as described in Chapter 7.1.5. Includes unary object and

attribute potentials and binary relationship potentials.
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Figure 7.6: Example results for retrieval using full scene-graph queries (Chapter 7.1.6). Top: Ex-
ample query graphs. Middle: Rough textual equivalents of the query scene graphs. Bottom: Top-1
retrieval results with groundings for our 3 methods. In both cases SG-obj-attr-rel succeeds in ranking
the correct image at rank 1.

• SG-obj-attr : Our model, using only object and attribute potentials.

• SG-obj : Our model, using only object potentials. Equivalent to R-CNN [72] since the object

class potentials are rescaled R-CNN detection scores.
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Figure 7: (a) Retrieval performance for entire scenes, (b) for partial scenes. (c) Object localization performance for entire scenes. (d)
Increase in localization performance of our full model SG-obj-attr-rel vs SG-obj for individual objects (left) and objects participating in a
relation (right). In (d), positive values indicate the SG-obj-attr-rel performs better than SG-obj.

Rand SIFT GIST CNN SG-obj SG- SG-
[44] [49] [35] [25] obj-attr obj-atr-rel

(a)

Med r 420 - - - 28 17.5 14
R@1 0 - - - 0.113 0.127 0.133
R@5 0.007 - - - 0.260 0.340 0.307
R@10 0.027 - - - 0.347 0.420 0.433

(b)

Med r 94 64 57 36 17 12 11
R@1 0 0 0.008 0.017 0.059 0.042 0.109
R@5 0.034 0.084 0.101 0.05 0.269 0.294 0.303
R@10 0.042 0.168 0.193 0.176 0.412 0.479 0.479

(c)

Med IoU - - - - 0.014 0.026 0.067
R@0.1 - - - - 0.435 0.447 0.476
R@0.3 - - - - 0.334 0.341 0.357
R@0.5 - - - - 0.234 0.234 0.239

Table 2: Quantitative results in entire scene retrieval ((a),
Sect. 6.1), partial scene retrieval ((b), Sect. 6.2), and object lo-
calization ((c), Sect. 6.3).

k (higher is better) and median rank of the query image Iq

(lower is better). Fig. 7 (a) plots the recall over k. Note that
the GIST baseline is meaningless here, as it would always
rank the query image highest.

Results. In Tab. 2 (a), we observe that the detailed seman-
tics encoded in our scene graphs greatly increases the per-
formance for entire scene retrieval. In comparison to SG-
obj, SG-obj-attr-rel decreases the median rank of the query
image from 28 by half to 14. Recall at k shows similar re-
sults, where SG-obj-attr-rel increases recall over SG-obj by
2% (R@1), 4.7% (R@5), and 8.6% (R@10), respectively.
This performance improvement increases for larger values
of k (Fig.7 (a), blue vs red curve), to around 15% at 30.
SG-obj-attr outperforms SG-obj, indicating that attributes
are useful, and is in turn outperformed by SG-obj-attr-rel.

Fig. 6 shows corresponding qualitative results: on the
left, our full model successfully identifies and localizes the
“old woman with a jacket, sitting next to a sitting man with a
striped tie”. On the right, even though some objects are mis-
placed, SG-obj-attr-rel is able to correctly place the “dark
blanket on the bed”, while SG-obj-attr incorrectly grounds
the blanket to a dark region of the test image.

6.2. Small scene graph queries

We have shown that our model is able to handle the com-
plexities of full scene graph queries. Here we show that our
model can also be used to retrieve meaningful results given
simpler, more human-interpretable scene graph queries.

Specifically, we mine our dataset for re-occuring scene
subgraphs containing two objects, one relationship, and one
or two attributes, such as “sitting man on bench” and “smil-
ing man wearing hat.” We retain only subgraphs that occur
at least 5 times in our test set, resulting in 598 scene sub-
graphs. We randomly selected 119 to be used as queries.
For each subgraph query, we find the set of test images
I1, . . . , I` that include it. We hold out I1 from the test set
and use the subgraph to rank the remaining 999 test images.

For the baseline methods we use the image I1 rather than
the graph to rank the remaining test images. For the SIFT
baseline, for each SIFT descriptor from I1, we compute its
100 nearest neighbors among the SIFT descriptors from all
other test images. We then sort the test images by the num-
ber of these neighbors that appear in each image. For the
GIST and CNN baselines, we rank the test images based
on the L2 distance between the descriptor for I1 and the
descriptor for the test image.

We adapt the metrics from [27]; specifically, for each
method we report the median rank of the highest ranked true
positive image I2, . . . , I` across all queries and the recall at
k for various values of k. Results are shown in Tab. 2 (b)
and Fig. 7 (b). Examples of retrieved images can be seen in
Fig. 8 (a,b), for the two queries mentioned above.

Results. In Tab. 2 (b), we see that our full model SG-
obj-attr-rel again outperforms SG-obj by a large margin, re-
ducing the median rank from 17 to 11. SG-obj-attr comes
close, with a median rank of 12. In terms of recall at k, SG-
obj-attr-rel again dominates, improving over SG-obj by 5%
(R@1), 3.4% (R@5), and 6.7% (R@10), respectively. This
gap increases up to around 12% at 40 (Fig. 7 (b)).

Qualitatively, we see in Fig. 8 (a) that SG-obj-attr-rel
succeeds at retrieving correct results for “sitting man on
bench.” In comparison, the first result returned by SG-obj
and SG-obj-attr contains both a man and a bench that are

(a) (b) (c) (d)

Figure 7.7: (a) Retrieval performance for entire scenes, (b) for partial scenes. (c) Object localization
performance for entire scenes. (d) Increase in localization performance of our full model SG-obj-
attr-rel vs SG-obj for individual objects (left) and objects participating in a relation (right). In (d),
positive values indicate the SG-obj-attr-rel performs better than SG-obj .

• CNN [116]: L2 distance between the last layer features extracted using the reference model

from [98].

• GIST [167]: L2 distance between the GIST descriptors of the query image and each test image

(see Chapter 7.1.6).

• SIFT [141]: See Chapter 7.1.6.

• Random: A random permutation of the test images.

Full scene graph queries

Rand SIFT GIST CNN SG-obj SG- SG-
[141] [167] [116] [72] obj-attr obj-attr-rel

(a)

Med r 420 - - - 28 17.5 14
R@1 0 - - - 0.113 0.127 0.133
R@5 0.007 - - - 0.260 0.340 0.307
R@10 0.027 - - - 0.347 0.420 0.433

(b)

Med r 94 64 57 36 17 12 11
R@1 0 0 0.008 0.017 0.059 0.042 0.109
R@5 0.034 0.084 0.101 0.050 0.269 0.294 0.303
R@10 0.042 0.168 0.193 0.176 0.412 0.479 0.479

(c)

Med IoU - - - - 0.014 0.026 0.067
R@0.1 - - - - 0.435 0.447 0.476
R@0.3 - - - - 0.334 0.341 0.357
R@0.5 - - - - 0.234 0.234 0.239

Table 7.2: Quantitative results in entire scene retrieval ((a), Chapter 7.1.6), partial scene retrieval ((b),
Chapter 7.1.6), and object localization ((c), Chapter 7.1.6).

We evaluate the performance of our model using the most complex scene graphs available to us –

full human-generated scene graphs from our dataset. As argued in Chapter 7.1.3, these large scene

graphs roughly correspond to a paragraph of text describing an image in great detail. Examples of

query scene graphs and their rough textual equivalents are shown in the top half of Fig. 7.6.

Concretely, we select an image Iq and its associated human-annotated scene graph Gq from our

test set. We use the graph Gq as a query to rank all of the test images, and record the rank of the
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Figure 7.8: Top-4 retrieval results returned by different methods using two different partial scene graph
queries (a, b). Differences in fully automatic scene graph grounding when applying these methods to a
particular test image (c).

query image Iq. We repeat this process using 150 randomly selected images from our test set and

evaluate the ranking of the query image over all 150 trials. Table 7.2 (a) gives the results in the

form of recall at rank k (higher is better) and median rank of the query image Iq (lower is better).

Fig. 7.7 (a) plots the recall over k. Note that the GIST, SIFT, and CNN baselines are meaningless

here, as they would always rank the query image highest.

Results. In Table 7.2 (a), we observe that the detailed semantics encoded in our scene graphs

greatly increases the performance for entire scene retrieval. Compared to SG-obj , SG-obj-attr-rel

decreases the median rank of the query image from 28 by half to 14. Recall at k shows similar results,

where SG-obj-attr-rel increases recall over SG-obj by 2% (R@1), 4.7% (R@5), and 8.6% (R@10),

respectively. This performance improvement increases for larger values of k (Fig.7.7 (a), blue vs red

curve), to around 15% at 30. SG-obj-attr outperforms SG-obj , indicating that attributes are useful,

and is in turn outperformed by SG-obj-attr-rel .

Fig. 7.6 shows corresponding qualitative results: on the left, our full model successfully identifies

and localizes the “old woman with a jacket, sitting next to a sitting man with a striped tie”. On the

right, even though some objects are misplaced, SG-obj-attr-rel is able to correctly place the “dark

blanket on the bed”, while SG-obj-attr incorrectly grounds the blanket to a dark region of the test

image.
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Small scene graph queries

We have shown that our model is able to handle the complexities of full scene graph queries. Here

we show that our model can also be used to retrieve meaningful results given simpler, more human-

interpretable scene graph queries.

Specifically, we mine our dataset for re-occurring scene subgraphs containing two objects, one

relationship, and one or two attributes, such as “sitting man on bench” and “smiling man wearing

hat.” We retain only subgraphs that occur at least 5 times in our test set, resulting in 598 scene

subgraphs. We randomly selected 119 to be used as queries. For each subgraph query, we find the

set of test images I1, . . . , I` that include it. We hold out I1 from the test set and use the subgraph

to rank the remaining 999 test images.

For the baseline methods we use the image I1 rather than the graph to rank the test images. For

the SIFT baseline, for each SIFT descriptor from I1, we compute its 100 nearest neighbors among

the descriptors from all other test images, and sort the test images by the number of these neighbors

they contain. For the GIST and CNN baselines, we rank the test images based on the L2 distance

between the descriptor for I1 and the descriptor for the test image.

We adapt the metrics from [85]; specifically, for each method we report the median rank of the

highest ranked true positive image I2, . . . , I` across all queries and the recall at k for various values

of k. Results are shown in Table 7.2 (b) and Fig. 7.7 (b). Examples of retrieved images can be seen

in Fig. 7.8 (a,b), for the two queries mentioned above.

Results. In Table 7.2 (b), we see that our full model SG-obj-attr-rel again outperforms SG-obj

by a large margin, reducing the median rank from 17 to 11. SG-obj-attr comes close, with a median

rank of 12. In terms of recall at k, SG-obj-attr-rel again dominates, improving over SG-obj by 5%

(R@1), 3.4% (R@5), and 6.7% (R@10), respectively. This gap increases up to around 12% at 40

(Fig. 7.7 (b)).

Qualitatively, Fig. 7.8 (a) shows that SG-obj-attr-rel retrieves correct results for “sitting man on

bench.” In comparison, the first result returned by SG-obj and SG-obj-attr contains both a man and

a bench that are correctly localized, but the man is not sitting on the bench. Fig. 7.8 (b) shows that

although SG-obj-attr-rel retrieves incorrect results for “smiling man wearing hat”, it fails gracefully

by returning images of a smiling woman wearing a hat, a man wearing a hat who is not smiling, and

a smiling man wearing a helmet.

Object localization

We have shown that our scene graph representation improves image retrieval results; here, we show

that it can also aid in localizing individual objects. For each image I and its corresponding ground-

truth (GT) scene graph G from our test set, we use each model to generate a grounding of G to I.
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For each object in G, we compute the intersection over union (IoU) between its GT position in the

image and its position in the grounding generated by our model.

Fig. 7.8 (c) gives an example scene graph and its computed grounding under SG-obj-attr-rel and

SG-obj . SG-obj labels “man” as “woman” and vice versa, but SG-obj-attr-rel is able to correct this

error. Note that the scene graph does not specify any direct relationships between the man and the

woman; instead, SG-obj-attr-rel must rely on the relationships between the two people and other

objects in the scene (“man holding phone”, “woman has jacket”).

To quantitatively compare our models, we report the median IoU across all object instances in

all test images, (Med IoU) and the fraction of object instances with IoU above various thresholds

(IoU@t). Table 7.2 shows that SG-obj-attr-rel outperforms both SG-obj and SG-obj-attr on all

metrics. Interestingly, comparing SG-obj-attr-rel to SG-obj shows a nearly five-fold increase in

median IoU. The generally low values for median IoU highlight the difficulty of the automatic scene

graph grounding task. Fig. 7.7 (c) shows that SG-obj-attr-rel performs particularly well compared

to the baseline models at IoU thresholds below 0.5.

To gain more insight into the performance of our model, for each object instance in the test set

we compute the difference in IoU with the GT between the grounding found by SG-obj-attr-rel and

the grounding found by SG-obj . For each object class that occurs at least 4 times in the test set,

we compute the median difference in IoU between the two methods, and perform the same analysis

for (object, relationship, object) tuples, where for each such tuple in the test set we compute the

mean IoU of the objects referenced by the tuple. The top and bottom 5 object classes and tuples

are visualized in Fig. 7.7 (d).

This figure suggests that the context provided by SG-obj-attr-rel helps to localize rare objects

(such as “van” and “guy”) and objects with large appearance variations (such as “pillow” and “build-

ing”). SG-obj-attr-rel also gives large gains for tuples with well-defined spatial constraints (“jacket

on woman”, “chair under man”). Tuples encoding less well-defined spatial relationships (“man un-

der sky”, “girl on snow”) may suffer in performance as the model penalizes valid configurations not

seen at training time.

7.1.7 Conclusion

In this Chapter, we have used scene graphs as a novel representation for detailed semantics in visual

scenes, and introduced a novel dataset of scene graphs grounded to real-world images. We have used

this representation and dataset to construct a CRF model for semantic image retrieval using scene

graphs as queries. We have shown that this model outperforms methods based on object detection

and low-level visual features. We believe that semantic image retrieval is one of many exciting

applications of our scene graph representation and dataset, and hope that more will follow.
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Figure 7.9: Actual results using a popular image search engine (top row) and ideal results (bottom
row) for the query a boy wearing a t-shirt with a plane on it.

7.2 Image Retrieval using Language Queries

7.2.1 Introduction

One of the big remaining challenges in image retrieval is to be able to search for very specific images.

The continuously growing number of images that are available on the web gives users access to almost

any picture they can imagine, but in order to find these images users have to be able to express what

they are looking for in a detailed and efficient way. For example, if a user wants to find an image

of a boy wearing a t-shirt with a plane on it, an image retrieval system has to understand that the

image should contain a boy who is wearing a shirt and that on that shirt is a picture of a plane.

Keyword-based image retrieval systems are clearly unable to deal with the rich semantics of such

a query [140]. They might be able to retrieve images that contain a boy, a t-shirt and a plane but

they are unable to interpret the relationships and attributes of these objects which is crucial for

retrieving the correct images. As shown in Figure 7.9, a possible but incorrect combination of these

objects is that a boy is wearing a t-shirt and playing with a toy plane.

One proposed solution to these issues is the mapping of image descriptions to multi-modal embed-

dings of sentences and images and using these embeddings to retrieve images [180, 106, 109, 149, 34].
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However, one problem of these models is that they are trained on single-sentence captions which are

typically unable to capture the rich content of visual scenes in their entirety. Further, the coverage

of the description highly depends on the subjectivity of human perception [195]. Certain details

such as whether there is a plane on the boy’s shirt or not might seem irrelevant to the person who

writes the caption, but for another user this difference might determine whether a result is useful or

not.

[99] try to solve these problems by annotating images with a graph-based semantic representation

called a scene graph which explicitly captures the objects in an image, their attributes and the

relations between objects. They plausibly argue that paragraph-long image descriptions written

in natural language are currently too complex to be mapped automatically to images and instead

they show that very detailed image descriptions in the form of scene graphs can be obtained via

crowdsourcing. They also show that they can perform semantic image retrieval on unannotated

images using partial scene graphs.

However, one big shortcoming of their model is that it requires the user to enter a query in the

form of a scene graph instead of an image description in natural language which is unlikely to find

widespread adoption among potential users. To address this problem, we propose a new task of

parsing image descriptions to scene graphs which can then be used as a query for image retrieval.

While our main goal is to show the effectiveness of parsing image descriptions for image retrieval,

we believe that scene graphs can be a useful intermediate representation for many applications that

involve text and images. One great advantage of such an intermediate representation is the result-

ing modularity which allows independent development, improvement and reuse of NLP, vision and

graphics subsystems. For example, we can reuse a scene graph parser for systems that generate 2D-

scenes [273] or 3D-scenes [23] which require input in the form of similar graph-based representations

to which a scene graph can be easily converted.

In this chapter, we introduce the task of parsing image descriptions to scene graphs. We build

and evaluate a rule-based and a classifier-based scene graph parser which map from dependency

syntax representations to scene graphs. We use these parsers in a pipeline which first parses an

image description to a scene graph and then uses this scene graph as input to a retrieval system. We

show that such a pipeline outperforms a system which only considers objects in the description and

we show that the output of both of our parsers is almost as effective as human-constructed scene

graphs in retrieving images. Lastly, we demonstrate the more general applicability of our parsers by

generating 3D scenes from their output.

We make our parsers and models available at http://nlp.stanford.edu/software/scenegraph-parser.shtml.

7.2.2 Task Description

Our overall task is retrieving images from image descriptions which we split into two sub-tasks:

Parsing the description to scene graphs and retrieving images with scene graphs. In this chapter, we
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focus exclusively on the first task. For the latter, we use a reimplementation of the system by [99]

which we briefly describe in the next section.

Image Retrieval System

The image retrieval system by [99] is based on a conditional random field (CRF) [121] model which –

unlike the typical CRFs in NLP – is not a chain model but instead capturing image region proximity.

This model ranks images based on how likely it is that a given scene graph is grounded to them.

The model first identifies potential object regions in the image and then computes the most likely

assignment of objects to regions considering the classes of the objects, their attributes and their

relations. The likelihood of a scene graph being grounded to an image is then approximated as the

likelihood of the most likely assignment of objects to regions.

Parsing to Scene Graphs

The task of parsing image descriptions to scene graphs is defined as following. Given a set of object

classes C, a set of relation types R, a set of attribute types A, and a sentence S we want to parse S

to a scene graph G = (O,E). O = {o1, ..., on} is a set of objects mentioned in S and each oi is a pair

(ci, Ai) where ci ∈ C is the class of oi and Ai ⊆ A are the attributes of oi. E ⊆ O×R×O is the set of

relations between two objects in the graph. For example, given the sentence S = “A man is looking

at his black watch” we want to extract the two objects o1 = (man, ∅) and o2 = (watch, {black}),
and the relations e1 = (o1, look at , o2) and e2 = (o1, have, o2). The sets C, R and A consist of all

the classes and types which are present in the training data.

Data

We reuse a dataset which we collected for a different task using Amazon Mechanical Turk (AMT)

in a similar manner as [99] and [180]. We originally annotated 4,999 images from the intersection of

the YFCC100m [234] and Microsoft COCO [139] datasets. However, unlike previous work, we split

the process into two separate passes with the goal of increasing the number of objects and relations

per image.

In the first pass, AMT workers were shown an image and asked to write a one sentence description

of the entire image or any part of it. To get diverse descriptions, workers were shown the previous

descriptions written by other workers for the same image and were asked to describe something

about the image which had not been described by anyone else. We ensured diversity in sentence

descriptions by a real-time BLEU score [171] threshold between a new sentence and all the previous

ones.

In the second pass, workers were presented again with an image and with one of its sentences.

They were asked to draw bounding boxes around all the objects in the image which were mentioned

in the sentence and to describe their attributes and the relations between them. This step was
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Raw Processed Filtered

Images 4,999 4,999 4,524
Sentences 88,188 88,188 50,448
Sentences per image 17.6 17.6 11.2

Object classes 18,515 15,734 798
Attribute types 7,348 6,442 277
Relation types 9,274 7,507 131

Objects per image 21.2 21.2 14.6
Attributes per image 16.2 16.4 10.7
Relations per image 18.6 18.6 10.3

Attributes per sent. 0.92 0.93 0.93
Relations per sent. 1.06 1.06 0.96

Table 7.3: Aggregate statistics of the raw, canonicalized (processed) and filtered datasets.

repeated for each sentence of an image and finally the partial scene graphs are combined to one

large scene graph for each image. While the main purpose of the two-pass data collection was to

increase the number of objects and relations per image, it also provides as a byproduct a mapping

between sentences and partial scene graphs which gives us a corpus of sentence-scene graph pairs

that we can use to train a parser.

Preprocessing The AMT workers were allowed to use any label for objects, relations and at-

tributes and consequently there is a lot of variation in the data. We perform several preprocessing

steps to canonicalize the data. First, we remove leading and trailing articles from all labels. Then

we replace all the words in the labels with their lemmata and finally we split all attributes with a

conjunction such as red and green into two individual attributes.

We also follow [99] and discard all objects, relations and attributes whose class or type appears

less than 30 times in the entire dataset for the following two reasons. First and foremost, computer

vision systems require multiple training examples for each class and type to be able to learn useful

generalizations, and second, rare classes and types are often a result of AMT workers making mistakes

or not understanding the task properly. As we make the assumption that the scene graph of one

sentence is complete, i.e., that it captures all the information of the sentence, we have to apply a

more aggressive filtering which discards the entire scene graph of a sentence in case one of its objects,

attributes or relations is discarded due to the threshold. In case we discard all sentences of an image,

we discard the entire image from our data. Despite the aggressive filtering, the average number of

objects, relations and attributes per image only drops by 30-45% and we only discard around 9% of

the images (see Table 7.3).
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ROOT Both of the men are riding their horses

nmod

nsubj

dobj
nmod:poss

ROOT Both of the

man
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riding horse

man’ riding’ horse’

det:qmod
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Figure 7.10: Dependency tree and final semantic graph of a sentence. men is promoted to be the
subject; men, riding, and horses are duplicated; and their is deleted following coreference resolution.

7.2.3 Scene Graph Parsers

We implement two parsers: a rule-based parser and a classifier-based parser. Both of our parsers

operate on a linguistic representation which we refer to as a semantic graph. We obtain semantic

graphs by parsing the image descriptions to dependency trees followed by several tree transforma-

tions. In this section, we first describe these tree transformations and then explain how our two

parsers translate the semantic graph to a scene graph.

Semantic Graphs

A Universal Dependencies [39] parse is in many ways close to a shallow semantic representation and

therefore a good starting point for parsing image descriptions to scene graphs. Basic dependency

trees, however, tend to follow the linguistic structure of sentences too closely which requires some

post-processing of the parses to make them more useful for a semantic task. We start with the

enhanced dependency representation output by the Stanford Parser v3.5.2 [111]2 and then perform

three additional processing steps to deal with complex quantificational modifiers, to resolve pronouns

and to handle plural nouns.

Quantificational modifiers Several common expressions with light nouns such as a lot of or a

dozen of semantically act like quantificational determiners [215]. From a syntactic point of view,

however, these expressions are the head of the following noun phrase. While one of the principles

of the Universal Dependencies representation is the primacy of content words [39], light nouns are

treated like any other noun. To make our dependency trees better suited for semantic tasks, we

change the structure of all light noun expressions from a manually compiled list. We make the first

word the head of all the other words in the expression and then make this new multi-word expression

2We augment the parser’s training data with the Brown corpus [152] to improve its performance on image descrip-
tions which are often very different from sentences found in newswire corpora.
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a dependent of the following noun phrase. This step guarantees that the semantic graph for both

cars and for both of the cars have similar structures in which the semantically salient word cars is

the head.

Pronoun resolution Some image descriptions such as “a bed with a pillow on it” contain personal

pronouns. To recover all the relations between objects in this sentence it is crucial to know that

it refers to the object a bed and therefore we try to resolve all pronouns. We found in practice

that document-level coreference systems (e.g. [131]) were too conservative in resolving pronouns and

hence we implement an intrasential pronoun resolver inspired by the first three rules of the Hobbs

algorithm [83] which we modified to operate on dependency trees instead of constituency trees. We

evaluate this method using 200 randomly selected image descriptions containing pronouns. Our

pronoun resolver has an accuracy of 88.5% which is significantly higher than the accuracy of 52.8%

achieved by the coreference system of [131].

Plural nouns Plural nouns are known to be a major challenge in semantics in general [166], and

also in our task. One particular theoretical issue is the collective-distributive ambiguity of sentences

with multiple plural nouns. For example, to obtain the intended distributive reading of “three men

are wearing jeans” we have to extract three man objects and three jeans objects and we have to

connect each man object to a different jeans object. On the other hand, to get the correct parse of

“three men are carrying a piano” we probably want to consider the collective reading and extract

only one piano object. A perfect model thus requires a lot of world knowledge. In practice, however,

the distributive reading seems to be far more common so we only consider this case.

To make the dependency graph more similar to scene graphs, we copy individual nodes of the

graph according to the value of their numeric modifier. We limit the number of copies per node to

20 as our data only contains scene graphs with less than 20 objects of the same class. In case a

plural noun lacks such a modifier we make exactly one copy of the node.

Figure 7.10 shows the original dependency tree and the final semantic graph for the sentence

“Both of the men are riding their horses”.

Rule-Based Parser

Our rule-based parser extracts objects, relations and attributes directly from the semantic graph.

We define in total nine dependency patterns using Semgrex3 expressions. These patterns capture

the following constructions and phenomena:

• Adjectival modifiers

3http://nlp.stanford.edu/software/tregex.shtml
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• Subject-predicate-object constructions and subject-predicate constructions without an object

• Copular constructions

• Prepositional phrases

• Possessive constructions

• Passive constructions

• Clausal modifiers of nouns

With the exception of possessives for which we manually add a have relation, all objects, relations

and attributes are words from the semantic graph. For example, for the semantic graph in Figure

7.10, the subject-predicate-object pattern matches man
nsubj←−−−− riding dobj−−−→ horse and

man′
nsubj←−−−− riding′ dobj−−−→ horse′. From these matches we extract two man and two horse ob-

jects and add ride relations to the two man-horse pairs. Further, the possesive pattern matches

man
nmod:poss←−−−−−−− horse and man′

nmod:poss←−−−−−−− horse′ and we add have relations to the two man-horse

pairs.

Classifier-Based Parser

Our classifier-based parser consists of two components. First, we extract all candidate objects and

attributes, and second we predict relations between objects and the attributes of all objects.

Object and Attribute Extraction We use the semantic graph to extract all object and attribute

candidates. In a first step we extract all nouns, all adjectives and all intransitive verbs from the

semantic graph. As this does not guarantee that the extracted objects and attributes belong to

known object classes or attribute types and as our image retrieval model can only make use of known

classes and types, we predict for each noun the most likely object class and for each adjective and

intransitive verb the most likely attribute type. To predict classes and types, we use an L2-regularized

maximum entropy classifier which uses the original word, the lemma and the 100-dimensional GloVe

word vector [176] as features.

Relation Prediction The last step of the parsing pipeline is to determine the attributes of each

object and the relations between objects. We consider both of these tasks as a pairwise classification

task. For each pair (x1, x2) where x1 is an object and x2 is an object or an attribute we predict the

relation y which can be any relation seen in the training data, or one of the two special relations IS

and NONE which indicate that x2 is an attribute of x1 or no relation exists, respectively. We noticed

that for most pairs for which a relation exists, x1 and x2 are in the same constituent, i.e. their lowest

common ancestor is either one of the two objects or a word in between them. We therefore consider

only pairs which satisfy this constraint to improve precision and to limit the number of predictions.
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For the predictions, we use again an L2-regularized maximum entropy classifier with the following

features:

Object features The original word and lemma, and the predicted class or type of x1 and x2.

Lexicalized features The word and lemma of each token between x1 and x2. If x1 or x2 appear

more than once in the sentence because they replace a pronoun, we only consider the words in

between the closest mentions of x1 and x2.

Syntactic features The concatenated labels (i.e., syntactic relation names) of the edges in the

shortest path from x1 to x2 in the semantic graph.

We only include objects in the scene graph which have at least one attribute or which are involved

in at least one relation. The idea behind that is to prevent very abstract nouns such as setting or

right to be part of the scene graph which are typically not part of relations. However, we observed

for around 30% of the sentences in the development set that the parser did not extract any relations

or attributes from a sentence which resulted in an empty scene graph. In these cases, we include all

candidate objects in the scene graph.

Training As the scene graph’s objects and attributes are not aligned to the sentence, we have to

align them in an unsupervised manner. For each sentence, we extract object and attribute candidates

from the semantic graph. For each object-relation-object triple or object-attribute pair in the scene

graph we try to align all objects and attributes to a candidate by first checking for exact string

match of the word or the lemma, then by looking for candidates within an edit distance of two, and

finally by mapping the object or attribute and all the candidates to 100-dimensional GloVe word

vectors and picking the candidate with the smallest euclidean distance. To limit the number of

false alignments caused by annotators including objects in the scene graph that are not present in

the corresponding sentence, we also compute the euclidean distances to all the other words in the

sentence and if the closest match is not in the candidate set we discard the training example.

We use this data to train both of our classifiers. For the object and attribute classifier, we only

consider the alignments between words in the description and objects or attributes in the graph.

For the relation predictor, we consider the complete object-relation-object and object-is-attribute

triples. All the aligned triples constitute our positive training examples for a sentence. For all

the object-object and object-attribute pairs without a relation in a sentence, we generate negative

examples by assigning them a special NONE relation. We sample from the set of NONE triples

to have the same number of positive and negative training examples.
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Train Dev Test

Images 3,614 454 456
Sentences 40,315 4,953 5,180
Relation instances 38,617 4,826 4,963
Attribute instances 37,580 4,644 4,588

Table 7.4: Aggregate statistics of the training, development (dev) and test sets.

7.2.4 Experiments

For our experiments, we split the data into training, development and held-out test sets of size 3,614,

454, and 456 images, respectively. Table 7.4 shows the aggregated statistics of our training and test

sets. We compare our two parsers against the following two baselines.

Nearest neighbor Our first baseline computes a term-frequency vector for an input sentence and

returns the scene graph of the nearest neighbor in the training data.

Object only Our second baseline is a parser that only outputs objects but no attributes or

relationships. It uses the first two components of the classifier-based parser, namely the semantic

graph processor and the object extractor, and then simply outputs all candidate objects.

We use the downstream performance on the image retrieval task as our main evaluation metric.

We train our reimplementation of the model by [99] on our training set with human-constructed

scene graphs. For each sentence we use the parser’s output as a query and rank all images in the

test set. For evaluation, we consider the human-constructed scene graph Gh of the sentence and

construct a set of images I = i1, ..., in such that Gh is a subgraph of the image’s complete scene

graph. We compute the rank of each image in I and compute recall at 5 and 10 based on these

ranks4. We also compute the median rank of the first correct result. We compare these numbers

against an oracle system which uses the human-constructed scene graphs as queries instead of the

scene graphs generated by the parser.

One drawback of evaluating on a downstream task is that evaluation is typically slower compared

to using an intrinsic metric. We therefore also compare the parsed scene graphs to the human-

constructed scene graphs. As scene graphs consist of object instances, attributes, and relations and

are therefore similar to Abstract Meaning Representation (AMR) [5] graphs, we use Smatch F1 [20]

as an additional intrinsic metric.

4As in [99], we observed that the results for recall at 1 were very unstable so we only report recall at 5 and 10
which are typically also more relevant for real-world systems that return multiple results.
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Development set Test set

Smatch R@5 R@10 Med. rank Smatch R@5 R@10 Med. rank

Nearest neighbor 32% 1.2% 2.3% 206 32% 1.1% 2.3% 205
Object only 48% 15.0% 29.3% 20 48% 12.6% 24.8% 25
Rule 43% 16.4% 31.6% 17 44% 13.5% 27.1% 20
Classifier 47% 16.7% 32.9% 16 47% 13.8% 27.1% 20

Oracle - 19.4% 39.8% 13 - 16.6% 33.4% 15

Table 7.5: Intrinsic (Smatch F1) and extrinsic (recall at 5 and 10, and median rank) performance
of our two baselines, our rule-based and our classifier-based parser.

R@5 R@10 Med. rank

[99] 30.3% 47.9% 11
Our implementation 27.6% 45.6% 12

Table 7.6: Comparison of the results of the original implementation by [99] and our implementation.
Both systems were trained and tested on the data sets of the original authors.

7.2.5 Results and Discussion

Table 7.5 shows the performance of our baselines and our two final parsers on the development and

held-out test set.

Oracle results Compared to the results of [99], the results of our oracle systems are significantly

worse. To verify the correctness of our implementation, the original authors provided us with their

training and test set. Table 7.6 shows that our reimplementation performs almost as well as their

original implementation. We hypothesize that there are two main reasons for the drop in performance

when we train and evaluate our system on our dataset. First, our dataset is a lot more diverse and

contains many more object classes and relation and attribute types. Second, the original authors

only use the most common queries for which there exist at least five results to retrieve images while

we evaluate on all queries.

Effectiveness of Smatch F1 As mentioned in the previous section, having an intrinsic evaluation

metric can reduce the length of development cycles compared to using only an extrinsic evaluation.

We hoped that Smatch F1 would be an appropriate metric for our task but our results indicate that

there is no strong correlation between Smatch F1 and the performance of the downstream task.

Comparison of rule-based and classifier-based system In terms of image retrieval perfor-

mance, there does not seem to be a significant difference between our rule-based system and our

classifier-based system. On the development set the classifier-based system slightly outperforms the

rule-based system but on the test set both seem to work equally well. Nevertheless, their results
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Figure 7.11: Top 5 results of the object only baseline (top row) and our classifier-based parser
(bottom row) for the query “The white plane has one blue stripe and one red stripe”. The object
only system seems to be mainly concerned with finding images that contain two stripe objects at
the expense of finding an actual plane. Our classifier-based parser also outputs the relation between
the stripes and the plane and the colors of the stripes which helps the image retrieval system to
return the correct results.

differ in some cases. One strength of the classifier-based system is that it learns that some adjectival

modifiers like several should not be attributes. It is also able to learn some basic implications such as

the shirt looks dirty implies in the context of an image that the shirt is dirty. On the other hand, the

rule-based system tends to be more stable in terms of extracting relations while the classifier-based

system more often only extracts objects from a sentence.

Comparison to baselines As shown in Table 7.5, both of our parsers outperform all our baselines

in terms of recall at 5 and 10, and the median rank. This difference is particularly significant

compared to the nearest neighbor baseline which confirms the complexity of our dataset and shows

that it is not sufficient to simply memorize the training data.

The object only baseline is a lot stronger but still performs consistently worse than our two

parsers. To understand in what ways our parsers are superior to the object only baseline, we

performed a qualitative analysis. A comparison of the results reveals that the image retrieval model

is able to make use of the extracted relations and attributes. Figure 7.11 shows the top 5 results of

our classifier-based parser and the object only baseline for the query “The white plane has one blue

stripe and one red stripe”. While the object only model seems to be mainly concerned with finding

good matches for the two stripe objects, the output of our parser successfully captures the relation

between the plane and the stripes and correctly ranks the two planes with the blue and red stripes

as the top results.



CHAPTER 7. SEMANTIC IMAGE RETRIEVAL 121

Figure 7.12: 3D scenes for the sentences “There is a wooden desk with a red and green lamp on it”
and “There is a desk with a notepad on it”.

Error analysis The performance of both of our parsers comes close to the performance of the

oracle system but nevertheless there still remains a consistent gap. One of the reasons for the

lower performance is that some human-constructed scene graphs contain information which is not

present in the description. The human annotators saw both the description and the image and could

therefore generate scene graphs with additional information.

Apart from that, we find that many errors occur with sentences which require some external

knowledge. For example, our parser is not able to infer that “a woman in black” means that a

woman is wearing black clothes. Likewise it is not able to infer that “a jockey is wearing a green

shirt and matching helmet” implies that he is wearing a green helmet.

Other errors occur in some sentences which talk about textures. For example, our parsers assume

that “a dress with polka dots” implies that there is a relation between one dress object and multiple

polka dot objects instead of inferring that there is one dress object with the attribute polka-dotted.

One further source of errors are wrong dependency parses. Both of our parsers heavily rely on

correct dependency parses and while making the parser’s training data more diverse did improve

results, we still observe some cases where sentences are parsed incorrectly leading to incorrect scene

graphs.

7.2.6 Other Tasks

As mentioned before, one appeal of parsing sentences to an intermediate representation is that we

can also use our parser for other tasks that make use of similar representations. One of these tasks is

generating 3D scenes from textual descriptions [23]. Without performing any further modifications,

we replaced their parser with our classifier-based parser and used the resulting system to generate

3D scenes from several indoor scene descriptions. Two of these generated scenes are shown in Figure
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7.12. Our impression is that the system performs roughly equally well using this parser compared

to the one used in the original work.

7.2.7 Related Work

Image retrieval Image retrieval is one of the most active areas in computer vision research. Very

early work mainly focused on retrieving images based on textual descriptions, while later work

focused more on content-based image retrieval systems which perform retrieval directly based on

image features. [195], [140], and [214] provide overviews of the developments of this field over the

last twenty years. Most of this work focused on retrieving images from keywords which are not able

to capture many semantic phenomena as well as natural language or our scene graph representation

can.

Multi-modal embeddings Recently, multi-modal embeddings of natural language and images

got a lot of attention [224, 106, 180, 109, 149, 34]. These embeddings can be used to retrieve images

from captions and generating captions from images. As mentioned in the introduction, these models

are trained on single-sentence image descriptions which typically cannot capture all the details of a

visual scene. Further, unlike our modular system, they cannot be used for other tasks that require

an interpretable semantic representation.

Parsing to graph-based representations Representing semantic information with graphs has

recently experienced a resurgence caused by the development of the Abstract Meaning Represen-

tation (AMR) [5] which was followed by several works on parsing natural language sentences to

AMR [61, 247, 250]. Considering that AMR graphs are, like dependency trees, very similar to scene

graphs, we could have also used this representation and transformed it to scene graphs. However,

the performance of AMR parsers is still not competitive with the performance of dependency parsers

which makes dependency trees are more stable starting point.

There also exists some prior work on parsing scene descriptions to semantic representations.

As mentioned above, [23] present a rule-based system to parse natural language descriptions to

scene templates, a similar graph-based semantic representation. [45] parse image descriptions to a

dependency grammar representation which they also use for image retrieval. [138] also use rules

to transform dependency trees into semantic graphs which they use for video search. All of this

work, however, only consider a limited set of relations while our approach can learn an arbitrary

number of relations. Further, they all exclusively use very specific rule-based systems whereas we

also introduced a more general purposed classifier-based parser.
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7.2.8 Conclusion

We presented two parsers which can translate image descriptions to scene graphs. We showed that

their output is almost as effective for retrieving images as human-generated scene graphs and that

including relations and attributes in queries outperforms a model which only considers objects. We

also demonstrated that our parser is well suited for other tasks which require a semantic represen-

tation of a visual scene.



Chapter 8

Conclusions and Future Directions

8.1 Conclusion

The core theme throughout this thesis has been to demonstrate the utility of crowdsourced visual

knowledge representations. We started off by first introducing and exploring the Visual Genome

dataset. Visual Genome provides a multi-layered understanding of pictures. It allows for a multi-

perspective study of an image, from pixel-level information like objects, to relationships that require

further inference, and to even deeper cognitive tasks like question answering. It is a comprehensive

dataset for training and benchmarking the next generation of computer vision models.

Next, we showcased how different crowdsourcing techniques were used to collect the Visual

Genome Dataset. We specifically honed in improving binary labeling tasks. We presented a technique

that produces extremely rapid judgments for binary and categorical labels. We demonstrate that it

is possible to rectify worker errors on a breadth of common labeling tasks such as image verification,

word similarity, sentiment analysis and topic classification.

Once the data was collected, we studied automatic methods to extract structured representations

like visual relationships without any human intervention. We built a model that leveraged existing

language models to help predict likely relationships between objects in an image. Finally, we used

our dataset to train a model that can improve semantic image retrieval by mapping language queries

first to scene graphs and then to images.

With Visual Genome, we expect these models to develop a broader understanding of our visual

world, complementing computers’ capacities to detect objects with abilities to describe those objects

and explain their interactions and relationships. Visual Genome is a large formalized knowledge

representation for visual understanding and a more complete set of descriptions and question answers

that grounds visual concepts to language.

124



CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS 125

8.2 Future Directions and Applications

We have explored the individual components of the Visual Genome dataset and presented experi-

ments with results for tasks such as attribute classification, relationship classification, description

generation, and question answering. We have also developed models for relationship extraction and

semantic image retrieval. There are, however, more applications and experiments for which our

dataset can be used. In this section, we note a few potential applications that Visual Genome can

enable.

8.2.1 Dense image captioning.

We have seen numerous image captioning papers [108, 150, 106, 242] that attempt to describe an

entire image with a single caption. However, these captions do not exhaustively describe every part

of the scene. An natural extension to this application, which the Visual Genome dataset enables, is

the ability to create dense captioning models that describe parts of the scene.

8.2.2 Visual question answering.

While visual question answering has been studied as a standalone task [263, 190, 3, 66], we introduce

a dataset that combines all of our question answers with descriptions and scene graphs. Future work

can build supervised models that utilize various components of Visual Genome to tackle question

answering.

8.2.3 Image understanding.

While we have seen a surge of image captioning [108] and question answering [3] models, there has

been little work on creating more comprehensive evaluation metrics to measure how well these models

are performing. Such models are usually evaluated using BLEU, CIDEr, or METEOR and other

similar metrics that do not effectively measure how well these models understand the image [25]. The

Visual Genome scene graphs can be used as a measurement for image understanding. Generated

descriptions and answers can be matched against the ground truth scene graph of an image to

evaluate its corresponding model.

8.2.4 Relationship extraction.

Relationship extraction has been extensively studied in information retrieval and natural language

processing [268, 77, 37, 223]. Visual Genome is the first large-scale visual relationship dataset.

This dataset can be used to study the extraction of visual relationships [202] from images, and its

interactions between objects can also be used to study action recognition [257, 187] and spatial

orientation between objects [79, 183].
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8.2.5 Semantic image retrieval.

Previous work has already shown that scene graphs can be used to improve semantic image search [100,

209]. Further methods can be explored using our region descriptions combined with region graphs.

Attention-based search methods can also be explored where the area of interest specified by a query

is also localized in the retrieved images.
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[130] Rémi Lebret, Pedro O Pinheiro, and Ronan Collobert. Phrase-based image captioning. arXiv

preprint arXiv:1502.03671, 2015.

[131] Heeyoung Lee, Angel Chang, Yves Peirsman, Nathanael Chambers, Mihai Surdeanu, and Dan

Jurafsky. Deterministic coreference resolution based on entity-centric, precision-ranked rules.

Computational Linguistics, 39(4):885–916, 2013.

[132] Heeyoung Lee, Yves Peirsman, Angel Chang, Nathanael Chambers, Mihai Surdeanu, and Dan

Jurafsky. Stanford’s multi-pass sieve coreference resolution system at the conll-2011 shared

task. In Proceedings of the Fifteenth Conference on Computational Natural Language Learning:

Shared Task, pages 28–34. Association for Computational Linguistics, 2011.

[133] David D. Lewis and Philip J. Hayes. Guest editorial. ACM Transactions on Information

Systems, 12(3):231, July 1994.

[134] Fei Fei Li, Rufin VanRullen, Christof Koch, and Pietro Perona. Rapid natural scene catego-

rization in the near absence of attention. Proceedings of the National Academy of Sciences,

99(14):9596–9601, 2002.

[135] Li-Jia Li, Richard Socher, and Li Fei-Fei. Towards total scene understanding: Classification,

annotation and segmentation in an automatic framework. In CVPR, 2009.

[136] Tao Li and Mitsunori Ogihara. Detecting emotion in music. In ISMIR, volume 3, pages

239–240, 2003.



BIBLIOGRAPHY 139

[137] Liang Liang and Kristen Grauman. Beyond comparing image pairs: Setwise active learning

for relative attributes. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE

Conference on, pages 208–215. IEEE, 2014.

[138] Dahua Lin, Sanja Fidler, Chen Kong, and Raquel Urtasun. Visual semantic search: Retrieving

videos via complex textual queries. In CVPR, 2014.

[139] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Pi-

otr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer

Vision–ECCV 2014, pages 740–755. Springer, 2014.

[140] Ying Liu, Dengsheng Zhang, Guojun Lu, and Wei-Ying Ma. A survey of content-based image

retrieval with high-level semantics. Pattern Recognition, 40(1):262–282, 2007.

[141] David G Lowe. Distinctive image features from scale-invariant keypoints. International journal

of computer vision, 60(2):91–110, 2004.

[142] Cewu Lu, Ranjay Krishna, Michael S. Bernstein, and Li Fei-Fei. Visual relationship detection

using language priors. 2016.

[143] Lin Ma, Zhengdong Lu, and Hang Li. Learning to answer questions from image using convo-

lutional neural network. arXiv preprint arXiv:1506.00333, 2015.

[144] Subhransu Maji, Lubomir Bourdev, and Jitendra Malik. Action recognition from a distributed

representation of pose and appearance. In Computer Vision and Pattern Recognition (CVPR),

2011 IEEE Conference on, pages 3177–3184. IEEE, 2011.

[145] Mateusz Malinowski and Mario Fritz. A multi-world approach to question answering about

real-world scenes based on uncertain input. In Advances in Neural Information Processing

Systems, pages 1682–1690, 2014.

[146] Mateusz Malinowski, Marcus Rohrbach, and Mario Fritz. Ask your neurons: A neural-based

approach to answering questions about images. arXiv preprint arXiv:1505.01121, 2015.

[147] Tomasz Malisiewicz, Alexei Efros, et al. Recognition by association via learning per-exemplar

distances. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference

on, pages 1–8. IEEE, 2008.

[148] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and

David McClosky. The Stanford CoreNLP natural language processing toolkit. In Proceedings

of 52nd Annual Meeting of the Association for Computational Linguistics: System Demon-

strations, pages 55–60, 2014.



BIBLIOGRAPHY 140

[149] Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Heng Huangzhi, and Alan Yuille. Deep captioning

with multimodal recurrent neural networks (m-RNN). In Proceedings of the International

Conference on Learning Representations (ICLR) 2015, 2015.

[150] Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, and Alan L Yuille. Explain images with multi-

modal recurrent neural networks. arXiv preprint arXiv:1410.1090, 2014.

[151] Adam Marcus and Aditya Parameswaran. Crowdsourced data management: industry and

academic perspectives. Foundations and Trends in Databases, 2015.

[152] Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large anno-

tated corpus of english: The penn treebank. Computational linguistics, 19(2):313–330, 1993.

[153] David Martin, Benjamin V Hanrahan, Jacki O’Neill, and Neha Gupta. Being a turker. In

Proceedings of the 17th ACM conference on Computer supported cooperative work & social

computing, pages 224–235. ACM, 2014.

[154] Winter Mason and Siddharth Suri. Conducting behavioral research on amazons mechanical

turk. Behavior research methods, 44(1):1–23, 2012.

[155] Thomas Mensink, Efstratios Gavves, and Cees GM Snoek. Costa: Co-occurrence statistics

for zero-shot classification. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE

Conference on, pages 2441–2448. IEEE, 2014.

[156] Thomas Mensink, Efstratios Gavves, and Cees G.M. Snoek. Costa: Co-occurrence statistics

for zero-shot classification. In CVPR, 2014.

[157] Rada Mihalcea, Timothy Anatolievich Chklovski, and Adam Kilgarriff. The senseval-3 english

lexical sample task. Association for Computational Linguistics, 2004.

[158] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[159] George A Miller. Wordnet: a lexical database for english. Communications of the ACM,

38(11):39–41, 1995.

[160] George A Miller and Walter G Charles. Contextual correlates of semantic similarity. Language

and cognitive processes, 6(1):1–28, 1991.

[161] Margaret Mitchell, Xufeng Han, Jesse Dodge, Alyssa Mensch, Amit Goyal, Alex Berg, Kota

Yamaguchi, Tamara Berg, Karl Stratos, and Hal Daumé III. Midge: Generating image de-
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