Game Theoretic Control for Robot Teams

Rosemary Emery-Montemerlo, Geoff Gordon and Jeff Schneider

School of Computer Science
Carnegie Mellon University
Pittsburgh PA 15312

{remery,ggordon,schneide} @cs.cmu.edu

Abstract—1In the real world, noisy sensors and limited
communication make it difficult for robot teams to coordi-
nate in tightly coupled tasks. Team members cannot simply
apply single-robot solution techniques for partially observable
problems in parallel because they do not take into account
the recursive effect that reasoning about the beliefs of others
has on policy generation. Instead, we must turn to a game
theoretic approach to model the problem correctly. Partially
observable stochastic games (POSGs) provide a solution
model for decentralized robot teams, however, this model
quickly becomes intractable. In previous work we presented
an algorithm for lookahead search in POSGs. Here we present
an extension which reduces computation during lookahead by
clustering similar observation histories together. We show that
by clustering histories which have similar profiles of predicted
reward, we can greatly reduce the computation time required
to solve a POSG while maintaining a good approximation to
the optimal policy. We demonstrate the power of the clustering
algorithm in a real-time robot controller as well as for a simple
benchmark problem.

Index Terms— Planning. Multi-Robot Coordination. Decen-
tralized control. Partially Observable Domains.

I. INTRODUCTION

Robotic teams and distributed multi-robot systems pro-
vide numerous advantages over single-robot systems. For
example, distributed mapping and exploration allows an
area to be covered more efficiently than by a single robot
and it is tolerant to individual robot failures. When design-
ing a multi-robot team, however, a key question is how to
assign tasks to individual robots and best coordinate their
behaviours. In loosely coupled domains, much success in
task allocation has been achieved with both auction based
approaches ([1], [2]) and behaviour based robotics ([3],
[4]). For more tightly coupled domains in which robots
must coordinate on specific actions in order to achieve a
goal, probabilistic frameworks provide a model for optimal
control.

The frameworks of Markov decision processes (MDPs)
and partially observable Markov decision processes
(POMDPs) are very powerful models of probabilistic do-
mains and have been applied successfully to many single-
robot planning problems ([5], [6]). These algorithms can
also be extended to the multi-robot case to be used for
coordinated planning. The most straightforward of these
extensions simply treats the entire robot team as a single

*R. Emery-Montemerlo is supported in part by a Natural Sciences and
Engineering Research Council of Canada postgraduate scholarship, and
this research has been sponsored by DARPA’s MICA program.

£

Sebastian Thrun
Stanford Al Lab
Stanford University
Stanford, CA 94305
thrun @ stanford.edu

robot with multiple actuators and plans in joint state
and action space. This is not necessarily an efficient use
of resources: the planner must run either on a central
machine or simultaneously on each robot, with all sensor
information from each robot being sent in real time to every
other copy of the planner. Without full communication the
robots cannot coordinate their beliefs about the current joint
state, and may select conflicting actions to implement.

In the real world, communication bandwidth is limited,
and in some domains not available at all. For example,
robots that function underground or on the surface of
another planet are limited to point-to-point communication.
Even in cases where communication is available, such
as indoor mobile robots, limited bandwidth can lead to
latency in communication between the robots, and critical
information may not be received in time to make decisions.

Instead, robots in teams should be able to independently
reason about appropriate actions to take in a decentral-
ized fashion that takes into account both their individual
experiences in the world and beliefs about the possible
experiences of their teammates. In the case where no com-
munication is available to the team, this type of reasoning
is necessary for the entire duration of the problem. If
communication is available but with latency, this reasoning
allows robots to generate optimal policies between synchro-
nization episodes [7].

The partially observable stochastic game (POSG) is a
game theoretic approach to multi-robot decision making
that implicitly models a distribution over other robots’
observations about the world. It is, however, intractable
to solve large POSGs. In [8] we proposed that a viable
alternative is for robots to interleave planning and execution
by building and solving a smaller approximate game at
every time step to generate actions. In this paper we
improve the efficiency of our algorithm through the cluster-
ing of observation histories. This clustering decreases the
computational requirements of the algorithm, which allows
us to apply it to larger and more realistic robot applications.
We only consider the harder case of coordinating robots
that have no access to communication for the duration
of the task. The addition of communication can only
improve the overall performance of the team and reduce
the computational complexity of the problem.

A. Related Work

There are several frameworks that have been to pro-
posed to generalize POMDPs to distributed multi-robot

systems. DEC-POMDP [9], a model of decentralized par-
tially observable Markov decision processes, MTDP [10],
a Markov team decision problem, and I-POMDP [11] are
all examples of these frameworks. They formalize the
requirements of an optimal policy; however, as shown by
Bernstein et al., solving decentralized POMDPs is NEXP-
complete [9]. Hansen et al. [12] have developed an exact
dynamic programming algorithm for POSGs that is able
to handle larger finite-horizon problems than other exact
methods but is still limited to relatively small problems.

These results suggest that locally optimal policies that
are computationally efficient to generate are essential to the
success of applying the POSG framework to the real world.
In addition to our own algorithm for finding approximate
solutions to POSGs [8], other algorithms that attempt to
find locally optimal solutions include POIPSG [13], which
finds locally optimal policies from a limited set of poli-
cies, and Xuan et al.’s algorithm for solving decentralized
POMDPs [14]. In [14] each robot receives only local
information about its position and robots only ever have
complementary observations. The issue in this system then
becomes the determination of when global information is
necessary to make progress toward the goal, rather than
how to resolve conflicts in beliefs or how to augment
one’s own belief about the global state. Nair et al. have
looked at both a dynamic programming style algorithm
for finding locally optimal policies to the full POSG [15]
and the computational savings gained by enforcing periodic
synchronizations of observations in between episodes of
game theoretic reasoning about the beliefs of others [7].

The work in this paper goes a step beyond these algo-
rithms in that it shows a method for limiting the number of
observations histories for which policies must be created
while still maintaining a good approximation of the true
distribution over histories. We also demonstrate how this
clustering allows for our algorithm to be used as a real-time
robot controller in relatively large problems.

II. BASIC ALGORITHM FOR FINDING APPROXIMATE
SOLUTIONS TO POSGS

Stochastic games, a generalization of both repeated
games and MDPs, provide a framework for decentralized
action selection [16]. POSGs are the extension of this
framework to handle uncertainty in world state. A POSG
is defined as a tuple (I,5,A,Z,T,R,0). I ={1,...,n} is
the set of robots, S is the set of states and A and Z are
respectively the cross-product of the action and observation
space for each robot, i.e. A = A; x --- x A,. T is the
transition function, 7" : S x A — S, R is the reward
function, R : S x A — R and O defines the observation
emission probabilities, O : Sx AxZ — [0, 1]. At each time
step of a POSG the robots simultaneously choose actions
and receive a reward and observation. In this paper, we
limit ourselves to finite POSGs with common payoffs (each
robot has an identical reward function R).

Think of the POSG as a large tree. The robots are
assigned starting states and, as they progress through the
tree, different observations occur and different actions can
be taken. Solving the problem requires finding the best

One-Step
Lookahead

Full POSG
~ Game at time t

Fig. 1. A high level representation of our algorithm for approximating
POSGs. Please refer to [8] for full details.

policy through this tree: an optimal set of actions for each
possible history of observations and states. Unlike a game
of chess or backgammon, however, the robots do not have
full observability of the world and each other’s actions.
Instead, different parts of the tree will appear similar to
different robots. A robot’s policy must be the same for all of
the nodes of the tree between which it cannot distinguish.

In [8] we proposed an algorithm for finding an approxi-
mate solution to a POSG with common payoffs. Our algo-
rithm transforms the original problem into a sequence of
smaller Bayesian games that are computationally tractable.
Bayesian games model single-state problems in which each
robot has private information about something relevant to
the decision making process [16]. In our algorithm, this
private information is the specific history of observations
and actions taken by each robot.

Our algorithm uses information common to the team
(e.g. problem dynamics) to approximate the policy of a
POSG as a concatenation of a series of policies for smaller,
related Bayesian games (Fig. 1). In turn, each of these
Bayesian games uses heuristic functions to evaluate the
utility of future states in order to keep policy computation
tractable. Theoretically, this approach allows us to handle
finite horizon problems of indefinite length by interleaving
planning and execution.

This transformation is similar to the classic one-step
lookahead strategy for fully-observable games [17]: the
robots perform full, game-theoretic reasoning about their
current knowledge and first action choice but use a heuristic
function to evaluate the quality of the resulting outcomes.
The resulting policies are always coordinated; and, if
the heuristic function is fairly accurate, perform well in
practice. A similar approach is used to find near-optimal
solutions for a scaled down version of Texas Hold’Em [18].

The key part of our algorithm is the transformation from
a time slice of the full POSG to a Bayesian game. If
the private information in the Bayesian game is the true
history of a robot, then the solution to the Bayesian game
is a set of policies that defines an action for each robot r
to take for each of its possible histories h7.! The action
taken for history h] should be the action that maximizes
expected reward, given the robot’s knowledge (from A7)
of the previous observations and actions of its teammates,
and given the robot’s inferences about the actions which
its teammates will take at the current step. In order to
properly coordinate on actions, i.e., to compute the same

In game theory a solution to a game is a set of policies for each robot
that are all best responses to each other. Therefore, if one robot solves
a game it also knows the policies of all of the other robots. For more
information on Nash equilibria and best response strategies see [16].

set of policies for all robots, each robot must maintain
the same distribution over joint histories. Our algorithm
enforces this in two ways. First, it synchronizes the random
number generators of the robots in the team in order to
ensure that any randomization in policy generation occurs
in the same way for each robot, and second, it uses only
common knowledge (including the generated policies from
the current time step) to propagate forward the set of joint
histories and its corresponding probability distribution from
one time step to the next.

ITI. IMPROVING ALGORITHM EFFICIENCY

The benefit of using our Bayesian game approximation
over the full POSG for robot controllers is that it calculates
a good approximation of the optimal policy in tractable
time. The overall desirability of our approximation is
therefore closely tied to how fast it can construct these
policies. The required computation time, however, is di-
rectly related to the number of individual and joint histories
that are maintained. Limiting the algorithm to use only a
representative fraction of the total number of histories is
key to applying this approach to real robot problems.

In this section we will compare different ways of limiting
the number of histories maintained by the algorithm. For
this purpose, we will use a problem (the Lady and the
Tiger) which is small enough that we can maintain all pos-
sible joint histories, in order to compare each algorithm’s
results to the best possible performance for the domain.
In contrast, for the Robot Tag problem presented later in
this paper, it is not possible to compute all or even a large
fraction of the possible joint histories due to both memory
and computation limitations.

The Lady and The Tiger problem is a multi-robot version
of the classic tiger problem [19] created by Nair et al. [15].
In this two-state, finite-horizon problem, two robots are
faced with the problem of opening one of two doors, one
of which has a tiger behind it and the other a treasure.
Whenever a door is opened, the state is reset and the game
continues until the fixed time has passed. The crux of
the Lady and the Tiger is that neither robot can see the
actions or observations made by their teammate, nor can
they observe the reward signal and thereby deduce them.
It is, however, necessary for the robots to reason about this
information in order to coordinate with each other.

A. Low Probability Pruning

In the original implementation of our Bayesian game
approximation, the number of histories that we maintained
per robot was kept manageable by pruning out low proba-
bility joint histories. If the probability of a joint history was
below some threshold, it was cut and the probability of the
remaining joint histories was renormalized. The allowable
individual histories for each robot were then taken to be
those that existed in the set of remaining joint histories.

At run time, a robot’s true individual history may be one
of the ones which we have pruned. In this case, we find the
best match to the true history among the histories which we
retained, and act as if we had seen the best match instead.
There are many possible ways to define the best match, but
a simple one which worked well in our experiments was to

look at reward profiles: the reward profile for an individual
history h is the vector 7" whose elements are

" = E(R(s,a) | h) (1)

a
That is, 7" is the robot’s belief about how much reward it
will receive for performing action a given its belief (based
on h) about the state of the world.
Given the reward profiles for the true history - and
some candidate match i/, we can compare them using their
worst-case reward difference

h !
max (r, — T
ma [l — vl |
and select the match which has the smallest worst-case

reward difference from the true history.

B. Clustering

Low-probability pruning can be effective in small do-
mains like the Lady and the Tiger where relatively few
joint histories have to be pruned. However, it is a crude
approximation to pretend that a history’s importance for
planning is proportional to its probability: when there are
a large number of similar histories that each have a low
probability of occurring but together represent a substan-
tial fraction of the total probability mass, low-probability
pruning can remove all of them and cause a significant
change in the predicted outcome of the game.

Instead, we need to make sure that each history we prune
can be adequately represented by some other similar history
which we retain. That is, we need to cluster histories into
groups which have similar predicted outcomes, and retain
a representative history from each group. If done properly,
the probability distribution over these clusters should be
an accurate representation of the true distribution over the
original histories. As our experimental results will show,
making sure to retain a representative history from each
cluster can yield a substantial improvement in the reward
achieved by our team. In fact, we can see an improvement
even in runs where we are lucky enough not to have pruned
the robots’ true histories: our performance depends not just
on what we have seen but how well we reason about what
we might have seen.

At each time step ¢, we start from the representative
joint histories at time ¢ — 1 and construct all one-step
extensions by appending each possible joint action and
observation. From these joint histories we then identify
all possible individual histories for each robot and cluster
them, using the algorithms described below to find the
representative individual histories for step ¢. The represen-
tative joint histories are then the cross product of all of the
representative individual histories. (Unlike low probability
pruning, we prune individual histories rather than joint
histories; a joint history is pruned if any of its individual
histories are pruned. This way each robot can determine,
without communication, to which cluster its current history
belongs.) Finally we construct a reduced Bayesian game
using only the representative histories, and solve it to find a
policy for each robot which assigns an action to each of its
representative individual histories. As before, at runtime we
use worst-case reward difference to match the true history
to its closest retained history and select an action.

There are many different types of clustering algo-
rithms [20], but in this paper we use a type of agglomera-
tive clustering. In our algorithms, each history starts off in
its own cluster and then similar clusters are merged together
until a stopping criterion is met. Similarity between clusters
is determined by comparing the reward profiles either of
representative elements from each cluster or of the clusters
as a whole. The reward profile for a cluster c is defined by
a straightforward generalization of equation 1: it is

r¢ = E(rh | hec)=E(R(s,a) | ¢)
We could use worst-case reward difference as defined
above to compare reward profiles, but since we have
extra information not available at runtime (namely the
prior probability of both clusters) we will use worst-case
expected loss instead. Worst-case expected loss between
two histories h and b’ is defined to be

max | P(R)|rl = ré| + Pl = ré] | /P(e)
acA

where c is the cluster that would result if A and h’ were
merged. Worst-case expected loss between two clusters is
defined analogously in terms of rflucl. Worst-case expected
loss is a good measure of the similarity of the reward
profiles for two clusters. It is important to determine if
two clusters have similar reward profiles because robots
will end up performing the same action for each element
of the cluster.

We looked at two different algorithms which differ in
how they select pairs of clusters to merge and how they
decide when to stop. These algorithms are called low
probability clustering and minimum distance clustering.
Low-probability clustering was designed to be similar to
the low-probability pruning algorithm described above,
while minimum-distance clustering is designed to produce
a better clustering at a higher computational cost.

1) Low Probability Clustering: In this approach, we
initially order the single-history clusters at random. Then,
we make a single pass through the list of clusters. For
each cluster, we test whether its probability is below a
threshold; if so, we remove it from the list and merge
it with its nearest remaining neighbor as determined by
the worst-case expected loss between their representative
histories. The neighbor’s representative history stays the
same, and its probability is incremented by the probability
of the cluster being merged in.

This clustering method relies on randomization and so
the synchronization of the random number generators of
the robots is crucial to ensure that each robot performs the
same series of clustering operations.

Low-probability clustering has some similarities to low-
probability pruning: we cluster histories that are less likely
to occur and therefore a robot’s true history is much
more likely to match one of the representative histories
at execution time. Like low-probability pruning, it has
the drawback that all low probability histories must be
matched to another history even if they are far away from
all available candidates. Unlike pruning, however, it main-
tains a distribution over joint histories that more closely
matches the original distribution. By randomly ordering the

candidate clusters it is also possible that individual histories
which on their own have too low probability to keep will
have other low probability histories matched with them and
so survive to the final set of histories.

2) Minimum Distance Clustering: In minimum-distance
clustering we repeatedly find the most similar pair of
clusters (according to worst-case expected loss between the
clusters’ reward profiles) and merge them. We stop when
the closest pair of clusters is too far apart, or when we
reach a minimum number of clusters.

The representative element for a cluster is simply the
highest-probability individual history in that cluster. This
representative element is only used for generating the
joint histories at the next time step; cluster merging and
matching of the observed history to a cluster are both
governed by the cluster’s reward profile.

C. Benchmark Results

The Lady and The Tiger problem is simple yet still large
enough to present a challenge to exact and approximate
methods for solving POSGs. Table I shows the performance
of the basic Bayesian game approximation of the full POSG
for a 10-step horizon and compares it to using pruning or
clustering to keep the number of histories low. 2

In the case of low probability pruning, the performance
results in Table I for thresholds of 0.000001 and 0.000005
show that even for cases in which the actual observations
of the robots always match exactly to one of the retained
histories, removing too many joint histories from consid-
eration negatively impacts performance. If low probabil-
ity clustering is applied instead, we can maintain many
fewer histories without compromising performance. If the
probability threshold is set too high, however, performance
starts to degrade. The distribution over joint histories is no
longer being approximated well because histories that are
too different are being aliased together. Minimum distance
clustering, however, is able to avoid this problem at higher
levels of clustering and lets the system cluster more histo-
ries together while still representing the joint history space.
An additional advantage of minimum distance clustering
is that its parameter is maximum allowable expected loss,
which is easier to interpret than the probability threshold
used in low probability clustering.

A drawback of the minimum clustering approach over
low probability clustering is that it is a more expensive
algorithm because it iterates over the set of possible clus-
ters until the termination criteria is met. In contrast, low
probability clustering performs only a single pass through
the set of possible clusters. However, the minimum distance
clustering approach is able to maintain a fewer number of
overall histories with no loss in performance.

IV. RoBOT TAG

In this section we present a more realistic version of the
Robotic Tag 2 problem discussed in [8]. In this problem
two robots are trying to coordinate on finding and tagging
an opponent that is moving with Brownian motion within

2Unlike the results in [8], a simpler utility function was used as our
focus is the relationship between performance and retained histories.

TABLE I
RESULTS FOR 10-STEP Lady and The Tiger AVERAGED OVER 100000 TRIALS WITH 95% CONFIDENCE INTERVALS. TOTAL NUMBER OF JOINT
HISTORIES IS THE SUM OF ALL THE JOINT HISTORIES MAINTAINED OVER THE 10 STEPS. POLICY COMPUTATION TIME IS THE PERCENTAGE OF
TIME TAKEN RELATIVE TO THE FIRST CONDITION IN WHICH ALL HISTORIES ARE MAINTAINED (A RUNNING TIME OF 199018ms). THE PERCENT
TRUE HISTORY RETAINED IS THE PERCENTAGE OF STEPS IN WHICH THE TRUE ROBOT HISTORY IS PRESENT IN THE SET OF RETAINED HISTORIES.
PERFORMANCE IS NOT DEPENDENT ON THIS VALUE BUT RATHER ON HOW WELL THE ENTIRE SET OF POSSIBLE HISTORIES IS APPROXIMATED.

| Condition [Average Reward|Total # Joint Histories | Computation Time[% True History Retained |

| All possible joint histories maintained [1068 £0.10 | 231205 | 100% \ 100% |
Low probability pruning with cutoff of 0.000001 | 10.66 £ 0.10 74893 56.28% 100%
Low probability pruning with cutoff of 0.000005 | 9.89 + 0.13 34600 51.98% 100%
Low probability pruning with cutoff of 0.001 5.32 + 0.26 1093 1.54% 93.8%
Low probability clustering with threshold 0.01 10.69 £+ 0.09 7715 4.81% 91.3%
Low probability clustering with threshold 0.05 10.68 £+ 0.10 563 0.25% 71.2%
Low probability clustering with threshold 0.1 6.38 £ 0.21 201 < 0.10% 63.3%
Minimum distance clustering with max. loss 0.01| 10.58 £ 0.10 335 < 0.10% 56.4%
Minimum distance clustering with max. loss 0.1 10.72 4+ 0.09 177 < 0.10% 56.1%
Minimum distance clustering with max. loss 0.5 | 10.69 £ 0.10 109 < 0.10% 55.1%

a portion of Stanford University’s Gates Hall. It requires
only one robot to tag the opponent, but the robots must
coordinate to search the environment efficiently. We first
solve the problem in a grid-world version of Gates Hall
by converting the environment into a series of cells which
are roughly 1.0m x 3.5m. Then we execute the resulting
policy on real robots by using lower-level behaviors to
move between cells while avoiding obstacles.

In the original Robotic Tag 2 problem, the state of the
robots and their observations are highly abstracted. Each
robot’s state consists of its current cell and it can only
observe the opponent if they are in the same cell. Actions
and observations are noise free and each robot knows its
teammate’s position exactly. This problem has a branching
factor of at most 3: that is, the number of possible joint
types at time ¢ 4 1 is at most 3 times that at time ¢.

In this paper, we introduce the more-realistic Robot
Tag A and Robot Tag B problems. In these two variants,
we model the fact that the robots can see some distance
forward but not at all backward; this change results in a
larger state space and a much larger observation space.
The robot’s state now includes both its cell location and a
discrete heading. The heading can face in either direction
along a corridor or in all cardinal directions at intersections;
this additional state variable increases the size of the
problem from the 18252 states of Robotic Tag 2 to 93600
states. Each robot can sense its current cell location and the
cell immediately in front of it. This corresponds to robots
that have a sensing range of about 5m. Motion actions can
now fail to execute with a known probability.

In the first variation of this problem, Robot Tag A,
observations are noisy. The robots still know the state of
their teammate, but they may not sense the opponent even
if it is within their visible range. Positive detections of the
opponent, however, are always correct. In Robot Tag A, the
branching factor for joint histories can be up to 7, more
than twice what it was in Robotic Tag 2.

Robot Tag B looks at the effects of not knowing the
location of one’s teammate. The robots’ sensors are not
noisy, but the robots do not know the location of their
teammate unless they sense it. This results in a branching
factor of up to 20, making Robot Tag B substantially large.

A. Grid-World Results

A fully observable policy was calculated for a robot team
that could always observe the opponent and each other
using dynamic programming for an infinite horizon version
of the problem with a discount factor of 0.95. The Q-values
generated for this policy were used as a Q/pp heuristic
for calculating utility in the Bayesian game approximation.

For both variants, performance statistics were found for
two common heuristics for partially observable problems
as well as for our Bayesian game approximation. In these
two heuristics each robot maintains an individual belief
state based only upon its own observations (as there is no
communication) and uses that belief state to make action
selections. In the Most Likely State (MLS) heuristic, the
robot selects the most likely opponent state and then applies
its half of the best joint action for that state as given by
the fully observable policy. In the Qy;pp heuristic, the
robot implements its half of the joint action that maximizes
its expected reward given its current belief state. In the
case where the teammate is not visible, each heuristic
assumes that its teammate did execute the other half of
the selected joint action and updates its believed position
of its teammate using this action. Positive observations of
the teammate are also used to update this believed position.

1) Robot Tag A: For this variation of the problem we
applied all three approaches to maintaining a reasonable
number of individual histories as described in Section
III. Table II shows a comparison of these approaches
with respect to performance, the total number of histories
maintained for each robot and the average number of
true observation histories that were not maintained in
the set of tracked histories. These results were gathered
using random starting positions for both robots and the
opponent. Our Bayesian game approximation allowed the
robots to find the opponent about 2 to 3 time steps faster
on average. Minimum distance clustering resulted in the
most computationally efficient robot controllers.

2) Robot Tag B: This variation of the problem is well
tuned to the use of minimum distance clustering. The
large number of possible joint histories resulted in memory
problems when a very low threshold was used for low prob-
ability pruning or clustering, while raising the threshold
caused poor performance due to over aliasing of histories.

TABLE 11
Robot Tag RESULTS WITH 95% CONFINDENCE INTERVALS. RESULTS ARE AVERAGED OVER 10000 TRIALS EXCEPT FOR MINIMUM DISTANCE
CLUSTERING IN Robot Tag B WHICH IS OVER 100 TRIALS. AVERAGE ITERATIONS IS THE NUMBER OF STEPS IT TAKES TO CAPTURE THE
OPPONENT. TOTAL NUMBER OF HISTORIES PER ROBOT IS THE AVERAGE NUMBER OF HISTORIES MAINTAINED PER ROBOT, AND NUMBER OF TRUE
HISTORIES NOT RETAINED IS THE AVERAGE NUMBER OF TIMES A ROBOT’S TRUE HISTORY WAS NOT IN THE MAINTAINED SET.

Algorithm [Average Reward|Average Iterations|Total # Histories Per Robot[# True Histories Not Retained |
Robot Tag A: Know Teammate Position, Noisy Observations, Random Starting Positions
MLS Heuristic -7.99 + 0.21 1591 £ 0.25 n.a. n.a
Qrrpp Heuristic -7.02 + 0.21 15.44 £+ 0.29 n.a. n.a
Low Prob. Pruning with cutoff 0.00025 -6.02 + 0.18 13.10 £ 0.21 166.73 + 4.17 0.31 £ 0.05
Low Prob. Clustering with threshold 0.0025| -6.06 £ 0.19 13.24 £ 0.22 118.68 + 2.71 0.32 4+ 0.03
Min.Dist.Clustering with max. loss 0.05 -5.99 + 0.18 13.10 £ 0.21 50.45 £+ 0.87 1.54 £+ 0.08
Robot Tag B: Do Not Know Teammate Position, Noise-free Observations, Fixed Starting Positions A
MLS Heuristic -22.12 + 0.18 30.63 £ 0.17 n.a. n.a
Q nrpp Heuristic -991 £ 0.15 16.38 £ 0.25 n.a. n.a
Min.Dist.Clustering with max. loss 0.01 -7.95 £ 1.45 1341 £ 1.94 434.22 4+ 204.62 6.88 + 3.53
Robot Tag B: Do Not Know Teammate Position, Noise-free Observations, Fixed Starting Positions B
MLS Heuristic -12.57 + 0.20 15.89 £ 0.17 n.a. n.a
Qn pp Heuristic -14.71 &£ 0.14 21.58 £ 0.18 n.a. n.a
Min.Dist.Clustering with max. loss 0.01 -10.07 £+ 0.90 14.7 £ 0.97 318.75 + 26.34 12.75 + 3.54

Minimum distance clustering, however, was successful
in solving the problem as can be seen in Table II. It
generated policies that were able to be implemented in real-
time. These results were generated using two different fixed
starting locations, A and B, for the robots and the opponent.
In the first scenario (A) the two robots start at the base of
the middle corridor (see Fig. 4), while the opponent starts
in the far right side of the loop. In the second scenario (B)
the two robots start at the far left of the top corridor and the
opponent starts at the far left of the bottom corridor. The
first starting condition proved problematic for MLS and the
second for Qppp yet our Bayesian game approximation
was able to perform well in both conditions. The average
number of total individual histories retained for each robot
is much greater than that for Robot Tag A, yet the number
of times the robot’s true history is not in the retained set
of histories is larger which is a reflection of the greater
branching factor of this problem.

B. Robot Results

The grid-world versions of Robot Tag A and Robot Tag
B were mapped to the real Gates Hall and Pioneer-class
robots (Fig. 2) using the CARMEN software package for
low-level control [21]. In these mappings, observations and
actions remain discrete and there is an additional layer that
converts between the continuous world and the grid-world.
Localized positions of the robots are used to calculate their
specific grid-cell positions and headings. Robots navigate
by converting the actions selected by the Bayesian game
approximation into goal locations. CARMEN allows us to
use the same interface run our algorithm in both a high
fidelity simulator as well as on the real robots.

Simulation and real robot runs were conducted both
with and without an opponent. If no opponent is present
then the robots continue to search the environment until
stopped by a human operator. This gives the observer a
better idea of how well the robots coordinate on their
coverage of the environment. We implemented the MLS
and Qs pp heuristics and the minimum distance clustering
version of our Bayesian game approximation for both
variations of Robot Tag. This version of our controller
was chosen because it is the most computationally efficient

Fig. 2. One of the robots used for experiments.

and therefore most appropriate for real-time robot control.
Similar paths were generated in the simulator and by the
physical robots for the same initial conditions.

For the Robot Tag A trials the two robots were started
in a similar location. With this starting configuration, the
MLS heuristic resulted in the two robots following each
other around the environment and therefore not taking
advantage of the distributed nature of the problem. This
is because with MLS, if the two robots have similar
observations, then they will believe the opponent to be
in the same location and so will both move there. In the
Q@ pp heuristic, however, similar sensor readings can still
lead to different actions being selected because Qa/pp
selects actions that maximize reward with respect to the
current belief of where the opponent is, not just the most
likely state. If the belief of the opponent’s position is bi-
modal, a joint action will be selected that sends one robot
to each of the possible locations. However, if robots have
different beliefs about the opponent location, they can start
to duplicate their efforts by selecting actions that are no
longer complementary. The robots’ beliefs start to drift
apart and coordination fails as the robots move away from
each other in the environment. Any observed cooperation
is therefore an artifact of having similar sensor readings.

As the Bayesian game approximation uses the Qa/pp
heuristic for the utility of future actions, it is not surprising
that the policies generated by it appear similar to those of
Qurpp at the beginning of a trial (e.g. both exhibit guard-
ing behaviours where one robot waits at an intersection
while the other travels around a loop or down a hallway).
Unlike Qpspp, however, the robots are coordinating their
action selection and so are able to continue to do a good

Fig. 3. Robot Tag A: An example of the path taken by the robots using
our controller. When controlled with the MLS heuristic the robots follow
each other around and when controlled with the Qp;pp heuristic the
robots start out with similar paths but do not travel down the bottom left
corridor. Yellow circles represent the robots’ current goal locations.

job of covering the environment even as their positions and
sensor readings move away from each other (Fig. 3).

In Robot Tag B, the robots no longer know the position
of their teammate which has subtle effects on how they
coordinate. In MLS the robots continue to follow each
other because they receive similar sensor readings. Robots
running Q) psp p start to follow a similar path to the one they
would follow in Robot Tag A, but as they lose track of their
teammate’s position they stop covering the environment
as well and can get trapped in guarding locations for a
teammate that is also guarding a different location. The
Bayesian game approximation, however, still covers the
environment in a similar fashion as to when teammate
positions are known (Fig. 4). This is because through the
retained histories they are able to maintain a probability
distribution over the true location of their teammate.

V. DISCUSSION AND FUTURE WORK

Clustering is an effective way to reduce the number of
maintained history is a principled way. This results in faster
computation making our algorithm more appropriate as a
controller for real-world problems. While low probability
clustering is computationally faster, minimum distance
clustering is able to find a more natural set of histories
that best represent the overall history space of each robot.

Another effective way to reduce the number of histories
is to permit communication between robots on the team. If
done in a sensible manner, robots would only need to com-
municate infrequently and therefore not exceed bandwidth
limitations. We are currently investigating communication
within the framework of our algorithm.

REFERENCES

[11 B. P. Gerkey and M. J. Matari¢, “Sold!: Auction methods for
multi-robot coordination,” IEEE Trans. on Robotics and Automation,
Special Issue on Multi-robot Systems, vol. 18, no. 5, 2002.

Fig. 4. Robot Tag B: An example of the path taken by the robots using
our controller. The robots start at the bottom of the middle corridor and
the green robot guards the intersection while its teammate moves around
the loop. Unlike the MLS and @ psp p heuristics, this path is similar to
the one taken by the robots when they know their teammates’ positions.

[2] M. B. Dias and A. Stentz, “Free market architecture for distributed
control of a multirobot system,” in IAS, 2000.

[3] L. E. Parker, “ALLIANCE: An architecture for fault tolerant multi-
robot cooperation,” [EEE Trans. on Robotics and Automation,
vol. 14, no. 2, 1998.

[4] R. Arkin, “Cooperation without communication: Multi-agent schema
based robot navigation,” J. Robotic Systems, vol. 9, no. 3, 1992.

[5] J. Pineau, M. Montemerlo, M. Pollack, N. Roy, and S. Thrun, “To-
wards robotic assistants in nursing homes: Challenges and results,”
Robotics and Autonomous Sys., vol. 42, pp. 271-281, March 2003.

[6] M. T. J. Spaan and N. Vlassis, “A point-based POMDP algorithm
for robot planning,” in ICRA, 2004.

[7] R. Nair, M. Roth, M. Yokoo, and M. Tambe, “Communication for
improving policy computation in distributed POMDPs,” in AAMAS,
2004.

[8] R. Emery-Montemerlo, G. Gordon, J. Schneider, and S. Thrun,
“Approximate solutions for partially observable stochastic games
with common payoffs,” in AAMAS, 2004.

[9] D. Bernstein, S. Zilberstein, and N. Immerman, “The complexity of
decentralized control of Markov decision processes,” in UAI, 2000.

[10] D. Pynadath and M. Tambe, “The communicative multiagent team
decision problem: Analyzing teamwork theories and models,” J.
Artificial Intelligence Research, 2002.

[11] P. Gmytrasiewicz and P. Doshi, “A framework for sequential plan-
ning in multi-agent settings,” in Int. Symp. on Al and Math., 2004.

[12] E. Hanson, D. Bernstein, and S. Zilberstein, “Dynamic programming
for partially observable stochastic games,” in AAAI, 2004.

[13] L. Peshkin, K.-E. Kim, N. Meuleau, and L. P. Kaelbling, “Learning
to cooperate via policy search,” in UAI, 2000.

[14] P. Xuan, V. Lesser, and S. Zilberstein, “Communication decisions in
multi-agent cooperation: Model and experiments,” in Agents, 2001.

[15] R. Nair, M. Tambe, M. Yokoo, D. Pynadath, and S. Marsella, “Tam-
ing decentralized POMDPs: Towards efficient policy computation
for multiagent settings,” in IJCAI, 2003.

[16] D. Fudenberg and J. Tirole, Game Theory. MIT Press, 1991.

[17] S. Russell and P. Norvig, “Section 6.5: Games that include an
element of chance,” in Artificial Intelligence: A Modern Approach,
Prentice Hall, 2nd ed., 2002.

[18] J. Shi and M. L. Littman, “Abstraction methods for game theoretic
poker.,” Computers and Games, pp. 333-345, 2000.

[19] A. R. Cassandra, L. P. Kaelbling, and M. L. Littman, “Acting
optimally in partially observable stochastic domains,” in AAAI, 1994.

[20] B. S. Everitt, S. Landau, and M. Leese, Cluster Analysis, ch. 4.
Arnold Publishers, 4th edition ed., 2001.

[21] M. Montemerlo, N. Roy, and S. Thrun, “Carnegie Mellon robot
navigation toolkit,” 2002. www.cs.cs.cmu.edu/~ carmen.

