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Abstract

Understanding natural language has been a longstanding dream of artificial intelli-

gence, and machine learning offers a new perspective on this old problem. This work

addresses four key problems in automatically reading and understanding text: ex-

tracting the knowledge expressed in a body of text in the form of structured relations,

reconciling and formalizing that knowledge in a fully consistent, sense-disambiguated

hierarchy of knowledge, fluidly transitioning from fine-grained to coarse-grained dis-

tinctions between word senses, and applying extracted structured knowledge in ap-

plications that depend on deep textual understanding.

Textual patterns have frequently been devised to identify specific instances of

world knowledge in text. For example, from the text “such fruits as apples and

oranges” one might infer the knowledge that “apples and oranges are kinds of fruit”.

In this work we discuss the use of distant supervision for relation extraction, which

applies machine learning techniques to a set of example relation instances and a

large body of unannotated text in order to rediscover many of the textual patterns

formerly proposed in the information extraction literature, along with hundreds of

thousands of previously unconsidered patterns. Further, we apply these automatically

discovered patterns to extract structured knowledge from newswire articles and other

text, significantly outperforming hand-designed patterns and discovering hundreds of

thousands of novel examples of world knowledge not previously encoded in manually-

created knowledge bases.

Many proposed methods for extracting structured knowledge suffer from a crit-

ical inability to deal with redundancy or contradictory extractions. While modern

algorithms can often suggest millions of possible facts extracted from a large body of
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text, they are unable to reconcile this extracted knowledge into a set of consistent,

sense-disambiguated assertions. We propose a probabilistic framework for taxonomy

induction that solves each of these problems, taking advantage of the full set of pre-

dicted facts and any knowledge already known in an existing taxonomy. This work

has resulted in one of the largest automatically-constructed augmentations of the

WordNet knowledge base currently in existence.

In addition to the automatic augmentation of knowledge resources, we explore the

task of automatically creating coarse-grained taxonomies. It has been widely observed

that different natural language applications require different sense granularities in or-

der to best exploit word sense distinctions, and that for many applications WordNet

senses are too fine-grained. In contrast to previously proposed automatic methods

for sense clustering, we formulate sense merging as a supervised learning problem,

exploiting human-labeled sense clusterings as training data. Our learned similarity

measure outperforms previously proposed automatic methods for sense clustering on

the task of predicting human sense merging judgments. Finally, we propose a model

for clustering sense taxonomies using the outputs of this classifier, and we make

available several automatically sense-clustered WordNets of various sense granular-

ities. These resources offer the capability of tailoring a knowledge resource to the

sense granularity most suited to a particular application.

Our framework for taxonomy induction lays the groundwork for new semantic ap-

plications, including inferring domain-specific hierarchies of knowledge and augment-

ing foreign-language Wordnets. Finally, we demonstrate that our automatically aug-

mented taxonomies significantly outperform manually-constructed resources across

several natural language tasks, including relation prediction, question answering, and

text categorization.

vi



Acknowledgements

I dedicate this work to my parents, Kathy and Robert, for giving me life. To my

advisors, Andrew Ng and Dan Jurafsky, for giving me sunlight, nourishment, and

room to grow. To Tom Bartol, Ted O’Connor, and Balaji Srinivasan, for inspiring

me to create.

To my scientific and philosophical mentors: to John Frank, for showing me the

deeply intertwingled nature of wisdom and fun. To Nancy Johnson, for encouraging

me to experiment with dangerous ideas. To Bob Severson, for convincing me that

the physical world might just be weird enough to be understood. To Linda Petrait,

for pouring fuel on the fire. And to Rachel Kalmar, for, well, everything.

To my community, my sangha, my mind tribe: you are my heroes. I’m smiling

right now, and it’s because I’m thinking of you. You have opened my mind, and my

heart, and I owe you the world for it. Thank you.

vii



Contents

Abstract v

Acknowledgements vii

1 Introduction 1

1.1 Relation extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Manually-specified patterns . . . . . . . . . . . . . . . . . . . 3

1.1.2 Semi-supervised approaches . . . . . . . . . . . . . . . . . . . 8

1.1.3 Supervised approaches . . . . . . . . . . . . . . . . . . . . . . 17

1.1.4 Unsupervised approaches . . . . . . . . . . . . . . . . . . . . . 21

1.1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2 Taxonomy induction . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 Overview of experimental results . . . . . . . . . . . . . . . . . . . . 24

1.4 Major contributions of each chapter . . . . . . . . . . . . . . . . . . . 25

1.5 First published appearances of contributions . . . . . . . . . . . . . . 27

2 Predicting Taxonomic Relations 29

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 WordNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Distant supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.1 Dependency parsing . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.2 Representing syntactic context . . . . . . . . . . . . . . . . . . 40

2.4 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5 Feature analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

viii



2.6 Hypernym classification . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.6.1 Multinomial Naive Bayes . . . . . . . . . . . . . . . . . . . . . 49

2.6.2 Logistic regression . . . . . . . . . . . . . . . . . . . . . . . . 50

2.7 Coordinate term classification . . . . . . . . . . . . . . . . . . . . . . 53

2.7.1 Vector space model for distributional similarity . . . . . . . . 54

2.7.2 Conjunction pattern classifier . . . . . . . . . . . . . . . . . . 56

2.7.3 WordNet classifiers . . . . . . . . . . . . . . . . . . . . . . . . 56

2.7.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.8 Hybrid hypernym-coordinate classification . . . . . . . . . . . . . . . 59

2.8.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.9 List extraction for hypernym and coordinate prediction . . . . . . . . 61

2.9.1 Wrapper induction . . . . . . . . . . . . . . . . . . . . . . . . 62

2.9.2 Extracting list elements from Wikipedia . . . . . . . . . . . . 65

2.9.3 Predicting taxonomic relations of list elements . . . . . . . . . 66

2.9.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3 Semantic Taxonomy Induction 72

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2 Taxonomies, relations, and constraints . . . . . . . . . . . . . . . . . 76

3.3 Taxonomy likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4 Managing lexical ambiguity . . . . . . . . . . . . . . . . . . . . . . . 81

3.5 Operations over taxonomies . . . . . . . . . . . . . . . . . . . . . . . 82

3.5.1 Adding relations . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.5.2 Removing relations . . . . . . . . . . . . . . . . . . . . . . . . 83

3.5.3 Adding concepts . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.5.4 Removing concepts . . . . . . . . . . . . . . . . . . . . . . . . 85

3.5.5 Merging concepts . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Creating Augmented Taxonomies 87

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

ix



4.2 WordNet relations and constraints . . . . . . . . . . . . . . . . . . . . 88

4.2.1 The WordNet hypernym relation . . . . . . . . . . . . . . . . 88

4.2.2 The WordNet coordinate term relation . . . . . . . . . . . . . 88

4.2.3 Taxonomic constraints . . . . . . . . . . . . . . . . . . . . . . 90

4.3 Searching over taxonomies . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4 Use of relation classifiers . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4.1 Hyponym classification . . . . . . . . . . . . . . . . . . . . . . 93

4.4.2 (m, n)-cousin classification . . . . . . . . . . . . . . . . . . . . 94

4.5 Examples and discussion of implementation . . . . . . . . . . . . . . 98

4.5.1 Hypernym sense disambiguation . . . . . . . . . . . . . . . . . 100

4.5.2 Example inference . . . . . . . . . . . . . . . . . . . . . . . . 101

4.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.6.2 Fine-grained evaluation . . . . . . . . . . . . . . . . . . . . . . 107

4.6.3 Hypernym sense disambiguation . . . . . . . . . . . . . . . . . 107

4.6.4 Coarse-grained evaluation . . . . . . . . . . . . . . . . . . . . 107

4.6.5 Comparison of inferred taxonomies and WordNet . . . . . . . 108

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5 Creating Sense-clustered Taxonomies 111

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2 Gold standard sense clustering data . . . . . . . . . . . . . . . . . . . 114

5.3 Learning to merge word senses . . . . . . . . . . . . . . . . . . . . . . 118

5.3.1 WordNet-based features . . . . . . . . . . . . . . . . . . . . . 118

5.3.2 Features derived from corpora and other lexical resources . . . 120

5.3.3 Classifier, training, and feature selection . . . . . . . . . . . . 121

5.4 Clustering senses in WordNet . . . . . . . . . . . . . . . . . . . . . . 122

5.4.1 Challenges of clustering a sense taxonomy . . . . . . . . . . . 122

5.4.2 Sense clustering as maximizing taxonomy likelihood . . . . . . 124

5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.5.1 Evaluation of automatic sense merging . . . . . . . . . . . . . 128

x



5.5.2 Feature analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.5.3 Evaluation of sense-clustered Wordnets . . . . . . . . . . . . . 136

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6 Applications of Semantic Taxonomy Induction 138

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.2 Question answering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.2.1 Experimental design . . . . . . . . . . . . . . . . . . . . . . . 141

6.2.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.3 Text classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.3.1 Experimental design . . . . . . . . . . . . . . . . . . . . . . . 149

6.3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.4 Inferring domain-specific taxonomies . . . . . . . . . . . . . . . . . . 154

6.5 Augmenting foreign-language taxonomies . . . . . . . . . . . . . . . . 155

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7 Conclusion 158

Bibliography 161

xi



List of Tables

1.1 Hearst’s patterns and example occurrences . . . . . . . . . . . . . . . 4

1.2 Pantel’s patterns and example occurrences . . . . . . . . . . . . . . . 6

1.3 Berland’s patterns and example occurrences . . . . . . . . . . . . . . 7

1.4 16 of Turney’s 128 patterns . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Example seed pairs for extracting the author-book relation with

Dipre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Example extracted URL and text patterns using Dipre . . . . . . . . 11

1.7 Total number of entity pairs, pair occurrences, and extracted patterns

at each iteration of Dipre . . . . . . . . . . . . . . . . . . . . . . . . 12

1.8 Example seed pairs for extracting the located-in relation with Snow-

ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.9 Example extracted patterns using Snowball . . . . . . . . . . . . . 13

1.10 Example relations and seed pairs used for the evaluation of Espresso 15

1.11 Example input for the capital-of relation in KnowItAll . . . . . 15

2.1 Dependency path representations of Hearst’s patterns . . . . . . . . . 41

2.2 Dependency path representations of other high-scoring patterns . . . 48

2.3 Average maximum F-scores for cross validation on WordNet-labeled

training set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4 Summary of maximum F-scores on hand-labeled coordinate pairs . . 57

2.5 Maximum F-Score of hypernym classifiers on hand-labeled test set . . 62

2.6 Analysis of improvements over WordNet . . . . . . . . . . . . . . . . 62

2.7 Athletes in both Wikipedia and WordNet, and (m, n)-relation to athlete 67

xii



2.8 Athletes in both Wikipedia and WordNet, and (m, n)-relation to each

other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 The 26 WordNet supersenses . . . . . . . . . . . . . . . . . . . . . . . 106

4.2 Fine-grained and disambiguation precision and error reduction (ER)

for hyponym acquisition . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3 Coarse-grained precision and error reduction (ER) vs. non-joint base-

line and named entity recogzier (NER) oracle . . . . . . . . . . . . . 108

4.4 Sense-disambiguation precision and error reduction of sense-disambiguated

hyponym acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5 Taxonomy hypernym classification vs. WordNet 2.1 on hand-labeled

testset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.1 Gold standard datasets for sense merging; only sense pairs that share

a word in common are included; proportion refers to the fraction of

synsets sharing a word that have been merged . . . . . . . . . . . . . 115

5.2 Agreement data for gold standard datasets . . . . . . . . . . . . . . . 116

5.3 F-score sense merging evaluation on hand-labeled testsets . . . . . . . 129

5.4 Feature ablation study: F-score difference obtained by removal of the

single feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.5 Improvement in Senseval-3 WSD performance using our average-link

agglomerative clustering vs. random clustering at the same granularity 137

6.1 Sources used for training named entity hyponym classifiers . . . . . . 141

6.2 Characteristics of training sets . . . . . . . . . . . . . . . . . . . . . . 142

6.3 Features considered for +Feat model . . . . . . . . . . . . . . . . . . 142

6.4 Additional knowledge sources by size . . . . . . . . . . . . . . . . . . 143

6.5 Average precision on 15 categories . . . . . . . . . . . . . . . . . . . . 144

6.6 Mean average precision over 75 categories . . . . . . . . . . . . . . . . 144

6.7 Top responses for four categories using the +Feat model, starred entries

were judged incorrect . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.8 QA Performance on TREC 2005 & 2006 Data . . . . . . . . . . . . . 147

xiii



6.9 Summary of the sizes of the taxonomies in our comparison . . . . . . 152

6.10 Accuracy of Naive Bayes text categorization using different taxonomies

in the Reuters-21578 dataset for different training set sizes . . . . 153

6.11 Accuracy of Naive Bayes text categorization using different taxonomies

in the 20-Newsgroups dataset for different training set sizes . . . . 154

xiv



List of Figures

1.1 Example Wikipedia infobox for the city of Menlo Park . . . . . . . . 19

2.1 Growth of synsets in WordNet, 1989 to 2006 [50] . . . . . . . . . . . . 32

2.2 Four senses of red in WordNet . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Example fragment of noun hypernym hierarchy in WordNet . . . . . 34

2.4 Full hypernym ancestry of burgundy in WordNet . . . . . . . . . . . . 36

2.5 Full meronym ancestry of telomere in WordNet . . . . . . . . . . . . 36

2.6 Example Minipar dependency tree . . . . . . . . . . . . . . . . . . . 39

2.7 Minipar dependency tree example with transform . . . . . . . . . . 39

2.8 Hypernym Figure/Recall for all features . . . . . . . . . . . . . . . . 46

2.9 Hypernym classifier precision/recall on WordNet-labeled testset . . . 47

2.10 Coordinate classifiers on hand-labeled test set . . . . . . . . . . . . . 58

2.11 Hypernym classifiers on hand-labeled test set . . . . . . . . . . . . . . 61

2.12 Three HTML list representations . . . . . . . . . . . . . . . . . . . . 63

2.13 Document Object Model representations of unordered and ordered

HTML lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Example of (m, n)-relations among animal concepts in WordNet . . . 89

4.2 Example of (m, n)-relation between raven and writing desk in WordNet 90

4.3 Examples of coordinate clusters generated from distributional similarity 96

4.4 Visualization of probability of (m, n)-cousinhood given similarity score 97

4.5 Example of enforcing taxonomic constraints for adding continental to

two different senses of airline . . . . . . . . . . . . . . . . . . . . . . 101

4.6 Example of hypernym predictions for the token continental . . . . . . 102

xv



4.7 Example of coordinate and corresponding hypernym predictions for

the token SunOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.8 Example novel hypernyms inferred in SWN . . . . . . . . . . . . . . . 105

4.9 Growth of the Stanford Wordnet . . . . . . . . . . . . . . . . . . . . 110

5.1 Sense clusters for the noun bass ; the eight WordNet senses as clustered

into four groups in the Senseval-2 coarse-grained evaluation data . 112

5.2 Examples of different sense clustering resolutions in the gold standard

datasets for the verb oppose . . . . . . . . . . . . . . . . . . . . . . . 117

5.3 Examples of twin features for the verb make . . . . . . . . . . . . . . 118

5.4 Examples of shared derivational features for the noun and verb senses

of bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5 Examples of autohyponymy under the verb make . . . . . . . . . . . 120

5.6 Examples of regular polysemy under organization and construction . 120

5.7 Inconsistent sense clusters for the verbs require and need from Senseval-

2 judgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.8 Full sense clustering dendrogram for the noun bass . . . . . . . . . . 127

5.9 Full sense clustering dendrogram for the verb oppose . . . . . . . . . 128

5.10 Precision/Recall plot for noun sense merge judgments . . . . . . . . . 131

5.11 Precision/Recall plot for verb sense merge judgments . . . . . . . . . 132

5.12 Precision/Recall plot for adjective sense merge judgments . . . . . . . 133

5.13 WSD Improvement with coarse-grained sense hierarchies . . . . . . . 135

6.1 Precision-recall graph for three hyponym/hypernym classifiers . . . . 146

xvi



Chapter 1

Introduction

The acquisition, organization, and application of machine-readable representations of

knowledge have been fundamental challenges since the inception of the field of arti-

ficial intelligence. These goals have been the motivating force underlying numerous

projects in lexical acquisition, information extraction, and the construction of seman-

tic taxonomies. Broad-coverage semantic taxonomies such as WordNet [50] and Cyc

[78] have been manually constructed at great cost to address these challenges. These

lexical resources have become crucial sources of structured information about rela-

tions between words and concepts, and are used in a wide variety of applied tasks,

from reasoning in expert systems to computing measures of word similarity. Despite

their wide use, these taxonomies suffer from sparse coverage and limited usefulness in

a variety of domains. Further, as new textual information continues to be produced

at an ever increasing rate, the problem of manually annotating each new expression

and resolving it with existing knowledge becomes overwhelming. While this explosion

in information production presents an unmanageable obstacle to manual annotation,

it represents an exciting opportunity for automated data mining methods. Taking

inspiration from the rapidly increasing amount of publicly-available textual data and

the decreasing cost of computation, this work focuses on developing machine learning

algorithms for automatically acquiring and organizing structured knowledge that can

be most effective when confronted with millions or even billions of sentences of text.

1



2 CHAPTER 1. INTRODUCTION

Representing knowledge as part of a semantic taxonomy confers numerous ad-

vantages for applications in natural language processing; however, the problem of

incorporating new concepts and relations into a semantic taxonomy comes with an

array of challenges not adequately addressed by modern information extraction and

relationship extraction algorithms. These challenges include incorporating multiple

sources of evidence for several different relations, disambiguating the correct senses

of the words between which new relationships are added, and maintaining the con-

sistency of the taxonomy as a whole. Previous work has typically either focused on

only inferring small taxonomies over a single relation, or has used evidence for mul-

tiple relations independently from one another. Additionally, previous techniques for

taxonomy induction have often sidestepped the issue of lexical ambiguity by making

the assumption of only a single sense (or single most frequent sense) per word, thus

inferring taxonomies over words rather than the larger space of concepts to which

those words refer.

In this work we propose a probabilistic framework for taxonomy induction that

solves each of these problems using a unified formulation of taxonomy likelihood. This

framework is not restricted by the existence of multiple senses and multiple relations,

but rather is capable of taking advantage of the information already present in an

existing taxonomy to make better decisions about where to add new concepts and how

to structure new links between concepts. The approach we propose simultaneously

provides a solution to the problems of both lexical ambiguity and the integration of

heterogenous sources of evidence within a single flexible, probabilistic framework.

We show that this framework may be applied not only to acquiring novel concepts

from unstructured text, but also to other modifications of taxonomic information.

We describe several operations for restructuring taxonomies, including adding and

removing relations, and adding, removing, and merging concepts. We demonstrate

the application of these operations through several experiments. In these experiments

we have automatically created modified versions of the WordNet taxonomy, including

several augmented and sense-merged taxonomies. Finally, we demonstrate the appli-

cation of our framework to broader problems within natural language processing,

including question answering, and text categorization.



1.1. RELATION EXTRACTION 3

1.1 Relation extraction

A major goal of natural language processing and computational semantics in particu-

lar is the creation of an automated method for capturing a structured representation

encompassing the meaning of a chosen segment of natural text. The most ambitious

of these attempts have aimed at representing the complete meaning and full implica-

tion of arbitrary expressions of natural text, often in the form of logical statements.

One introduction to a formal approach of representing natural language sentences in

first-order logic is expressed by Blackburn and Bos [13, 14]. Because even represent-

ing the full meaning of an arbitrary piece of text (much less automatically extracting

it) is extremely difficult, much work in this area has concentrated on extracting only

a limited form of the knowledge implied in a given text. For example, much work

in named entity recognition focuses specifically on only labeling the specific words or

phrases in a text that refer to people, places, or organizations [12].

In this section we discuss previous work on the problem of extracting relational

facts about text. For example, we might want to learn that a chair is a kind of

furniture, or that a person is employed by a particular organization, or that a geo-

graphic entity is located in a particular region. Specifically we will discuss methods

for extracting binary relations in text—that is, relations between exactly two en-

tities. While some work has been extended to include n-ary or complex relations

(relations between an arbitrary number of entities) [90], most work in relation ex-

traction has focused on the case of binary relations. In this section we discuss four

general approaches to relation extraction: the application of manually specified pat-

terns, semi-supervised classification, fully-supervised classification, and unsupervised

approaches.

1.1.1 Manually-specified patterns

The application of manually-specified patterns or heuristics has been among the most

wide-spread methods for the automatic extraction of binary semantic relations from

text. Here we discuss several pattern-based approaches that have been proposed for

the hypernym (is-a) relation, the meronym (part-whole) relation, and several others.
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Hearst pattern Example occurrences
NPX and other NPY : ...temples, treasuries, and other important civic buildings.
NPX or other NPY : Bruises, wounds, broken bones or other injuries...
NPY such as NPX : The bow lute, such as the Bambara ndang...
Such NPY as NPX : ...such authors as Herrick, Goldsmith, and Shakespeare.

NPY including NPX : ...common-law countries, including Canada and England...
NPY , especially NPX : European countries, especially France, England, and Spain...

Table 1.1: Hearst’s patterns and example occurrences

The hypernym relation

The is-a or hypernym relation is among the most well-studied binary relations in

lexical semantics. We state that a noun X is a hyponym of a noun Y (and, respectively,

Y is a hypernym of X) if X is a subtype or instance of Y , that is, if X is a kind of

Y . This is the relation indicated in the common sense knowledge that a dog is-a

animal, or that a rose is-a flower, or that water is-a liquid. Ordered pairs such

as “dog/animal” are referred to as hyponym/hypernym pairs; dog is the hyponym of

animal, and animal is the hypernym of dog. The hypernym relations between concepts

make up much of the information contained in lexical ontologies such as WordNet1

[50].

Much of the previous work in the automatic semantic classification of words and

relations has been based on a key insight first articulated by Hearst [60]—that the

presence of certain “lexico-syntactic patterns” can indicate a particular semantic re-

lationship between two nouns. Hearst noticed that, for example, linking two noun

phrases (NPs) via the constructions “Such NPY as NPX”, or “NPX and other NPY ”,

often implies that NPX is a hyponym of NPY , i.e., that NPX is a kind of NPY . The

full set of patterns proposed by Hearst along with examples of their occurrence in

natural text are given in Table 1.1.

In [60] Hearst searched for instances of the “NPY such as NPX” pattern in

Grolier’s Academic American Encyclopedia [65], a digital encyclopedia. By extracting

the corresponding noun phrases that occurred in this pattern, Hearst found several

correct hypernym relations that were not already in WordNet. In a later work, Hearst

1Refer to Section 2.2 for a more detailed discussion of WordNet.
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[61] applied the “NPX or other NPY ” pattern to a corpus of text from the New York

Times, extracting 200 candidate sentences. The precision of the predicted hyper-

nym pairs was then evaluated by hand. Of the 166 “eligible” sentences containing

unique relations and conforming to the required syntax, the manual evaluation de-

termined that 104 (or 63%) contained a hyponym/hypernym pair that was either

already present in WordNet, or else was a “strong candidate for inclusion”.

Since Hearst’s original work, several researchers have used a small number (typ-

ically less than ten) of similar hand-crafted patterns to try to automatically label

semantic relations [23, 32, 26, 48, 55, 108, 129]. Caraballo [23] makes use of two of

the Hearst Patterns (“NPX and other NPY ” and “NPX or other NPY ”) as a key

part of automatically inferring a WordNet-like noun hypernym hierarchy. First, a

bottom-up clustering was performed over words with high distributional similarity2;

then the Hearst patterns were used in an attempt to discover the potential hyper-

nyms of the members of those clusters. In this way a hierarchy of over 20,000 nodes

was created. In these experiments both the distributional similarity model and the

hypernym extraction was performed on a corpus of text from the Wall Street Jour-

nal. A manual evaluation was then applied to 200 of the automatically extracted

hyponym/hypernym pairs to determine the precision of the inferred hypernym hi-

erarchy. The evaluation determined that, depending on how critical the criteria for

hypernym correctness was, between 33% and 60.5% of the extracted hypernyms were

correct.

An approach to labeling semantic classes using dependency path features is de-

tailed by Pantel and Ravichandran [108]. In this work a 3GB text corpus was parsed

using Minipar, a broad-coverage dependency parser3 [81]. A distributional similarity

model was built using the syntactic dependencies produced b Minipar as context,

and group-average agglomerative clustering was then performed to create committees

[105]. From the members of these committees a grammatical template or signature

was created, aggregating the dependency paths across all members of that semantic

class. These templates were then examined in order to determine which dependency

2Refer to Section 2.7 for a more detailed discussion of distributional similarity.
3Refer to Section 2.3.1 for a more detailed discussion of Minipar and dependency parsing.
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Pattern type Dependency link Example occurrences
Apposition NPX :appo:NPY ... Oracle, a company known for...

Nominal subject NPY :subj:NPX Apple was a hot young company...
“NPY such as NPX” NPY :such as:NPX ...companies such as IBM...

“NPY like NPX” NPY :like:NPX ...companies like Sun Microsystems...

Table 1.2: Pantel’s patterns and example occurrences

paths had the highest mutual information4 with the actual labels of the classes. Four

features were found to have the highest mutual information: the apposition, nominal

subject, such as, and like dependencies; these patterns are summarized along with

examples in Table 1.2.

From the 3GB of newswire text, 1,432 total noun clusters were extracted, compris-

ing 18,000 unique words. An attempt was then made to name each of these clusters,

using the four dependency links above. The accuracy of the algorithm’s hypernym

prediction was then manually evaluated, resulting in an estimated accuracy in the

range of 62.0% to 76.5%. An evaluation restricted to proper noun clusters signif-

icantly increased the judged accuracy, to the range of 79.0% to 85.5%. A further

accomplishment of this work was the application of the automatically inferred hyper-

nyms to applications in question answering and information retrieval; the applications

demonstrated that the inferred hypernyms could significantly increase recall for both

tasks.

In the work of Cimiano et al. [32], the Hearst patterns were used to identify poten-

tial hypernym pairs in two domain-specific text collections The extracted potential

hypernym pairs were then filtered by using the Hearst patterns again, this time by

searching for their occurrence on the World Wide Web using the Google search en-

gine5. The total page count was requested via Google query for each Hearst pattern,

using the predicted pair to fill in the NP slots of the pattern. This retrieved page count

was then used as part of a calculation of the system’s confidence for that hypernym

relation. Using the Hearst patterns alone in tourism-specific corpora resulted in an

4Refer to Section 2.7.1 for a more detailed discussion of mutual information.
5Available at http://www.google.com.
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Berland pattern Example occurrences
NPY ’s NPX : ...building’s basement...

NPX of {the|a} NPY : ...basement of a building...
NPX in {the|a} NPX : ...basements in a building...

NPX of NPY : ...basements of buildings...
NPX in NPY : ...basements in buildings...

Table 1.3: Berland’s patterns and example occurrences

F-score6 of more of 6.92%, with a precision of 29.1% and recall of 3.93%. These num-

bers were much improved by filtering through the Google API with the same Hearst

patterns; this raised the results to an F-score of 18.85% at a precision of 15.77%

and recall of 23.43%. Finally, by combining additional information the results were

increased a small amount more, to an F-score of 21.81%, with a precision of 17.38%

and recall of 23.43%.

Other relations

Other work has taken a similar pattern-based approach in attempts to identify the

meronym or part-whole relation (e.g., a wheel is part-of a car) [11, 55, 54], biomed-

ical relations [102, 34, 126, 53], and others.

As an example of work addressing the part-whole relation, Berland and Charniak

[11] apply the five manually-specified patterns listed in Table 1.3 to a news corpus of

approximately 100 million words. In a manual evaluation of the predicted part-whole

relations, approximately 55% of the predicted relations were found to be correct.

Manually-specified patterns have also been proposed for extracting biomedical

relations [102, 34, 126, 53]; for example, Fundel et al. [53] use heuristically-specified

patterns over dependency parses to recognize relations between genes and proteins.

Many approaches have also been applied to extracting a variety of basic semantic

relations from machine-readable dictionaries (MRDs) [122, 5].

Other proposals have been made to use a manually-defined set of features for

general purpose relation extraction. For example, Turney and Littman [147] propose

6Refer to Section 2.5 for a more detailed discussion of F-score, precision and recall.
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NPX NPY NPX become NPY

NPX * not NPY NPX but not NPY

NPX * very NPY NPX contain NPY

NPX after NPY NPX for NPY

NPX and not NPY NPX for example NPY

NPX are NPY NPX for the NPY

NPX at NPY NPX from NPY

NPX at the NPY NPX from the NPY

Table 1.4: 16 of Turney’s 128 patterns

64 “short phrases” between pairs of entities (creating 128 order-dependent patterns),

and use these patterns to represent arbitrary binary relations in a high-dimensional

vector space. 16 of Turney’s 128 patterns are given in Table 1.4. These patterns con-

tain many previously-discussed of the textual patterns [60, 11, 108], along with many

others. This set of patterns was used to predict general binary semantic relations in

an analogy-solving problem. By using these 128 patterns as a way of expressing the

relation holding between two entities as evidenced in a large body of text, a similarity

metric between arbitrary relations could be efficiently calculated.

1.1.2 Semi-supervised approaches

In addition to proposing six manually-specified patterns for extracting hyponym/hy-

pernym pairs, Hearst [60] further suggested a powerful automatic algorithm for auto-

matically determining patterns to detect arbitrary relations. The proposed algorithm

is summarized below:

1. Decide on the lexical relation R of interest.

2. Gather a list of terms for which this relation is known to hold.

3. Find places in the corpus where these expressions occur syntactically near one

another and record the environment.

4. Find the commonalities among these environments and hypothesize that com-

mon ones yield patterns that indicate the relation of interest.
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Data: seed set of instances S, text corpus D
Result: a set of predicted instances S and discovered features F
while stop-criterion-is-unmet do

F ← Extract-Features(S, D)
S ′ ← Extract-Instances(F , D)
S ← Union(S, Conf(S ′))

end
Algorithm 1: Bootstrapping framework for relation extraction

5. Once a new pattern has been positively identified, use it to gather more instances

of the target relation and go to Step 2.

This algorithm is implemented only by hand by Hearst [60]; the author states that

she did not implement an automatic version of this algorithm, “primarily because

Step 4 is underdetermined”. Many researchers since then have provided ways for

accomplishing Step 4—that is, ways to determine the aspects of the lexico-syntactic

environments that are common and to choose how to use those aspects to identify

new patterns. Many of these approaches fall under the domain of automatic feature

discovery; we summarize several of these approaches in this section. Another survey

of similar techniques may be found in [89].

The pseudocode in Algorithm 1 presents the underlying bootstrapping framework

widely used in many applications of semi-supervised classification. Here the algorithm

is initialized with some seed set of targets S; in the case of binary relation extraction,

these seeds typically correspond to entity pairs known to be in a particular relation.

The second required input is some existing text corpus D in which the seeds can be

found. The algorithm then proceeds to extract some set of features F from appear-

ances of the seed set S in the data set D, then re-use these features to extract an

additional set of seeds S ′. This new set of seeds is then typically pruned in some

way, so that only the high-confidence seeds Conf(S ′) remain. These surviving seeds

are combined with the previous set, and the procedure is repeated until some stop

criterion is met.

Early uses of a bootstrapping framework in natural language processing include

applications to word sense disambiguation [156], text classification [69], and lexicon
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induction [125]. Several algorithms have adapted this framework for extracting pat-

terns for binary relation extraction, including Dipre, Snowball, and Espresso

[15, 2, 108, 24].

A precursor to the use of pattern extraction for binary relation extraction may

be found in the AutoSlog [123] and AutoSlog-TS systems [124]. These systems

present some of the earliest examples of automatic pattern extraction. In these sys-

tems the goal is semantic lexicon induction. Rather than extracting pairs of entities

that participate in some binary relation, the goal of these systems is to identify mem-

bers of a particular semantic class. These systems may be seen as having the goal of

unary relation extraction. The AutoSlog system was first applied to recognizing

entities within the domain of terrorist event descriptions in the MUC-4 corpora [144],

and was extended to general web text in [111]. Here the goal of the system is to

extract such semantic classes as the victim and the perpetrator of attacks, and it is

given a certain set of natural text with corresponding entities tagged along with their

class. Thus, given an annotated sentence fragment like “terrorists bombed the U.S.

embassy”, AutoSlog would be able to extract the pattern “<perpetrator> bombed

the” and “bombed the <victim>”. In this way the system can then apply these au-

tomatically extracted patterns to discover new instances of victims and perpetrators,

in a sense performing a unary relation extraction for the predicates victim(x) and

perpetrator(x).

Dipre

Dipre, or Dual Iterative Pattern Relation Extraction, was an early technique pro-

posed for general binary relation extraction by Brin [15]. The basic premise of Dipre

follows the general bootstrapping pattern induction algorithm presented by Hearst

[60], using a bootstrapping procedure for discovering features. Here the application

of the pattern extraction algorithm is to extract (Author, Book) pairs from a web

corpus of 24 million documents.

Dipre begins with some seed set of pairs of entities (e1, e2) known to be in the

desired relation, and discovers a large number of occurrences of those pairs in a text

corpus. The five (Author, Book) pairs used to initiate the algorithm are given in
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Author Book
Isaac Asimov The Robots of Dawn
David Brin Startide Rising

James Gleick Chaos: Making a New Science
Charles Dickens Great Expectations

William Shakespeare The Comedy of Errors

Table 1.5: Example seed pairs for extracting the author-book relation with Dipre

URL Prefix Text Pattern
www.sff.net/locus/c.* <LI><B>title</B> by author (

dns.city-net.com/∼lmann/awards/hugos/1984.html <i>title</i> by author (

dolphin.upenn.edu/∼dcummins/texts/sf-award.htm author || title || (

Table 1.6: Example extracted URL and text patterns using Dipre

Table 1.5. First, the algorithm identifies documents in the corpus that contain at

least one of the seed entity pairs, and extracts the string context around the pair

within those documents. From these extracted contexts the system extracts a tuple

of the form {order, urlprefix, prefix, middle, suffix}. Here order contains the single

bit of whether the author or the book came first in the string; the urlprefix records

the URL at which the author/book pair is found; and the prefix, middle, and suffix

fields each record a particular aspect of the context around the entity pair: up to 10

characters of context to the left of the first entity, all the characters in between, and

up to 10 characters of context to the right of the second entity, respectively.

In the application of Dipre to a web corpus of 24 million pages, more than ten

thousand (Author, Book) pairs were extracted starting with only five seed pairs. In

the first iteration of the algorithm the five initial (Author, Book) seed pairs were found

in 199 occurrences across the web corpus. From these occurrences three patterns were

extracted satisfying the imposed requirements of redundancy and specificity; these

three patterns are listed in Table 1.6. In the next stage of the iterative extraction,

these 3 patterns were identified in other locations within the web corpus in order to

discover new potential author-book pairs, yielding an additional 4047 author-book

pairs. This process was then repeated, yielding the quantity of entity pairs and
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Iter. # # Entity pairs #Corpus frequency # Extracted patterns
1 5 199 3
2 4047 3972 105
3 9369 9938 346
4 15257 —— ——

Table 1.7: Total number of entity pairs, pair occurrences, and extracted patterns at
each iteration of Dipre

extracted patterns detailed in Table 1.7: the columns here correspond to the iteration

number, the total discovered unique entity pairs, the total counts observed in the web

corpus of all extracted entity pairs, and the total count of extracted patterns from

the set of entity pairs, respectively. Note that after the first iteration the patterns

were extracted from successively smaller portions of the full text corpus; otherwise,

the corpus frequency of the entity pairs would be a great deal higher. Brin [15]

states that these extractions were of very high accuracy, and that the final extraction

contained “very little bogus data”. There was, however, a manual intervention in

the extraction of the 9369 entity pairs in iteration number 3; in this case, 242 of the

entity pairs were observed to contain the string Conclusion as the author. These were

manually thrown out and the algorithm allowed to progress, but it is not reported

whether leaving these mistakes in would have been disastrous for performance of

future iterations of the algorithm.

Snowball

Snowball [2] is an algorithm with a similar architecture to Dipre [15], but with

some improvements. Similar to Dipre, Snowball is initialized with a seed set of

pairs representing the desired relation. Agichtein and Gravano [2] apply Snowball

to the task of extracting organizations and locations in the located-in relation.

The example seed set used is given in Table 1.8. Snowball then searches over a

corpus of text to identify sentences that contain the occurrences of at least one of the

seed pairs. From these sentences Snowball and extracts the [left, middle, right]

contexts around the seed pair. Rather than limiting the context by a character limit,
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Organization Location of Headquarters
Microsoft Redmond

Exxon Irving
IBM Armonk

Boeing Seattle
Intel Santa Clara

Table 1.8: Example seed pairs for extracting the located-in relation with Snow-

ball

Example text Extracted patterns
...Microsoft’s headquarters in Redmond... <Organization>’s headquarters in <Location>

...the Irving-based Exxon Corporation... <Location>-based< Organization>

...Intel, Santa Clara, announced... <Organization>, <Location>

Table 1.9: Example extracted patterns using Snowball

Snowball instead extracts a fixed number of terms on the left and right of the two

entities, and the full context in the middle.

Since Snowball focuses on the located-in relation, it may take advantage of

the semantic classes of the entities it is extracting, that is it may require that the

entities must be locations and organizations. Snowball makes use of this informa-

tion by applying a named entity recognizer to the text it extracts as a preprocessing

step, and including the named entity type as part of the patterns that it extracts.

This allows Snowball to require that the entities in the appropriate slots of the

induced patterns are recognized as the appropriate named entity type by the named

entity classifier; while this is not a generally-applicable technique for arbitrary binary

semantic relations, this allows the extracted patterns for the located-in relation to

be a great deal more precise. Snowball uses the MITRE Alembic Workbench [41] in

order to perform named entity classification; the Alembic Workbench itself provides a

semi-automatic bootstrapping framework to quickly learn new training examples for

named entity recognition. Examples of some of the patterns extracted by Snowball

are given in Table 1.9.

Because of its iterative bootstrapping architecture, Snowball is capable of ex-

tracting patterns and predicting tuples of new relations with very small amounts of
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seed data. However, training named entity classifiers like the one used by Snowball

is typically more expensive, requiring a large training set of examples of organizations

and locations in context. Nonetheless, this approach may still be feasible even for

non-standard named entity classes. Since training data containing at least a single

entity in a sentence is much more prevalent than data containing both entities in

a relation pair, the prospect of collecting a larger amount of data to train an entity

classifier over singletons may make an initial entity prediction step plausible for many

classes of entities.

Agichtein and Gravano [2] further provide a performance comparison of Snow-

ball, Dipre, and a baseline algorithm on the task of extracting the located-in

relation using the five seed patterns in Table 1.8. Each algorithm is run for three it-

erations. The evaluation finds that Dipre diverges after the first iteration; both the

precision and recall drop in the two successive iterations. In contrast, the Snowball

and the baseline algorithm essentially converge after the first iteration. While this

is a point in their favor (in that their performance does not degrade on successive

iterations), it raises the question of whether the bootstrapping paradigm is actually

helpful for this task. Snowball’s stronger performance is attributable to its more

selective method for weighting patterns and extracted entity pairs.

Espresso

Pantel and Pennacchiotti [107] propose Espresso, an algorithm that also follows

the basic bootstrapping framework proposed by Hearst [60]. However, unlike Dipre

and Snowball, Espresso does not impose any specific regular expression or named

entity restrictions on the entities it extracts, and thus is more easily generalizable to

arbitrary binary semantic relations. The primary difference between Espresso and

previously discussed algorithms is in the weighting scheme it uses for for assessing

the confidence of extracted entities and patterns. Espresso extracts features using

the lexico-syntactic environment representation proposed in Ravichandran and Hovy

[118]. Further, whereas Dipre and Snowball were evaluated on only a single rela-

tion, Pantel and Pennacchiotti [107] provide an evaluation of their system across five

different relation types, as shown in Table 1.10.



1.1. RELATION EXTRACTION 15

Relation name Example seeds
is-a [wheat / crop], [George Wendt / star]

part-of [leader / panel], [city / region]
succession [Khrushchev / Stalin], [Carla Hills / Yeutter]
reaction [magnesium / oxygen], [hydrazine, water]

production [bright flame / flares], [hydrogen / metal hydrides]

Table 1.10: Example relations and seed pairs used for the evaluation of Espresso

Predicate class label relation label
City “city”, “town” ——

Country “country”, “nation” ——
capitalOf(City,Country) —— “capital of”

Table 1.11: Example input for the capital-of relation in KnowItAll

KnowItAll

At one extreme on the spectrum of minimal supervision is KnowItAll [48], a

minimally-supervised system for relation extraction that uses a bootstrapping al-

gorithm as part of its architecture. While it uses bootstrapping in a similar way to

Dipre and Snowball, unlike the previously discussed systems KnowItAll does

not require a previously specified seed set of entity pairs. Instead, KnowItAll re-

quires as input only the class labels and relation labels, which are then used to create

initial extraction patterns. For example, in extracting the located-in relation be-

tween City and Country, KnowItAll uses the input class labels and relation labels

given in Table 1.11. Here multiple synonyms may be used as class labels.

From the input class labels and relation labels corresponding to the initial pred-

icates, KnowItAll formulates an initial set of unary patterns for discovering in-

stances of the classes involved in each unary predicate. These patterns are determin-

istically formulated from a set of manually-specified patterns for discovering the is-a

relation. The patterns used are a superset of the Hearst patterns [60], listed below:

• <entity> “and other” <class>

• <entity> “or other” <class>
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• <class> “especially” <entity>

• <class> “including” <entity>

• <class> “such as” <entity>

• “such” <entity> “as” <entity>

• <entity> “is a” <class>

• <entity> “is the” <class>

Having extracted entities belonging to each of the classes in a given relation,

examples of pairs of related entities are extracted. These pairs are extracted using

two additional manually-specified pattern templates, each with three slots (one for

each of the two classes, along with the relation label). These relation extraction

patterns are listed below:

• <class1> “is the” <relation> <class 2>

• <class1>, <relation> <class 2>

For example, having extracted Paris and Berlin as cities, and France and Ger-

many as countries using the unary is-a patterns for the City and Country predicates,

the binary relation patterns could be filled in as “Paris is the capital of France”,

“Berlin, capital of Germany”, etc. KnowItAll uses an extension of the PMI-IR

algorithm from Turney [146] to evaluate the extracted entities and novel patterns.

KnowItAll also uses a variety of other sources of evidence beyond extracted tex-

tual patterns, including subclass extraction and list extraction.

The semi-supervised approach presented in the previous algorithms offers a method

of learning new patterns and entities from only a small set of seed entities. The heuris-

tic weighting used allows the classifiers to avoid overtraining despite having only a

very small training set. Nonetheless, several flaws exist with these methods; for one,

these algorithms typically have a large set of input parameters that have been tuned

by experiment. The dependence of the stability of these algorithms on the specific
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input parameters must be considered; it is possible that in many circumstances the

performance of these algorithms is very sensitive to their input parameters.

An appealing alternative to the heuristic weighting of features is the use of a

fully supervised classifier with a probabilistic interpretation; this would reduce the

reliance on tuning parameters, and simultaneously allow an interpretation that could

be used in an iterative framework for re-estimation with theoretical guarantees such as

expectation-maximization. Abney [1] gives a theoretical analysis of the general boot-

strapping framework proposed by Yarowsky [156], showing that the use of EM within

this framework can guarantee a monotonic increase in data likelihood with successive

iterations. Further, as suggested by McDonald [90], concerns about overtraining using

a supervised method with a small training set can be addressed with regularization

or feature selection. In the following section we consider fully supervised algorithms

for relation extraction.

1.1.3 Supervised approaches

Many supervised approaches to relation extraction have been widely explored in such

venues as the Message Understanding Conferences (MUC) [27], the Automatic Con-

tent Extraction (ACE) datasets [45], and various work in biomedical relation extrac-

tion [56, 90, 130]. Unfortunately these experiments have typically relied on relatively

small datasets. For example, the NIST Automatic Content Extraction (ACE) RDC

2003 and 2004 corpora include more than 1,000 documents in which pairs of enti-

ties have been labeled with up to 7 major relation types and up to 24 subrelations,

totaling 16,771 positive relation instances. Approaches based on the ACE program

have been restricted in their evaluation to a small number of relation instances and

corpora of less than a million words.

Many approaches to ACE have explored a wide variety of features for extraction in

combination with support vector machine (SVM) or logistic regression classifiers [67,

162, 70]. These studies have compared the use of many features extracted from string,

constituency parse, and dependency parse representations of the text. Considered

features have included entity attributes, bag-of-words features, bigrams, grammar
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productions, dependency relations, dependency paths, and many others.

Further lines of research has explored the use of kernel methods [35, 148, 37] for

exploring a much larger space of features. Zelenko et al. [160] propose a kernel-based

approach for relation extraction applied to the output of a shallow parser, demon-

strating improved performance over a simpler feature-based approach. Several other

kernels have been proposed over a variety of underlying feature spaces for relation

extraction, including a subsequence kernel [21], a shortest path dependency kernel

[20], a dependency tree kernel [40], a convolution dependency path kernel [151], and

the composition of a convolution tree kernel and an entity kernel [161].

Kylin

Kylin [153] is a supervised classifier that has been applied to Wikipedia infobox rela-

tions. In Wikipedia, a large amount of semi-structured information exists in the form

of infoboxes, which list attribute-value pairs for specific named classes. An example of

an infobox for the city Menlo Park is presented in Figure 1.1. This infobox lists such

city-specific relations as located-in-country, located-in-state, located-in-

county, has-population, and others.

Kylin trains individual classifiers for predicting each class-attribute pair, as well

as individual classifiers for predicting members of each class. Thus, if there are C

classes and an average of A attributes per class, Kylin trains C+CA total individual

classifiers.

Consider a particular classifier with the objective of extracting a specific class/at-

tribute pair: for each such classifier Kylin automatically creates a labeled train-

ing set from the documents labeled by the corresponding infoboxes with the target

class and attribute. Positive training examples in this set are created by extracting

the sentences that contain the infobox-labeled attribute value for the specified class,

while negative examples are created by extracting other sentences not containing the

infobox-labeled term. For example, consider the case of training a classifier to predict

the located-in-state relation for cities. The infobox for Menlo Park states that

Menlo Park is located in California; further, the first sentence in the Wikipedia ar-

ticle states that “Menlo Park is an affluent city in...California”. This sentence would



1.1. RELATION EXTRACTION 19

Figure 1.1: Example Wikipedia infobox for the city of Menlo Park
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be added as a positive example to the training set for predicting located-in-state,

whereas the following sentence (“It is located at latitude...”) would be added as a

negative example to the training set.

This model differs significantly from previously discussed approaches in this sec-

tion, in that it does not require that both the class and the attribute appear in the

same sentence. Instead, Kylin requires that the document from which an attribute

is extracted has been determined to be relevant to the specified class in some way.

Since the relation classifier is now only attempting to classify a single contiguous en-

tity within a sentence (rather than entity pairs, as in previous algorithms), the task of

entity extraction can be framed as a sequence labeling task, akin to many approaches

in named entity recognition. This allows the classifier to consider a wide range of

features extracted from the sentences in the training set, including not only the pre-

ceding and following tokens, but also a variety of string features over the extracted

target token (including capitalization, numeric characters, etc.), whether the target

is anchored in a hypertext link, and many others. These extracted features are used

to train a conditional random field (CRF) classifier [75].

To extract novel relations, the trained classifiers are applied to a set of documents

predicted to be relevant to the specific target relation by an independent document

classifier. In a manual evaluation of the predictions of the classifiers on attributes

for four major classes (Actor, Airline, U.S. County, and University), the performance

of the Kylin classifiers was found to be comparable to the performance of human

editors.

While these classifiers demonstrate high performance for certain relations, this

form of fully-supervised relation extraction still suffers from a number of problems.

Labeled training data is expensive to produce and thus limited in quantity. Fur-

ther, because the training data is typically drawn from a small corpus, the resulting

classifiers are likely to be biased toward the particular domain represented by the

training corpus. The problem of data sparsity in fully-supervised approaches has

been addressed in some work by modeling the commonality among related classes

[163]; nonetheless, the fully-supervised approach remains fundamentally constrained

by the requirement for labeled data.
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1.1.4 Unsupervised approaches

An alternative to the supervised or semi-supervised approaches is purely unsupervised

information extraction, where the “relations” are discovered via extracting, clustering,

and simplifying the words connecting entities in large amounts of text [136, 8, 9]. Here

we consider one such approach, TextRunner, in detail.

TextRunner

Whereas KnowItAll [48] is a minimally-supervised relation learner, requiring as

a minimum only a single pattern for each class name and relation, TextRunner

[8, 9] uses no class-specific or relation-specific supervision whatsoever. Instead, Tex-

tRunner attempts to identify tuples of the form (ei, ri,j, ej) within each individual

sentence. In order to identify entities and relations, the system applies a supervised

statistical parser [73] to a small corpus, and applies a set of heuristics to the resulting

output, such as:

• There exists a dependency path between ei and ej consisting of no more than

a threshold t individual dependency links.

• The path from ei to ej in the syntax tree does not cross a sentence-like boundary.

• Neither ei nor ej consists solely of a pronoun.

If all of the set of heuristics are satisfied, the extracted tuples and sentence are

labeled as positive examples; if one or more of these heuristics are unsatisfied, the

extracted tuples and sentence are labeled as negative examples. A supervised classi-

fier is then trained using this parser-labeled corpus, with the goal of extracting the

positive-labeled (ei, ri,j, ej) tuples from each sentence, using domain-independent fea-

tures extracted without the aid of a syntactic parser. Various supervised classifiers

have been applied to the extraction of the these tuples, including Naive Bayes [8] and

Conditional Random Fields [9].

TextRunner applies this light-weight classifier for tuple extraction to a large

web corpus. Potential relation synonyms are found and resolved using the Resolver
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algorithm [157, 158], an unsupervised method for determining if two strings refer to

the same item. Applied to a corpus of 9 million Web pages, TextRunner extracts

more than 7 million tuples with well-formed arguments, with an estimated 1 million of

those tuples grounded in concrete, real-world entities, and with an estimated precision

of over 80%.

Further work in this direction has resulted in the AuContraire system [127] for

detecting contradictions within relations inferred in this unsupervised manner. These

experiments include a study of detecting whether certain automatically-inferred rela-

tions are functional, i.e., whether there is only one or if there are many possible second

arguments for a relation given a particular first argument. Further, the relations ex-

tracted by TextRunner have been used by HypernymFinder [128], a system for

hypernym discovery using the distant supervision of a set of proposed hyponym/hy-

pernym pairs automatically extracted using Hearst patterns.

The unsupervised approach has the benefit of being able to use very large amounts

of data to extract very large numbers of relations; however, since the resulting rela-

tions have not been standardized by any particular predicate, it may not be easy to

map them to the relations needed for a specific knowledge base or application.

1.1.5 Discussion

Several learning paradigms have been applied to the task of extracting relational facts

from text. Here we have discussed four basic paradigms: using manually-specified

patterns, and semi-supervised, supervised, and unsupervised classification. Each ap-

proach has corresponding advantages and disadvantages. Manual patterns are easy

to specify, but frequently result in poor precision. Semi-supervised classification only

requires a small number of examples and can be applied to an arbitrarily large corpus,

but can be subject to semantic drift and may require a large number of experimentally-

tuned initial parameters. Fully-supervised classifiers can offer high performance on

certain relations, but typically requires a large amount of expensive annotation for

each desired relation. Finally, unsupervised approaches can extract a very large num-

ber of relations from arbitrarily large corpora, but the extracted relations may be
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difficult to resolve with existing predicates in taxonomies or applications.

In this work we discuss an alternative approach to training relation extraction

classifiers, distant supervision, that combines some of the advantages of each of these

approaches. Distant supervision involves using an existing semantic database to auto-

matically label an unannotated corpus for relation extraction. The intuition of distant

supervision is that any sentence that contains a pair of entities that participate in a

known relation in an existing source of structured knowledge is likely to contain some

evidence for that particular relation. Since this technique does not require natural

text to be specially labeled in any way, distant supervision may be applied to an

arbitrarily large corpus, with the goal of extracting a very large number of (poten-

tially noisy) features that can be used in a supervised classifier. Thus whereas the

supervised training paradigm is typically restricted to only a small labeled corpus

of relation instances as training data, our algorithm can make use of much larger

amounts of text. Further, because our algorithm is supervised by a database, rather

than by labeled text, it does not suffer from the problems of overfitting and domain-

dependence that plague supervised systems.

1.2 Taxonomy induction

While many relation extraction algorithms have been proposed, they frequently lack

the global knowledge necessary to integrate their predictions into a complex tax-

onomy with multiple relations. Several challenges arise when moving from simple

relation extraction to the problem of creating a self-consistent structured represen-

tation of relations between concepts, including the problems of combining evidence

across multiple predictions and resolving issues of lexical ambiguity.

Past work on semantic taxonomy induction includes the noun hypernym hierarchy

created by Caraballo [23], the part-whole taxonomies by Girju et al. [55], and a great

deal of related work described by Buitelaar et al. [18]. Such work has typically either

focused on only inferring small taxonomies over a single relation, or as in [23], has

used evidence for multiple relations independently from one another, by for example

first focusing strictly on inferring clusters of coordinate terms, and then inferring
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hypernyms over those clusters.

Another major shortfall in previous techniques for taxonomy induction has been

the inability to handle lexical ambiguity. Previous approaches have typically sidestepped

the issue of polysemy altogether by making the assumption of only a single sense per

word, and inferring taxonomies explicitly over words and not senses. Enforcing a false

monosemy has the downside of allowing potentially erroneous inferences; for example,

collapsing the polysemous term Bush into a single sense might lead one to infer by

transitivity that a rose bush is a kind of U.S. president.

Our approach provides a solution to these problems. The key contribution of

this work is to offer a solution to two crucial problems in taxonomy induction and

hyponym acquisition: the problem of combining heterogenous sources of evidence in

a flexible way, and the problem of correctly identifying the appropriate word sense of

each new word added to the taxonomy.

1.3 Overview of experimental results

In addition to presenting our approach to distant supervision for relation extraction

and our probabilistic framework for taxonomy induction, we present a number of

experimental results showing the use of these techniques to address several previ-

ously unsolved problems. Our experiments demonstrate that a distantly supervised

classification algorithm can outperform previously proposed automatic methods for

identifying hypernym pairs in newswire corpora, and even has better performance

than using WordNet itself. Using our probabilistic framework for taxonomy induc-

tion we have constructed multiple augmented taxonomies using WordNet as a base,

the largest of which are more than four times the size of the existing WordNet noun

taxonomy. We have shown that the augmented taxonomies constructed in this manner

may be used directly as substitutes for WordNet in many natural language applica-

tions, and have resulted in improvements in the performance of such applied tasks

as question answering and text classification. We also describe a method for measur-

ing the similarity between two concepts within a taxonomy like WordNet, and show

that our method has better performance than many previously proposed automatic
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techniques as evaluated on a manually-created gold standard testset. We then demon-

strate the application of this method for determining the similarity of two concepts

to the creation of arbitrarily coarse-grained taxonomies. Next we demonstrate the

application of these sense-clustered taxonomies to the problem of coarse-grained eval-

uation of word sense disambiguation algorithms. The augmented and sense-clustered

taxonomies discussed in this thesis have been made publicly available, and may be

downloaded at the following link:

http://ai.stanford.edu/∼rion/swn

1.4 Major contributions of each chapter

Here the contributions of this dissertation are summarized by chapter:

• Chapter 2

In Chapter 2 we discuss the problem of relation extraction and our approach

of using distant supervision for creating classifiers to predict taxonomic rela-

tions. We first discuss the structure and relations within WordNet, the pri-

mary taxonomy that we consider throughout this thesis. We then describe the

general-purpose framework of distant supervision for training classifiers to rec-

ognize relations between pairs of entities in a large unannotated corpus. We

describe specific experiments using this approach to learn the hypernym (is-a)

relation from lexico-syntactic patterns, demonstrating how we can use examples

of known hypernym pairs from WordNet to automatically identify large num-

bers of useful lexico-syntactic patterns, and then combine these patterns using

a supervised learning algorithm to obtain a high accuracy hypernym classifier.

We further describe experiments to learn hypernym and coordinate term rela-

tions from other sources of information, including distributional similarity and

semi-structured list information.

• Chapter 3
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In Chapter 3 we discuss the problem of formulating a unified framework for

joint inference over predictions from multiple relation classification algorithms.

We discuss a framework that is capable of using multiple predictions in or-

der to both consistently improve relation prediction accuracy and to robustly

disambiguate the senses of the predicted entities with respect to an existing

sense hierarchy. We discuss related work in addressing the challenges of joint

inference and lexical ambiguity. We outline our basic definition of taxonomies,

relations, and concepts, and give a probabilistic means for calculating taxon-

omy likelihood. Next, we show how our model is capable of being extended to

calculate evidence among word senses rather than simply word tokens. Finally,

we discuss the primary basic operations we use to modify taxonomies, along

with each operation’s respective effect on the estimate of taxonomy likelihood.

• Chapter 4

In Chapter 4 we discuss the application of our model for taxonomy induction to

the problem of automatically augmenting the WordNet taxonomy. We discuss

a set of experiments with the goal of inferring novel noun hyponyms within

WordNet, using a combination of hypernym and coordinate term classifiers.

We discuss the construction and evaluation of several augmented taxonomies

created by this approach. We compare the performance of our model for taxon-

omy induction against a baseline algorithm using the same underlying relation

classifiers. We also compare our performance against several “oracle” named

entity recognition baselines, showing that our method has significantly higher

fine-grained link precision, coarse-grained link precision, and sense disambigua-

tion precision. We also show significant improvement over WordNet on the task

of predicting hypernym relations in newswire text.

• Chapter 5

In Chapter 5 we consider the problem of creating arbitrarily coarse-grained

sense hierarchies by use of an operator for merging concepts within a taxon-

omy. We present an algorithm for clustering large-scale sense hierarchies like
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WordNet that makes use of a supervised classifier capable of making gradu-

ated judgments corresponding to the estimated probability that each particular

sense pair should be merged. This classifier is trained on gold standard sense

clustering judgments using a diverse feature space. We are able to use the

outputs of our classifier to produce a list of sense merge judgments ranked

by merge probability, and from this create sense-clustered inventories of arbi-

trary sense granularity. We evaluate our classifier for merging senses against

a gold-standard human-labeled dataset of merged senses, and we evaluate our

sense-clustered hierarchies with respect to the task of coarse-grained word sense

disambiguation.

• Chapter 6

In Chapter 6 we discuss the topic of applying our techniques and automatically

inferred taxonomic relations to applied tasks in natural language processing. We

discuss the applications of our model to the problems of domain-specific taxon-

omy induction, foreign-language taxonomy augmentation, question answering,

and text categorization.

• Chapter 7

In Chapter 7 we summarize and discuss the contributions and results of this

thesis.

1.5 First published appearances of contributions

Most of the contributions described here have first appeared in other publications.

Here we cite the publications where some portion of the contributions in each chapter

have appeared:

• Chapter 2: Snow, Jurafsky, and Ng (2005) [137] and Mintz, Bills, Snow, and

Jurafsky (2009) [96].

• Chapter 3: Snow, Jurafsky, and Ng (2006) [138].
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• Chapter 4: Snow, Jurafsky, and Ng (2006) [138].

• Chapter 5: Snow, Prakash, Jurafsky, and Ng (2007) [139].

• Chapter 6: Srinivasan, Snow, Branson, Pande, Ng, Altman, and Batzoglou

(2007) [142] and McNamee, Snow, Mayfield, and Schone (2008) [91].



Chapter 2

Predicting Taxonomic Relations

2.1 Introduction

In this chapter we consider the application of distant supervision to the creation of

a classifier for predicting whether a factual relation exists between a pair of entities.

In particular we will focus on the hypernym relation. We state that a noun X is a

hyponym of a noun Y (and, respectively, Y is a hypernym of X) if X is a subtype

or instance of Y , that is, if X is a kind of Y . Thus “Shakespeare” is a hyponym

of “author” (and conversely “author” is a hypernym of “Shakespeare”), “dog” is a

hyponym of “canine”, “desk” is a hyponym of “furniture”, and so on. The hypernym

relation is considered to be transitive—thus if X is-a Y and Y is-a Z, then we can

infer that X is-a Z. Section ?? gives a detailed discussion of the hypernym relation

in the context of WordNet.

As discussed in Section 1.1, many supervised and bootstrapping approaches to re-

lation extraction have been previously proposed, but have typically relied on relatively

small datasets or initial seed sets. In this work we discuss an alternative approach

to training relation extraction classifiers, distant supervision, that combines some of

the advantages of each of the previously proposed approaches. Distant supervision

involves using an existing semantic database to automatically label an unannotated

corpus for relation extraction. The intuition of distant supervision is that any sen-

tence that contains a pair of entities that participate in a known relation in an existing

29
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source of structured knowledge is likely to contain some evidence for that particular

relation. Since this technique does not require natural text to be specially labeled in

any way, distant supervision may be applied to an arbitrarily large corpus, with the

goal of extracting a very large number of (potentially noisy) features that can be used

in a supervised classifier. Thus whereas the supervised training paradigm is typically

restricted to only a small labeled corpus of relation mentions as training data, our

algorithm can make use of much larger amounts of text. Further, because our algo-

rithm is supervised by a database, rather than by labeled text, it does not suffer from

the problems of overfitting and domain-dependence that plague supervised systems.

Supervision by a database also means that, unlike unsupervised approaches, our

classifier uses canonical names for the relations it predicts. In addition, combining vast

numbers of features in a large classifier helps reduce the problem of noisy patterns.

This approach offers a natural way of integrating data from multiple sentences to

decide if a relation holds between two entities. Because our algorithm can use large

amounts of unlabeled data, the same pair of entities may occur many times in the

test set. For each pair of entities, we aggregate the features from the many different

sentences in which that pair appeared and treat these as a single instance, allowing

us to provide our classifier with more information, resulting in more accurate labels.

A form of this training paradigm has been used effectively by Wu and Weld [153]

in order to extract relations from Wikipedia articles using relations in Wikipedia

infoboxes for supervision. Unlike the corpus-specific method proposed by Wu and

Weld, which typically only infers features from the Wikipedia page containing the

target infobox, our method allows us to extract evidence for a particular relation

across many different articles. Similar algorithms have also been proposed in the

analysis of biomedical text, for example the use of weakly labeled data [36, 98].

This chapter is structured as follows: in Section 2.2 we discuss WordNet, the struc-

tured knowledge base that we primarily focus on for relation extraction; in Section

2.3 we introduce the approach of distant supervision for training relation classifiers,

and we describe our representation for automatically discovering patterns indicative

of hypernymy. Section 2.4 describes the setup of our experiments, Section 2.5 pro-

vides an analysis of our feature space, and in Section 2.6 we discuss a classifier using
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these features that achieves high accuracy on the task of hypernym identification.

In Section 2.7 we show how we can use lexico-syntactic patterns and distributional

similarity in order to classify coordinate terms, and in Section 2.8 we demonstrate

one way in which we can combine our hypernym and coordinate classifiers to improve

hypernym classification, and further discuss the results of comparing our hypernym

classifier to WordNet in the applied task of discovering hypernym pairs in newswire

text Section 2.9 considers semi-structured lists an additional source of knowledge for

inferring hypernym and coordinate relations. Finally, in Section 2.10 we discuss and

summarize the results of this chapter.

2.2 WordNet

In order to examine the kinds of relations we would like to learn to extract, we first

consider WordNet, the structured knowledge representation that the majority of our

work has focused on. WordNet began as an exploration of several theories in psy-

cholinguistics by one of the fathers of cognitive psychology, George Miller. The first

electronic version started as a semantic network of 45 nouns in 1984. This semantic

network differed from standard dictionaries in that it contained structured represen-

tations of the semantic relations between concepts in the network. In particular, each

node in the network was connected to at least one other node by use of the is-a, or

hypernym relation, thus forming a graph of concepts.

This initial small semantic network was greatly enlarged in the following years

and was first publicly released as a network of nearly 40,000 concepts in 1989. It

has since grown to more than 100,000 words and concepts in English; the growth of

WordNet from its first public release in 1989 until the most recent release in 2006

is shown in Figure 2.1, with data drawn from [50]. One primary motivation behind

creating WordNet was to explore the possibility of scaling up theories of relational

lexical semantics beyond simple toy problems; as Miller wrote in the Foreword to [50],

“[M]uch otherwise excellent work along these lines runs aground on the

magnitude of the problem. An author might propose a semantic theory
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Growth of WordNet synsets, 1989-2006

Figure 2.1: Growth of synsets in WordNet, 1989 to 2006 [50]

and illustrate it with some 20 or 50 English words (usually nouns), leaving

the other 100,000 words of English as an exercise for the reader.”

However, Miller also recognized the potential importance of this resource for ap-

plications in natural language processing. He wrote:

“[C]omputational linguistics, if it were ever to process natural lan-

guages as people do, would need to have available a store of lexical knowl-

edge as extensive as people have... There seemed to be a need for a

comprehensive lexical database that would include word meanings as well

as word forms and that could be used under computer control.”

As outlined in [50], WordNet has been used for purposes far beyond its initial use

as an electronic dictionary browser; it has been used as the primary sense inventory for
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nihilist

Trot, 
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Bolshevik

river

Rio 
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Nile, Nile 
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Red, Red 
River

amount, 
sum

gain deductible
red, loss, 
red ink

Figure 2.2: Four senses of red in WordNet

several word sense disambiguation evaluations [72, 140, 121, 104], and in applications

to information retrieval [57], query expansion [97], and question answering [91].

A fundamental feature within the WordNet hierarchy is that of lexical ambiguity ;

that is, there is a many-to-many mapping between words and concepts. Thus an

individual word can refer to several possible concepts (or senses, or synsets), and

an individual concept can be described by many different words (or synonyms). An

example of how this ambiguity is represented within WordNet is shown in Figure 2.2.

Here, four different senses are given for the word red ; the four senses listed within

WordNet include the familiar notion of a color, but also include red as an amount or

debt (as in, “in the red”), as a slang term for a person with radical ideas, and as the

name of a river. Thus there are four different concepts that the word red maps to;

further, each individual concept in WordNet can have several synonyms that refer to

it. For example, the concept of red as a slang term for a radical has a total of five

synonyms that it maps to, including Bolshevik, Marxist, bolshie, and bolshy.

Figure 2.3 gives an overview of the structure of the noun hypernym hierarchy

in WordNet. Here direct hypernym relations are indicated with a solid line, and
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abstract 
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Figure 2.3: Example fragment of noun hypernym hierarchy in WordNet
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dotted lines represent a hypernym chain of two or more nodes. At the root of the

hierarchy is the most general concept entity, and all other nouns descend from this

node1. Beneath entity, nouns are divided into the categories of physical entity and

abstract entity ; continuing down the hypernym chain leads to increasingly specific

concepts, with terminal nodes such as stapler, the Coriolis effect, the number pi, and

the playwright Shakespeare.

Proper names (e.g., Shakespeare) typically refer to unique entities that have no

hyponyms of their own; in many structured representations of knowledge these entities

are represented as instances and differentiated from the more general category of

classes. Prior to version 2.1, WordNet made no distinction between noun classes and

instances ; both the is-a-hyponym and is-an-instance relations were subsumed under

the single is-a relation.

In version 2.1 WordNet added this distinction, tagging 7,671 noun synsets as

instances [94]. In discussing the addition, Miller and Hristea [94] described instances

as sharing three characteristics: first, they are nouns; second, they are proper nouns;

and third, they are unique entities and have no hyponyms, that is, they are leaf nodes

in the hypernym hierarchy. In the experiments we present in this work we make

no distinction between classes and instances, and we treat the class and instance

hypernym relations identically, referring to them both as hypernym relations.

To see the full extent of one hypernym ancestry, consider Figure 2.4. This is a

representation of the full hypernym ancestry of the leaf node burgundy, which has nine

hypernym ancestors. This hypernym information can enable a deeper understanding

of textual information; for example, by using this information, a question answering

system could answer a question such as: “Which couches are red?”, even if in a

particular corpus a particular couch is only described as “burgundy”.

Similarly, the noun meronym hierarchy may be observed in Figure 2.5. Here,

telomere is a leaf node in the meronym hierarchy – i.e., there are no listed parts of

a telomere. However, the telomere has several holonyms, or things it is a part of: a

chromosome, which is a part of a nucleus, which is a part of cell, which is a part of

1Prior to WordNet version 2.1, the noun hypernym graph consisted of several unconnected tax-
onomies, with several roots; the verb hypernym hierarchy in the current version of WordNet still
consists of multiple, unconnected components.
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Figure 2.4: Full hypernym ancestry of burgundy in WordNet
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Figure 2.5: Full meronym ancestry of telomere in WordNet
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an organism.

2.3 Distant supervision

Our goal is to apply machine learning to natural language text in order to automati-

cally learn the kind of relational knowledge that has been hand-built in WordNet. In

order to accomplish this task without using a labeled corpus we apply the technique of

distant supervision. This technique allows us to automatically, though noisily, identify

sentences within a large unannotated corpus as being positive or negative examples of

our target relation. In order to accomplish this we require a knowledge base contain-

ing a large number of examples of desired relation; in this chapter we will consider the

use of WordNet to automatically label a large unannotated corpus with positive and

negative examples of the hypernym relation. In this example, our general approach

is to use examples of known hypernym pairs from WordNet to automatically identify

large numbers of useful lexico-syntactic patterns, and then combine these patterns

using a supervised learning algorithm to obtain a high accuracy hypernym classifier.

More precisely, our approach is as follows:

1. Training:

(a) Collect noun pairs from corpora, identifying examples of hypernym pairs

(pairs of nouns in a hypernym/hyponym relation) using WordNet.

(b) For each noun pair, collect sentences in which both nouns occur.

(c) Parse the sentences, and automatically extract patterns from the parse

tree.

(d) Train a hypernym classifier based on these features.

2. Test:

(a) Given a pair of nouns in the test set, extract features and use the classifier

to determine if the noun pair is in the hypernym/hyponym relation or not.
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The first goal of our work is to automatically identify lexico-syntactic patterns

indicative of hypernymy. In order to do so, we need a general way of representing

these patterns. We propose the use of dependency paths as a general-purpose formal-

ization of the space of lexico-syntactic patterns. Dependency paths have been used

successfully to represent lexico-syntactic relations suitable for semantic processing

[83, 20, 40, 151].

2.3.1 Dependency parsing

Dependency parsing is a method for creating a representation of the syntactic struc-

ture of a sentence. The origins of dependency parsing may be found in the tradition

of dependency grammar in theoretical linguistics, which theorizes that the syntactic

structure of a sentence may be captured entirely by a set of dependency relations

between individual words [100]. For example, consider the tree formed by the syn-

tactic relations indicated in Figure 2.6. The development of automatic methods for

dependency parsing has been an active area of natural language processing research

[47, 25, 101, 132].

A dependency parser produces a dependency tree that represents the directed syn-

tactic dependencies between the words or phrases within a sentence. The constituency

parse representation of a sentence typically forms a sentence with the sentence symbol

S or other start symbol as the root, syntactic constituent symbols as the intermediate

nodes, and the actual words of the sentence as leaf nodes. In contrast, each node in a

dependency parse representations typically corresponds directly to a word or phrase

in the sentence. Dependency parse trees can be constructed in a deterministic fashion

from existing constituency trees; examples of ‘head-finding’ rules for creating depen-

dency parse representations may be found in [33] and [43]. Kübler et al. present a

detailed review of dependency parsing in [132].

In this work we use Minipar, a broad-coverage dependency parser [81]. We

consider each dependency parse of a sentence to be a list of edge tuples of the form:

(word1,category1:relation:category2, word2). In this formulation each word

is the stemmed form of the word or multi-word phrase (so that “authors” becomes
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Astronomer Edwin Hubble was born in Marshfield , Missouri

lex-mod s pred mod pcomp-n lex-mod

inside

Figure 2.6: Example Minipar dependency tree

... authors

such-N:pre:PreDet

as

-N:mod:Prep Herrick-Prep:pcomp-n:N

Shakespeare
-Prep:pcomp-n:N

and
-N:punc:U

-N:conj:N

Figure 2.7: Minipar dependency tree example with transform

“author”), and corresponds to a specific node in the dependency tree; each category

is the part of speech label of the corresponding word (e.g., N for noun or Prep for

preposition); and the relation is the directed syntactic relationship exhibited between

word1 and word2 (e.g., obj for object, mod for modifier, or conj for conjunction),

and corresponds to a specific link in the tree.

Figure 2.6 shows a representation of the syntactic dependencies in the sentence

“Astronomer Edwin Hubble was born in Marshfield, Missouri”, generated by Mini-

par [81]. Note that the root of the tree is the verb “was”; the direct syntactic

dependents are the subject “Edwin Hubble” and the predicate “born”, and all other

nodes in the sentence are further descendants of these nodes.

We define our space of lexico-syntactic patterns to be the space of all shortest paths

of four links or less between any two nouns in a dependency tree. Figure 2.7 shows

the partial dependency tree for the sentence fragment “...such authors as Herrick and

Shakespeare” generated by Minipar [81]. Here the extracted shortest dependency

path between authors and Shakespeare in the explicit dependency parse generated

by Minipar is: (authors, -N:mod:Prep, as, -Prep:pcomp-n:N, Herrick, -N:conj:N,

Shakespeare).
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2.3.2 Representing syntactic context

Consider the dependency parse of the sentence fragment represented in Figure 2.7.

Here the directly extracted dependency path between authors and Shakespeare is

unsatisfying (authors, -N:mod:Prep, as, -Prep:pcomp-n:N, Herrick, -N:conj:N, Shake-

speare). First, in order to generalize this pattern so that it may be used for the

extraction of new entity pairs, we must first remove the lexical nodes authors and

Shakespeare at the terminal points of the path. Second, this shortest dependency path

is missing the important such node, a dependent of authors. Clearly the addition of

the such node would increase the precision of the extracted pattern. Finally, the

explicit shortest dependency path traverses through the Herrick node before passing

to Shakespeare; for the purposes of generalization we would like to bypass the Herrick

node and distribute the syntactic path across the conjunction relation. In this section

we discuss our methods for solving these problems.

First, in order to represent the particular syntactic context between the entities

in a sentence, we remove the original nouns in the noun pair to create a more general

pattern. Each dependency path may then be presented as an ordered list of depen-

dency tuples; for example, this generalizes the path between authors and Shakespeare

to: (-N:mod:Prep, as, -Prep:pcomp-n:N, Herrick, -N:conj:N).

We then extend this basic MINIPAR representation in two ways: first, we wish

to capture the fact that certain external function words like “such” (in “such NP

as NP”) or “other” (in “NP and other NP”) are important parts of lexico-syntactic

patterns. We capture this additional context by adding optional “satellite links”

to each shortest path representation. We define a satellite link as any single link

not already contained in the shortest dependency path but that is a dependent of

either one of the nouns participating in the noun pair. We add redundant feature

representations for every satellite dependent within a sentence like this. Thus, for

example, we would capture the such dependent of authors in the dependency path

above by augmenting the initial path with the satellite link, yielding the new path (

(such, PreDet:pre:N), -N:mod:Prep, as, -Prep:pcomp-n:N, Herrick, -N:conj:N).

Next we address the problem of syntactic paths extended over conjunctions, i.e.,

over and, or, and comma-separated lists. In Hearst’s original proposed patterns [60],
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NPX and other NPY : (and,U:punc:N),-N:conj:N, (other,A:mod:N)
NPX or other NPY : (or,U:punc:N),-N:conj:N, (other,A:mod:N)
NPY such as NPX : N:pcomp-n:Prep,such as,such as,Prep:mod:N

Such NPY as NPX : N:pcomp-n:Prep,as,as,Prep:mod:N,(such,PreDet:pre:N)
NPY including NPX : N:obj:V,include,include,V:i:C,dummy node,dummy node,C:rel:N

NPY , especially NPX : -N:appo:N,(especially,A:appo-mod:N)

Table 2.1: Dependency path representations of Hearst’s patterns

comma-separated lists and conjunct-separated lists of noun phrases were explicitly

captured in order to collect larger amounts of data. We can capitalize on the dis-

tributive nature of the syntactic conjunction relation by distributing dependency links

across such conjunctions. What this effectively means is that we add additional links

to each dependency parse whenever we find a conjunction. For example, in the simple

2-member conjunction chain of “Herrick” and “Shakespeare” in Figure 2.7, we add

the entrance link “as, -Prep:pcomp-n:N” to the single element “Shakespeare” (as a

dotted line in the figure). Distributing dependencies across conjuncts allows us to rep-

resent the dependency path between authors and Shakespeare in the above parse with

the following two simple dependency paths: ((such, PreDet:pre:N), -N:mod:Prep, as)

and (-N:mod:Prep, as).

This distribution of syntactic dependencies over the conjunction relation has the

effect of adding the shortest external dependency path to every member of a conjunct-

separated list of noun phrases. Our extended dependency notation is able to capture

the power of the hand-engineered patterns described in previous literature; for ex-

ample, Table 2.1 shows the six patterns used in [23, 26, 60] and their corresponding

dependency path formalizations.

2.4 Experimental design

Our goal is to build a classifier which, when given an ordered pair of nouns, makes

the binary decision of whether the nouns are related by hypernymy.

All of our experiments are based on a corpus of over 6 million newswire sentences.

This corpus contains articles from the Associated Press, Wall Street Journal, and
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Los Angeles Times, drawn from the Tipster 1, 2, 3, and Trec 5 corpora [59].

Our experiments also consider articles from Wikipedia (a popular web encyclopedia),

extracted with the help of Tero Karvinen’s Tero-dump software. We first parsed each

of the sentences in the corpus using Minipar. We extract every pair of nouns from

each sentence.

We apply the distant supervision of WordNet in order to automatically label

the noun pairs in our text corpus as either positive (hypernym) or negative (non-

hypernym) training examples. In our experiments we label 752,311 of the resulting

noun pairs extracted from our corpus; we label them as either Known Hypernym or

Known Non-Hypernym using WordNet.2 Here we discuss the criteria that we require

in order to label a noun pair as either a positive or negative example.

We label a noun pair (ni, nj) as a Known Hypernym if one of the nouns nj is an

ancestor of the first sense of the other noun ni in the WordNet hypernym taxonomy.

In addition, we require that the word ni is the only “frequently-used” expression of

that noun out of the possible senses for that word listed in WordNet. We determine a

noun sense to be “frequently-used” if it occurs at least once in the sense-tagged Brown

Corpus Semantic Concordance files (as reported in the cntlist file distributed as part

of WordNet 2.0).

Our motivation in determining whether a sense of a noun is “frequently-used”

comes from our desire to reduce as much as possible the number of false hypernym/hy-

ponym labels within our automatically constructed training corpus. The problem of

lexical ambiguity can greatly reduce the accuracy of an automatic labeling process

of this kind; many more potentially false hypernym/hyponym labels come up due

to highly polysemous nouns (nouns which have multiple meanings). Note that we

consider nj to be a hypernym of ni regardless of how many steps away in the noun

hierarchy it is with respect to ni.

A noun pair may be labeled as a negative training example (to the set of Known

Non-Hypernym pairs) if both nouns in the noun pair are contained within WordNet,

but neither noun is an ancestor of the other in the WordNet hypernym taxonomy for

any senses of either noun. Of our total collected noun pairs in our corpus, we find

2We access WordNet 2.0 via Jason Rennie’s WordNet::QueryData interface.
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that 14,387 pairs satisfy our definition for Known Hypernym pairs, and we choose

the 737,924 most frequently occurring noun pairs that satisfy our criteria for Known

Non-Hypernym pairs. We choose this number of non-hypernym pairs in order to

satisfy the roughly 1:50 ratio of hypernym-to-non-hypernym pairs that we observe in

our hand-labeled test set (discussed below).

We evaluated our binary classifiers in two ways. For both sets of evaluations,

our classifier was given a pair of nouns from an unseen sentence and had to make a

hypernym vs. non-hypernym decision. In the first style of evaluation, we compared

the performance of our classifiers against the Known Hypernym versus Known Non-

Hypernym labels assigned by WordNet. This provides a metric for how well our

classifiers do at “recreating” WordNet’s judgments.

For the second set of evaluations we hand-labeled a test set of 5,387 noun pairs

from randomly-selected paragraphs within our corpus (with part-of-speech labels as-

signed by MINIPAR). The annotators were instructed to label each ordered noun pair

as one of “hyponym-to-hypernym”, “hypernym-to-hyponym”, “coordinate”, or “un-

related” (the coordinate relation will be addressed in Section 2.7). As expected, the

vast majority of pairs (5,122) were found to be unrelated by these measures; the rest

were split evenly between hypernym and coordinate pairs (134 and 131, respectively).

Interannotator agreement was obtained between four labelers (all native speakers

of English) on a set of 511 noun pairs, and determined for each task according to the

averaged F-Score across all pairs of the four labelers. Agreement was 83% and 64%

for the hypernym and coordinate term classification tasks, respectively.

2.5 Feature analysis

Our first study focused on discovering which dependency paths might prove useful

features for our classifiers. Our representation of the lexico-syntactic space consists

of a feature lexicon of 69,592 dependency path. This feature lexicon consists of every

extracted dependency path that occurred with at least five unique noun pairs in our

corpus. That is, we consider a feature only if it occurs in at least five different feature

vectors.
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We evaluate these features independently on the task of hypernym classification.

For each feature, we constructed a simple binary classifier from only that feature.

This classifier predicts that a noun pair is an example of the hypernym relation if and

only if the specific feature occurs at least once in the corresponding feature vector.

We may represent these classifiers in mathematical notation in the following

way: suppose we represent the n-dimensional entity pair feature vector as x =

x0, x1, x2, ..., xn, where each entry xi corresponds to the count of the i-th feature.

Then, in this step we construct n individual classifiers. Each classifier is a function

that considers as input only the corresponding feature; thus a classifier fi for the i-th

feature only depends on the element xi of the feature vector x. In particular, the

classifier will predict a positive instance of the hypernym/hyponym relation if and if

the count xi is greater than zero, that is:

fi(x) =

{

1 if xi > 0

0 otherwise

We evaluate each of these classifiers on the WordNet-labeled training set discussed

in Section 2.4, consisting of 14,387 positive Known Hypernym pairs, and 737,924 neg-

ative Known Non-hypernym Pairs. Figure 2.8 depicts the precision and recall of the

simple classifiers we automatically construct in this manner. Precision, represented

along the y-axis, gives the fraction of the examples classified as positive examples by

the classifier that are actually labeled as true in the testset. Recall, represented along

the x-axis, gives the fraction of the total positive instances in the testset that are

classified as true by the classifier. That is, assuming that the classifier outputs some

classification for every example in the test set, if a given classifier correctly identifies tp

true positive examples, and correctly identifies tn true negative examples, but falsely

identifies fp negative instances as positive, and falsely identifies fn positive examples

as negative, then Precision is defined as:

Precision =
tp

tp + fp
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and Recall is defined as:

Recall =
tp

tp + fn

Finally, we will also refer to the “F-score” as a summary of the performance of a

classifier. The F-score is simply the harmonic mean of the Precision and Recall, or:

F-score =
2× Precision× Recall

Precision + Recall

Thus, each of Precision, Recall and F-score scale between 0 and 1. In a precision-

recall plot, the ideal classifier would have a precision and recall of 1, residing at

the upper right corner of the plot. In our task the ideal classifier would classify all

14,387 of the actual positive examples as true (thus having a recall of 1), and no

more (thus having a precision of 1). In Figure 2.8 we show the precision and recall of

all classifiers with recall at least .0015 on the WordNet-labeled data set. Redundant

features consisting of an identical base path to an identified pattern but differing only

by an additional “satellite link” are marked in Figure 2.8 by smaller versions of the

same symbol. For example, the large X glyph in the figure represents the dependency

path corresponding to the “X and/or other Y ” lexico-syntactic pattern. Additional

features also exist as variation of this pattern; for example, the pattern might have

a satellite link with a generic article such as “a” or “the” before X, expressing the

lexico-syntactic pattern“a X and/or other Y ” or “the X and/or other Y ”. Such

patterns along the high precision/recall boundary differing only by a satellite link are

shown with the smaller version of the glyph.

Using this formalism we have been able to capture a wide variety of repeatable

patterns between hypernym/hyponym noun pairs. in particular, we have been able

to rediscover the hand-designed patterns originally proposed by Hearst [60]. These

patterns are the first five features listed in Figure 2.83.

This analysis serves as a quantitative justification to Hearst’s initial intuition of

the power of these particular hand-selected patterns; nearly all of Hearst’s patterns

3There are five basic patterns instead of the six that Hearst proposed because the “and other”
and “or other” patterns are collapsed into a single pattern. This pattern can be thought of as
a generalized “conjunction other” pattern, and is represented within the MINIPAR dependency
scheme as -N:conj:N, (other,A:mod:N).
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Figure 2.8: Hypernym Figure/Recall for all features
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Text representation Dependency Path Representation
NPY like NPX : N:pcomp-n:Prep,like,like,Prep:mod:N

NPY called NPX : N:desc:V,call,call,V:vrel:N

NPX is a NPY : N:s:VBE,be,be,-VBE:pred:N

NPX , a NPY (appositive): N:appo:N

Table 2.2: Dependency path representations of other high-scoring patterns

are at the high-performance boundary of precision and recall for individual features.

Nonetheless there are tens of thousands of additional patterns represented here. In

addition to Hearst’s patterns, there are a large number of new patterns not previously

discussed; we mark four as blue triangles in Figure 2.8 and listed in Table 2.2. We

can expect that there is a great deal of signal in the wealth of patterns represented

here. Some patterns, like “X is a Y”, give weak evidence for the hypernym relation;

while many hypernym pairs are seen with this pattern, many non-hypernyms are also

seen with this pattern. Other patterns, like “Y called X” are more precise. In the

next section we consider algorithms for effectively using the full power of this feature

space using supervised classification.

2.6 Hypernym classification

Our first hypernym classifier is based on the intuition that a given noun pair is more

likely to be in the hypernym relation if that pair occurs in a large corpus of text with

one or more of the lexico-syntactic patterns found to be indicative of hypernymy in

our labeled training set. We will consider every noun pair that occurs with at least

five unique paths from our feature lexicon discussed in the previous section. Then, for

each noun pair, we create a feature vector, where each element of the feature vector

represents the count of one of the 69,592 features in our lexicon. That is, each element

corresponds to a specific dependency path, and the count corresponds to the total

number of times that the dependency path was found as the shortest path connecting

the corresponding noun pair in some dependency tree in our corpus. In order to

perform hypernym classification we define our task as the binary classification of a
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noun pair as a hypernym pair based on its feature vector of dependency path counts.

For our initial experiments we use the WordNet-labeled Known Hypernym /

Known Non-Hypernym training set defined in Section 2.4. We experimented training

several supervised classifiers on this data set, including multinomial Naive Bayes, and

logistic regression.

2.6.1 Multinomial Naive Bayes

We formulate the task of hypernym prediction as a binary classification task. That

is, in this task we state that a noun pair may be classified into one of two classes: the

hypernym class (i.e., a positive example of the hypernym class), or the non-hypernym

class (i.e., a negative example of the hypernym class). Here we consider using the

multinomial Naive Bayes model for binary classification. The Multinomial Naive

Bayes model is a generative model that assumes that each individual occurrence of

a feature fi in a feature vector x is generated with a fixed conditional probability

P (f ∈ x = fi|x ∈ Xc) given the class c of the feature vector x to which the feature

belongs.

Given that we have n initial syntactic dependency path features, in our Naive

Bayes model we will have 2n model parameters; one for each class-feature pair. Here

the likelihood of a feature vector corresponding to a positive hypernym relation is

calculated as the product of the individual parameters for each feature that occurs

in that feature vector, Each of these parameters θci correspond to an estimate of the

conditional probability of any particular element within the feature vector x of class c

corresponding to the feature fi. That is, if we imagine each feature in an instance x of

class c as being generated sequentially, θci corresponds to the probability that the next

feature encountered will be fi. If we denote the set of feature vectors corresponding

to class c as Xc, and the frequency of feature fi within a given feature vector x as xi,

we may then directly calculate each parameter as:

θci = P̂ (f ∈ x = fi|x ∈ Xc) =
∑

x∈Xc

xi
∑

xj ∈ x
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We may also estimate the prior probability P (c) of a feature vector belonging to

the class c as the simple fraction of all labeled feature vectors that are labeled as

belonging to c:

θc = P̂ (c) =

∑

x∈Xc
1

∑

x∈Xc
1 +

∑

x/∈Xc
1

Having calculated these parameters, we may estimate the conditional probability

of a feature vector x belonging to the positive class c1 (as opposed to the negative

class c2) given the set of features as:

P̂ (c1|x) =
P̂ (c1)

∏

xi∈x
θxi

c1i

P̂ (c1)
∏

xi∈x
θxi

c1i + P̂ (c2)
∏

xi∈x
θxi

c2i

In this way we can calculate the estimated conditional probabilities P̂ (c1|x) and

P̂ (c2|x) and assign the label of the class with the larger conditional probability. In

practice, since the denominator in the calculation is the same for both P̂ (c1|x) and

P̂ (c1|x), we typically only calculate the numerators and assign the label corresponding

to the the larger of the two, i.e., we choose the estimated class ĉ as:

ĉ = argmaxcP̂ (c)
∏

xi∈x

θxi
c

2.6.2 Logistic regression

Next we consider a logistic regression classifier. Logistic regression is a statistical

model that estimates the conditional probability of a class P (c|x) given a feature

vector x as a nonlinear function:

hθ(x) = P̂ (c|x) =
1

1 + e−θT x

We fit the parameters of the classifier using maximum likelihood. Defining the

likelihood of our parameters as:



2.6. HYPERNYM CLASSIFICATION 51

L(θ) =
∏

x∈X

p(c|x; θ) (2.1)

(2.2)

We may maximize this likelihood using the stochastic gradient ascent rule. As-

suming that the class c takes the value of 1 for a the positive class, and 0 for the

negative class, θ we update the parameter θj corresponding to the weight for the j-th

feature using the i− th feature vector x(i) using the following update:

θj := θj + α(c(i) − hθ(x
(i))x

(i)
j

We train logistic regression classifiers using multiple feature representations, as

discussed below.

Feature representations

In our logistic regression experiments we explored multiple representations of our

features. First we considered a simple binary representation, where we convert each

feature count into a single binary feature. Thus if the original feature vector is x,

then each element x′
i of our modified binary feature vector x′ is constructed as:

x′
i =

{

1 if xi > 0

0 otherwise

Second we consider a “bucketed” representation where we convert each integer

feature count into a set of binary representations. We expand our initial feature

set of 69,592 dependency paths to include multiple binary features per dependency

path. These binary features are set to 1 if the feature count is greater than a par-

ticular threshold, and are set to zero otherwise. Specifically we use 14 redundant

thresholds spaced at the exponentially increasing powers of 2: {20, 21, 22, ..., 213}, or

{1, 2, 4, ....8192}. This increases the size of our possible feature set to 69, 592× 14 =
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974, 288, or nearly a million binary features. However, the vast majority of features in

any particular feature vector are zero, and so we can represent the vectors efficiently

in a sparse representation.

Since each element of the original feature vector x is expanded into k different

binary features in the represented ‘bucketed’ binary feature vector x′, we can write

that each original element xi determines the values of the k elements in the new vector

from xk×i to xk×i+k−1. Specifically, we can write that each element xi determines the

element xk×i+j of the new vector in the following way, for 0 ≤ j < k:

x′
k×i+j =

{

1 if xi ≥ 2j

0 otherwise

We evaluated the performance of each classifier by using 10-fold cross validation

on the training set of positive and negative WordNet-labeled noun pairs. We perform

10-fold cross validation by randomizing the order of the training set and setting up

10 experiments, each using a different 10% of the training set as the test set for that

experiment. Then, we train a classifier using the remaining 90% of the training set,

and measure the performance of that classifier on the test set.

We evaluate each model based on its precision, recall, and maximum F-Score

averaged across all folds. The summary of maximum F-scores averaged across all

folds is presented in Table 2.3, and the precision/recall plot of our best models is

presented in Figure 2.9. Due to the continuous output of our probabilistic classifiers

for predicting hypernymy, we can produce a full precision-recall curve for hypernym

prediction by varying the prediction threshold for the classifier. That is, each point in

the precision-recall plot corresponds to a specific probability threshold T such that the

classifier classifies instances as members of the positive class if they have probability

greater than or equal T , and otherwise as members of the negative class.

For comparison, we also evaluate two baseline algorithms based on simple manually-

specified patterns only a handful of hand-engineered features; the first simply detects

the presence of at least one of Hearst’s patterns as implemented for hypernym discov-

ery in [26]. The second classifier consists of only the “NP and/or other NP” subset of

Hearst’s patterns, as used in the automatic construction of a noun-labeled hypernym
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Classifier F-score
Best Logistic Regression (Buckets): 0.3480
Best Logistic Regression (Binary): 0.3200

Best Multinomial Naive Bayes: 0.3175
Hearst Patterns: 0.1500

“And/Or Other” Pattern: 0.1170

Table 2.3: Average maximum F-scores for cross validation on WordNet-labeled train-
ing set

taxonomy in [23]. In our tests we found that the classifier with the greatest perfor-

mance was the binary logistic regression model using the “bucketed” representation

of binary features.

Our classifier shows a dramatic improvement over the approaches using manually-

specified patterns; in particular, applying our best logistic regression classifier trained

on newswire corpora, we observe a 132% relative improvement of average maximum

F-score over the classifier based on Hearst’s patterns. Our results show that the

logistic regression classifier is able to combine a rich selection of features, allowing

the classification of hypernym pairs with an F-score of 0.348, far above classifiers

based on small numbers of patterns with F-scores of 0.150 and 0.117.

2.7 Coordinate term classification

While our hypernym-only classifier performed better than previous classifiers based

on hand-built patterns, there is still much room for improvement. As Cederberg and

Widdows [26] point out, one problem with pattern-based hypernym classifiers in gen-

eral is that within-sentence hypernym pattern information is quite sparse. Patterns

are useful only for classifying noun pairs which happen to occur in the same sentence;

many hypernym/hyponym pairs may simply not occur within the same sentence in a

given corpus. For this reason Cederberg and Widdows [26], following Caraballo [23]

suggest relying on a second source of knowledge: “coordinate” or similarity relations

between nouns.

The WordNet glossary defines coordinate terms as “nouns or verbs that have the
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same hypernym”. Here we treat the coordinate relation as a symmetric relation that

exists between two nouns that share at least one common ancestor in the hypernym

taxonomy, and are therefore “the same kind of thing” at some level. Many methods

exist for inferring that two nouns are coordinate terms; inferring that two nouns are

coordinates is a common subtask in automatic thesaurus induction.

We expect that by using coordinate information we will be able to increase the

recall of our hypernym classifier. For example, if through coordinate term classifica-

tion we become confident that two nouns ni, nj are coordinate terms, and through

hypernym classification we become confident that nj is a hyponym of nk, we may

then infer with higher probability that ni is also a a hyponym of nk, even if we have

never encountered the pair (ni, nk) within a single sentence, and thus we cannot make

a confident prediction directly using the hypernym classifier.

Prior work for identifying coordinate terms includes automatic word sense clus-

tering methods based on distributional similarity [105, 113] or on pattern-based tech-

niques, specifically using the coordination pattern “X, Y, and Z” [26]. We consider

both kinds of classifier.

2.7.1 Vector space model for distributional similarity

First we construct a vector-space model similar to that constructed by Pantel [105],

using single MINIPAR dependency links as our distributional features. For every

noun in our corpus we construct a feature vector, where the elements of the feature

vector correspond to ordered dependency links observed to occur with that noun. For

example, in the dependency parse for the sentence “Astronomer Edwin Hubble was

born in Marshfield, Missouri”, as represented in Figure 2.6, we would add the two

immediately adjacent dependency links to the feature vector representation, namely:

(-N:lex-mod:N, Astronomer) and (N:s:V, be).

We construct a feature vector in this way for every noun we observe in the six

million sentences in our hypernym training set. In this case our feature lexicon consists

of the 30,000 most frequent noun-connected dependency edges, and we construct

feature count vectors for each of the most frequently occurring 163,198 individual



2.7. COORDINATE TERM CLASSIFICATION 55

nouns.

After constructing these feature vectors, similarly to Pantel [105] we normalize

these feature counts with pointwise mutual information. The pointwise mutual infor-

mation [86] between two events x and y is defined as the logarithm of the ratio of the

joint probability of x and y to the product of the prior probabilities of each of x and

y:

pmi(x, y) = log

(

P (x, y)

P (x)P (y)

)

This quantity has the property of being equal to 0 when x and y are independent

(i.e., when P (x, y) = P (x)P (y)), positive when x and y are positively correlated, and

negative when the two events are negatively correlated. If we denote the count of

times that a word x occurs with a syntactic feature f as cxf , and if we denote the

frequency of all features of all words as:

N =
∑

i

∑

j

cij

Then we can calculate our estimate of the pointwise mutual information of x and f

as:

pmi(x, f) = log

(

cxf

N
P

i cif

N
×

P

j cxj

N

)

Thus, if the initial raw feature vector for a word is x, where a given element xi con-

tains the frequency of dependency path fi with that word, then we create a modified

representation x′ of the feature vector where each entry corresponds to the pointwise

mutual information between the word and the feature. Having created our repre-

sentation of the pointwise mutual information of the words and features in x′, we

then compute the cosine coefficient [131] between these normalized vectors in order

to obtain our measure of distributional similarity. That is, for two normalized feature

vectors x′ and y′, we compute:

sim(x′,y′) =

∑

j

(

x′
j × y′

j

)

√

∑

j

(

x′2
j

)

×
∑

j

(

y′2
j

)
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We use this normalized similarity score for coordinate term classification.

2.7.2 Conjunction pattern classifier

Next we consider a simple pattern-based classifier based on the conjunction pattern,

which simply ranks a pair of entities based on the total number of conjunction de-

pendency paths found by Minipar between that entity pair. That is, if we consider

the feature vector x consisting of the frequency counts of all dependency paths ob-

served between two words wi and wj , then our similarity score is proportional to

the element xcoord corresponding to the frequency count of the“conjunction pattern”

(X, -N:conj:N, Y ). Examples of natural text from which the conjunction pattern is

inferred are the expressions “X and Y ” and “X or Y ”. That is, our conjunction

classifier simply uses the similarity score:

sim(wi, wj) = xcoord

These two classifiers, respectively built from distributional similarity and the con-

junction pattern, give us two independent methods for determining the likelihood

that two words are linked through a coordinate relation.

2.7.3 WordNet classifiers

We would like to be able to compare the performance of our automatic classifiers

for the coordinate term relation to the existing coordinate terms in WordNet. For

purposes of performance comparison for labeling the coordinate terms from our hand-

labeled testset we construct a series of classifiers using WordNet. These classifiers de-

termine a word pair to be in a coordinate relation if they share a common hypernym

ancestor within the WordNet hierarchy. We create multiple classifiers by varying the

requirement of how close the hypernym must be to both nouns; for our evaluation we

create six classifiers, where the k-th classifier determines that two nouns are coordi-

nates if they share a hypernym of a distance no more than k from either noun in the

hypernym taxonomy, for all k from 1 to 6.
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Classifier F-score
Interannotator Agreement: 0.6405

Distributional Similarity Vector Space Model: 0.3327
Thresholded Conjunction Pattern Classifier: 0.2857

Best WordNet Classifier: 0.2630

Table 2.4: Summary of maximum F-scores on hand-labeled coordinate pairs

2.7.4 Evaluation

We evaluate each of the proposed classifiers on the task of recognizing the coordinate

terms in our hand-labeled testset described in Section 2.4. We display the preci-

sion/recall of each of the above classifiers in Figure 2.10, and give the maximum

F-scores of each algorithm in Table 2.4. Since each of our coordinate classifiers pro-

duces continuous output scores for predicting the coordinate class, we can produce a

full precision-recall curve for hypernym prediction by varying the prediction thresh-

old for the classifier. That is, each point in the precision-recall plot corresponds to

a specific score threshold T such that the classifier classifies instances as members of

the positive class if they have probability greater than or equal T , and otherwise as

members of the negative class.

We find that WordNet has higher precision than the automatic coordinate classi-

fiers at low levels of recall, but that both the coordinate classifiers based on distribu-

tional similarity and the simple conjunction pattern perform as well or better than

WordNet for recall greater than 20%, and both have a higher maximum F-score.

The strong performance of the simple conjunction pattern model suggests that

it may be worth pursuing an extended pattern-based coordinate classifier along the

lines of our full weighted hypernym classifier (rather than only using a single feature).

In the remaining experiments we will continue using our distributional similarity

classifier (with a 16% relative F-score improvement over the conjunction model) in

the construction of a combined hypernym-coordinate hybrid classifier.
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Figure 2.10: Coordinate classifiers on hand-labeled test set
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2.8 Hybrid hypernym-coordinate classification

Next we experiment with combining our hypernym and coordinate models in order

to improve hypernym classification. We define the outputs of our hypernym and

coordinate classifiers as follows: first, we denote the probability that a noun ni has

nj as an ancestor in its hypernym hierarchy as P (ni <
H

nj).

Second, we denote the probability that the nouns ni and nj are coordinate terms,

i.e., that they share a common hypernym ancestor at some level, as P (ni ∼
C

nj).

We estimate this probability using the similarity calculation of our distributional

similarity vector space model from Section 2.7.1.

If we consider the initial probability estimate produced by our best hypernym-

only classifier as Pold(ni <
H

nj), and the probability obtained by normalizing the

similarity score from our coordinate classifier as P (ni ∼
C

nj), we then apply a simple

linear interpolation scheme to compute a new estimate of the hypernym probability.

Specifically, for each pair of nouns (ni, nk), we recompute the probability that nk is a

hypernym of ni as:

Pnew(ni <
H

nk) ∝ λ1Pold(ni <
H

nk) + λ2

∑

j P (ni ∼
C

nj)Pold(nj <
H

nk)

We constrain our parameters λ1, λ2 such that λ1+λ2 = 1; we set these parameters

using 10-fold cross-validation on our hand-labeled test set. For our evaluation in

Section 2.8.1 we use λ1 = 0.7.

2.8.1 Evaluation

We would now like to evaluate how well our hypernym and hybrid hypernym-coordinate

classifiers perform for recognizing hypernym pairs in newswire corpora. Our hand-

labeled dataset allows us to compare the classifiers we have proposed to classifiers

constructed using WordNet, as well as the previously discussed methods relying on

manually-specified patterns. As in our evaluation of coordinate terms in Section 2.7.4,

we construct several classifiers based on the WordNet hypernym taxonomy. We con-

structed many different classifiers by taking combinations of the following parameters:
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• The maximum number of senses of a hyponym word for which to find hypernyms

• The maximum distance between the hyponym and its hypernym in the WordNet

taxonomy

We display the six best WordNet classifiers we found by varying these parameters

in Figure 2.11. Figure 2.11 shows the performance of each of the discussed method

in a precision/recall plot, using the manually-constructed testset discussed in Section

2.4 as ground truth. We found that the WordNet model achieving the maximum F-

score uses only the first sense of a hyponym and allows a maximum distance of 4 links

between a hyponym and hypernym. We find that our logistic regression hypernym-

only model trained on the newswire corpora has a 16% relative F-score improvement

over the best WordNet classifier, while the combined hypernym/coordinate model has

a 40% relative F-score improvement. Our best-performing classifier is a hypernym-

only model additionally trained on the Wikipedia corpus, with an expanded feature

lexicon of 200,000 dependency paths; this classifier shows a 54% improvement over

WordNet. In Table 2.5 we list the maximum F-scores of each method.

In Table 2.6 we analyze the disagreements between the highest F-score WordNet

classifier and our combined hypernym/coordinate classifier. There are 31 such dis-

agreements, with WordNet agreeing with the human labels on 5 and our hybrid model

agreeing on the other 26. We additionally inspect the types of noun pairs where our

model improves upon WordNet, and find that at least 30% of our model’s improve-

ments are not restricted to Named Entities; given that the distribution of Named

Entities among the labeled hypernyms in our test set is over 60%, this gives us hope

that our classifier will perform well at the task of hypernym induction even in more

general, non-newswire domains.

This evaluation demonstrates that automatic methods for hypernym classifica-

tion can significantly outperform WordNet on the task of hypernym pair classifi-

cation in newswire text. Further, our analysis of the disagreements between our

classifier and WordNet shows that our automatic methods are not limited to only

inferring a small class of hypernym relations, but rather infer general-purpose hyper-

nym relations. These results are encouraging for the overall goal of being able to
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Figure 2.11: Hypernym classifiers on hand-labeled test set

infer structured knowledge from unstructured text at levels comparable to existing

manually-constructed taxonomies.

2.9 List extraction for hypernym and coordinate

prediction

So far we have considered the use of lexico-syntactic patterns and distributional sim-

ilarity for the purpose of hypernym and coordinate classification. In this section we

will consider semi-structured list information, an additional powerful source of evi-

dence for taxonomic relations. List information has been successfully used for relation

extraction in previous work [48, 22]. We will consider combined models of hypernym

prediction and taxonomy augmentation using this evidence applied to the problem of
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Classifier F-score
Interannotator Agreement: 0.8318

TREC+Wikipedia Hypernym-only Classifier (Logistic Regression): 0.3592
TREC Hybrid Linear Interpolation Hypernym/Coordinate Model: 0.3268

TREC Hypernym-only Classifier (Logistic Regression): 0.2714
Best WordNet Classifier: 0.2339

Hearst Patterns Classifier: 0.1417
“And/Or Other” Pattern Classifier: 0.1386

Table 2.5: Maximum F-Score of hypernym classifiers on hand-labeled test set

Type of Noun Pair Count Example Pair
Named Entity: Person 7 “John F. Kennedy / president”, “Marlin Fitzwater / spokesman”
Named Entity: Place 7 “Diamond Bar / city”, “France / place”
Named Entity: Company 2 “American Can / company”, “Simmons / company”
Named Entity: Other 1 “Is Elvis Alive / book”
Not Named Entity: 9 “earthquake / disaster”, “soybean / crop”

Table 2.6: Analysis of improvements over WordNet

text classification in Section 6.3.

In this section we are primarily concerned with extraction of list items. Our

general motivation for extracting the members of a lists that we expect members of

a list to be similar to one another, and thus to give us evidence for the coordinate

relation. Also, if we are able to extract the list header (i.e., a token indicating the

kind of things in the list), we expect that this will give us evidence for the hypernym

relation. This gives us an independent source of evidence for both the coordinate and

hypernym relations, uncorrelated with our previously-discussed evidence sources.

2.9.1 Wrapper induction

In this section we propose a wrapper induction [74] algorithm for the purpose of list

extraction. There are many ways in which a list can structurally indicate the items

that belong to that list. For example, as shown in Figure 2.12, a list may specify its

members by using of bullet point entries, or numbered entries, or a table of entries, or

many other possible instantiations. We automatically infer the specific way that a list



2.9. LIST EXTRACTION FOR HYPERNYM AND COORDINATE PREDICTION63

Figure 2.12: Three HTML list representations

identifies its members by automatically inferring the wrapper, or context that identifies

the item’s identity as a member of the list. Wrapper induction is a framework for

automatically constructing extraction patterns to identify a particular set of items,

typically within a structured or semi-structured context. In our experiments we will

use wrapper induction specifically for inferring the members of lists.

Our algorithm for wrapper induction is similar in style and motivation to the list

extraction algorithm used in the KnowItAll system [48]. For each run of our list

extraction algorithm with initialize it with a set of seeds corresponding to the set

of hyponyms of a particular noun synset in WordNet. For each term corresponding

to a hyponym of a given synset, we issue a phrase query to a web search engine4 to

estimate the frequency of the term. We then rank the terms corresponding to the

hyponyms of a synset by the number of results returned by the web search engine.

This gives us an ordered list of hyponym terms per synset, with the most common

terms appearing on top. We then search for these lists of hyponyms on the web, using

the terms as seeds. We start off with the top k hyponym terms for each synset. We

issue a query to a web search engine with these seed terms and consider the top-n

results returned by the search engine which contain all of the seed terms. For our

experiments we use n = 20, and we start with k = 10, then decrease by 1 if there are

no search results, decreasing down until k = 3.

Our representation of the wrappers we infer uses the Document Object Model

4We use the Yahoo! Search API available at http://developer.yahoo.com/search.
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Figure 2.13: Document Object Model representations of unordered and ordered
HTML lists

(DOM) tree of the webpage. The DOM tree is a representation of the structure of

the webpage, using the tags within the HTML or XML markup to indicate hereditary

relations among the objects in the page. As examples, selections of the DOM tree

for the unordered and ordered lists given in Figure 2.12 are given in Figure ??.

After obtaining the results of our search, each document in the returned result set is

processed as follows: first, the positions for the seed tokens in the Document Object

Model (DOM) tree of the document are identified; second, a heuristic (described

below) finds a pattern based on the DOM positions; finally, all terms found in DOM

positions matching the above pattern are extracted.

The heuristic that determines the pattern of DOM nodes which contain possible

list elements relies on an ordering of the nodes of the DOM tree. Each node in the

DOM tree is labeled with the path that needs to be taken to reach it from the root

of the DOM tree. This is done by associating child nodes with the label of the parent

appended with the child-id for that node. If we start with a label of ‘R’ for the root

for example, the first child of the root would be labeled ‘R.1’, the second child would

be labeled ‘R.2’, the first child of ‘R.1’ would be ‘R.1.1’ and so on.

Once all nodes in the DOM tree are labeled, nodes that contain an exact match

of any of the seeds are isolated, and a minimal pattern which matches all of them is

determined. For example, if the selected nodes are the set { R.1, R.2, R.4, R.5 },

then the pattern generated is ‘R.d’, where d is a place-holder. Similarly, if the selected
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nodes are the set { R.1.1, R.2.1, R.3.1 }, then the pattern generated is ’R.d.1’. As an

example, in the DOM trees of the lists displayed in Figure ??, the “body” tag would

form the root, and the corresponding list elements would be children of the “li” tags,

or R.1.1.1, R.1.2.1, and R.1.3.1.

In the final step, all nodes that match the pattern are identified, and the elements

contained in them are extracted. In our first example, the pattern ‘R.d’ identifies

nodes labeled ‘R.1’, ‘R.2’, etc. if they exist. The text from these nodes are extracted

and returned as possible candidates. A list of extracted terms is maintained by the

system, to which the newly extracted terms are added. We repeat the process with a

different query of unextracted terms until all terms in our synset have been covered

by the extracted list, or we exhaust the list of seeds available.

Having retrieved the set of pages for the seed list and extracted the set of terms

from each page, we may then identify the extracted elements as either known-in-

WordNet or unknown-in-WordNet, and then pass these lists along to the list classifier

described in Section 2.9.3.

2.9.2 Extracting list elements from Wikipedia

In addition to automatically discovering and extracting lists using wrapper induction,

we also consider a set of lists contained with the popular web encyclopedia Wikipedia.

We define the Wikipedia List corpus as the set of all articles in Wikipedia beginning

with the term “List of ”. We process this corpus in the following manner: first,

we assume that the heading of the list is a noun phrase, and parse this text as

a noun phrase with the Stanford Parser. For example, if the title of the list is

“List of male tennis players”, we parse “male tennis players”, and then order the set

of nested noun phrases in order of decreasing length, i.e. {“male tennis players”,

“tennis players”, “players”}. Having parsed this phrase, we then search in WordNet

for the largest nested noun phrase from this phrase set known in WordNet. In our

example, we would first search for “male tennis players”, and then, not finding that

term, search for “tennis players”, which yields the noun synset “tennis player” in

WordNet 2.1.
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Having matched the list header, we then identify the list elements from the

Wikipedia page using a regular expression. We then similarly identify the list el-

ements as either known-in-WordNet or unknown-in-WordNet, and then pass this list

along to the list classifier described in Section 2.9.3. In our snapshot of Wikipedia

we find 33,543 total lists; out of these we have 8,018 lists that contain a list header

that is known in WordNet, and 18,198 lists that contain at least one list item that is

known in WordNet.

2.9.3 Predicting taxonomic relations of list elements

Next we would like to use the list elements that we have inferred in order to predict

actual taxonomic relations. We will discuss the application of our classifiers built

from list information in Section 6.3. We construct a classifier for predicting relative

taxonomic location based on list information using the notion of (m, n)-cousinhood

in a hypernym taxonomy5. This notation states that that two synsets ci and cj are

considered (m, n)-cousins if their closest least common subsumer (LCS), i.e., their

closest shared hypernym, is within precisely m links from ci and n links from cj .

In the work below we will refer to the probability of a particular (m, n)-cousinhood

relation existing between two synsets ci and cj as P
(

Cmn
ij

)

. This notation gives

us a general representation of probability distributions over neighborhoods within

a taxonomy, rather than explicitly restricting the output of our classifiers to only

relations of hypernym ancestry or immediately-shared hypernyms. We consider two

classifiers for each list that we extract: a member-heading classifier and a member-

member classifier.

The member-heading classifier

The member-heading classifier predicts the likelihood of a list member existing as the

(m, n)-cousin of the extracted heading of the list; our hypothesis is that in general a

member of a list is the hyponym of the heading of the list. In order to extract the

heading of a list in the the Wikipedia List corpus, we parse the title of the list as a

5The notion of (m, n)-cousinhood is explained in more detail in Section 4.2.2
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List item Hypernym chain (m, n)-relation
Babe Ruth baseball player, athlete (0,2)

Julius Erving forward, basketball player, athlete (0,3)
Wayne Gretzky hockey player, athlete (0,2)
Arthur Ashe tennis player, athlete (0,2)

Table 2.7: Athletes in both Wikipedia and WordNet, and (m, n)-relation to athlete

noun phrase, and then extract the largest noun phrase contained within the name of

the page that is also known in WordNet. In the case of automated list extraction we

do not attempt to directly classify a list heading, but rather we impose a list heading.

Specifically we use the words of the initial WordNet synset from which the seed pairs

were generated to discover the corresponding list.

For example, Wikipedia contains a list entitled List of athletes on Wheaties boxes.

From this list title we extract the largest noun phrase which also occurs in WordNet,

athlete. Extracting the list items and comparing to WordNet, we find many items on

this list that also belong to WordNet: in Table 2.7 we list a subset of the list items

that are also found in WordNet, along with their hypernym chain up to athlete, as

well as their (m, n)-relation to the athlete concept in WordNet.

If we find that both the heading and some subset of the list items are known

in WordNet, we may then use these discovered pairs to estimate the likelihood of

list items existing in a particular (m, n)-cousinhood relation with the list heading.

For example, from the items found in Table 2.7, we would expect our classifier to

predict most strongly a (0-2)-cousinhood relation between the concept athlete and

other items discovered in the List of athletes on Wheaties boxes. One option would

be to use a simple maximum likelihood calculation to estimate the probability of an

unknown list member being an (m, n)-cousin to the list heading as the fraction of all

known list items that are observed to be in that (m − n) relation with the heading.

Specifically, for the particular list L, unknown list element ci, list heading cj , and

known list elements ck, we could estimate:

PL

(

Cmn
ij

)

=

∑

k∈L 1{Cmn
kj }

∑

k∈L 1
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Here 1{Cmn
kj } is the indicator function that returns the value 1 when ck and cj are

(m, n)-cousins and returns 0 otherwise. This probability for ci and cj being (m, n)-

cousins is simply computing the fraction of known list elements that are found to be

(m, n)-cousins already within WordNet. For example, if our training set was composed

entirely of the four elements in Table 2.7, the maximum likelihood estimate would give

us a probability of the (0,2)-cousinhood relation to athlete of 0.75, and the probability

of the (0,3)-cousinhood of 0.25. This method of estimating probability can be seen

as an extension of the distant supervision approach to learning taxonomic relations;

here we are automatically labeling the extracted lists using the distant supervision

of WordNet, and then training a simple probabilistic model for predicting (m, n)-

cousinhood based on this distant supervision.

One major problem with this approach is the sparsity of the list extraction clas-

sifier. That is, there are several cases where very few members of a list are already

known to be in WordNet. Further, many lists are short, and thus do not provide

a large amount of data to allow a classifier to make confident predictions. Due to

the sparsity of our list extraction classifier we propose incorporating a simple prior

probability over the set of all lists that our list extraction classifier discovers. To

compute this prior across our list member-header classifer we count the total number

of known list items that are found to be (m, n)-cousins of their list heading for each

Cmn with m, n ≤ 3. We then incorporate this prior in our estimate of individual list

probabilities by adding a single pseudocount split among the possible classes accord-

ing to this prior distribution. That is, for the member-header classifier for a specific

list L we predict the probability of an unknown list element ci being an (m, n)-cousin

of the known list header element cj, given known list items ck, as:

PL

(

Cmn
ij

)

=
λmn +

∑

k∈L 1{Cmn
kj }

1 +
∑

k∈L 1

Here λmn is the smoothing parameter corresponding to the prior probability of a

known lit member being an (m, n)-cousin of the list header. Thus if we represent the

list header of a given list L as h(L), we calculate the smoothing parameter as:
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List member 1 List member 2 (m, n)-relation
Babe Ruth Julius Erving (2,3)
Babe Ruth Wayne Gretzky (2,2)
Babe Ruth Arthur Ashe (2,2)

Julius Erving Wayne Gretzky (2,3)
Julius Erving Arthur Ashe (2,3)

Wayne Gretzky Arthur Ashe (2,2)

Table 2.8: Athletes in both Wikipedia and WordNet, and (m, n)-relation to each
other

λmn =

∑

∀L:k∈L,j=h(L) 1{C
mn
kl }

∑

∀L:k,l∈L 1

That is, λmn is calculated as the prior probability of any known list member ck

being in a Cmn relation with the list header h(L) over all lists with known headers.

Using this smoothing parameter has the desirable effect of backing off to the list

member-header prior when there are no observed pairs from WordNet in a given list.

The member-member classifier

Whereas we used the member-heading classifier to predict the relative location of list

member and a list header, we use the member-member classifier to predict the relative

taxonomy position of any two members of a particular list. We expect that two

elements of a list are likely to share a hypernym within close proximity; we estimate

the actual likelihood of these elements sharing a hypernym by iterating through the

set of pairs of list members where both items are known in WordNet and performing

a calculation of what (m, n)-cousinhood relation the two corresponding synsets have

in WordNet. In this way we may build an estimate for the probability of any two

items in a particular list being Cmn cousins conditioned on their mutual presence in

a list together. Again this is an extension of the distant supervision approach, now

applied to automatically labeling the members of a list using the distant supervision

of WordNet.

The member-member classifier probabilities are calculated in an identical fashion
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to the member-header classifier, except that instead of predicting the likelihood of a

list member being in a specific taxonomic location relative to the list header, it is with

respect to any other list member. For example, if our training set consisted of the

four list members specified in Table 2.7, we would end up with the six pairwise (m, n)-

relations given in Table 2.8. If we used only a simple maximum likelihood estimate

we would calculate from this list that the probability of any two members on this

list having a (2,2)-relation would be 0.50, and having a (2,3)-relation would also be

0.50. Again, however, we also add a single pseudocount corresponding to the prior

distribution of all observed pairs of list members across all lists. That is, just as in

the member-header classifier we predict the likelihood of the two synsets indicated by

the list items being in a Cmn cousinhood relation as the maximum likelihood estimate

based on the known elements of that list, with a single pseudocount distributed over

the observed prior distribution of (m, n)-cousinhood relations over all lists.

2.9.4 Discussion

In this section we have presented two classifiers for predicting taxonomic relations

from list information: a member-header classifier and a member-member classifier.

These allow us to obtain information from a very different evidence source than our

lexico-syntactic and distributional similarity classifiers. We use these classifiers as an

important evidence source for constructing the largest of our augmented taxonomies,

and we discuss the application of an augmented taxonomy constructed using these

classifiers to the problem of text classification in Section 6.3.

2.10 Discussion

In this chapter we have proposed the use of distant supervision using an existing

taxonomy in order to train relation extraction classifiers from unlabeled corpora.

We have shown how this technique can be used to create hypernym and coordinate

classifiers using lexico-syntactic patterns, coordinate classifiers from distributional

similarity data, and hypernym and coordinate classifiers using semi-structured list
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data. Our experiments demonstrate that automatic methods can be competitive

with WordNet for the identification of hypernym pairs in newswire corpora. These

classifiers will be crucial in the following chapters, as they are the basis for our ability

to create semantic taxonomies.



Chapter 3

Semantic Taxonomy Induction

3.1 Introduction

Accomplishing the task of relation extraction is necessary but not sufficient for ef-

fectively inferring structured knowledge from unstructured text. After running a

successful algorithm for relation extraction many challenges still remain: first, there

is the problem of combining evidence across multiple predictions. Much of the work

in relation extraction has considered individual pairwise extractions as independent

phenomena.

For example, Caraballo [23] infers a WordNet-like noun hypernym hierarchy by

first performing a bottom-up clustering over words with high distributional similarity,

and then attempting to label those clusters using two of Hearst’s patterns. Specifi-

cally, Caraballo applies the Hearst Patterns (“NPX and other NPY ” and “NPX or

other NPY ”) to discover the potential hypernyms of the members of each cluster. In

this way Caraballo created a hierarchy of over 20,000 nodes. In these experiments

both the distributional similarity model and the hypernym extraction was performed

on a corpus of text from the Wall Street Journal. A manual evaluation was then

applied to 200 of the automatically extracted hyponym/hypernym pairs to determine

the precision of using the distributional similarity and patterns for inferring a hy-

pernym hierarchy. Here the evidence derived from distributional similarity and the

72
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evidence derived from application of the Hearst patterns are used in an entirely inde-

pendent manner; we would hope that the precision of this technique would increase if

an algorithm was able to jointly infer taxonomic relations over both sets of evidence.

While less common, some work has considered the use of probabilistic models for

combining multiple predictions. For example, the Kog system developed by Wu and

Weld [154] uses a Markov Logic Network in order to perform joint inference over sev-

eral relations. While there has been a wide variety of approaches to joint inference in

information extraction, record linkage, and entity resolution tasks [19, 152, 117], few

have exploited the particular transitive properties of structured relations. Related

work includes the noun hypernym hierarchy constructed in [23], the part-whole tax-

onomies constructed in [55], and a variety of related experiments described in [18];

however, these approaches typically consider only a single relation, or if they use mul-

tiple sources of evidence (as in [23] where both distributional similarity information

and hypernym information is used), they are used in a linear pipeline, without the

possibility of two-way interaction.

Lexical ambiguity is an additional challenge typically unaddressed by relation

extraction algorithms. More generally, the accurate identification of the intended

sense of a word in context is an extremely challenging and unsolved problem [71,

58, 104]. While still difficult, the challenge of identifying the intended sense of a

word participating in a particular taxonomic relation is easier in some ways than the

problem of disambiguating the specific intended sense of a word in a particular corpus

instance. In the formulation of relation prediction that we propose, the decision to

infer a particular relation is typically supported by several related predictions. These

related predictions often interact in such a way as to pinpoint the intended sense of

each word in the context of the inferred relations.

As an example, suppose our hypernym classifier is extracting relations from a

document about airline companies. Suppose it encounters text such as “Continental is

one of the few carriers to report monthly RASM data...” and “Continental has become

the first U.S. carrier to cut flights...”, and from these examples and others predicts

that the noun Continental is a kind of a carrier. This seems like a positive prediction;

however, the problem of lexical ambiguity makes this a difficult piece of information to
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integrate with an existing taxonomy. In WordNet, for example, there are 11 different

senses of the noun carrier, and only one of them (carrier#n#5 actually pertains to

the sense of the airline company Continental. The other senses include “someone

whose employment involves carrying something”, a “vehicle designed specifically to

carry something”, “a large warship that carries planes”, and so forth. Thus, in order

to distinguish the appropriate sense of Continental we need further information—

perhaps that continental is also a kind of business, or that it is similar to United, or

something along these lines.

Most relation extraction algorithms do not attempt to disambiguate the actual

word sense intended in the particular usage that a relation is extracted from; rather,

attempts to reconcile extracted relationships between pairs of words with an existing

sense inventory are typically performed as a post-processing step, if performed at

all. Many approaches have simply chosen the first-listed sense in WordNet when

reconciling a given word with a sense within the taxonomy; this is equivalent to

using only the prior distribution of senses as obtained from the SemCor corpus,

since WordNet lists word senses for a specific in order of the number of times that

word occurred within the SemCor corpus. For example, this approach is taken by

Suchanek et al. [143] in constructing the extended ontology YAGO, where the authors

state:

“We found out that mapping the head compound simply to the most

frequent synset ... yields the correct synset in the overwhelming majority

of cases”.

Similarly, Wu and Weld [154] use this approach in their Kog system, stating that

“[W]e select the most frequent sense of the mapped node in WordNet,

which turns out to work well in most cases”.

Other work, however, has found that lexical ambiguity is sometimes more prob-

lematic than these comments might suggest. For example, Soderland and Mandhani

[141] found that in their work in “ontologizing” the output of their relation extrac-

tion algorithm, the baseline word sense disambiguation algorithm of always selecting
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the most frequent WordNet synset for extracted relations had an accuracy of only

55%. To combat this problem, the authors proposed a more creative solution to the

problem of lexical ambiguity: they attempted to determine which sense in WordNet

would effectively have the highest distributional similarity to the extracted entities

using a context-based distributional similarity score between extracted entities and

words related in WordNet. For example, if their relation extraction model extracted

the relation “orange contains vitamin C”, then they would construct a context vector

of up to four words on either side of both “orange” and “vitamin C” by aggregating

contexts across all sentences from which the relation was extracted. They then used

a pointwise mutual information-based metric to compare the vectors constructed for

the entities in the extracted relations to each of the synonyms, siblings and direct

hyponyms of the different senses that the entities might map to, and selected the

sense for which the similarity is highest. They found that this method significantly

increased their accuracy of assigning the appropriate sense; by doing so they increased

their sense disambiguation accuracy by 15%, to 70%. While the technique used by

Soderland and Mandhani [141] is clearly superior to simply choosing the first sense in

WordNet, there are still several sources of evidence that remain to be taken advantage

of; we discuss a method for doing so in the following sections.

In the following sections we discuss a unified framework for joint inference over

predicted relations capable of simultaneously increasing both consistent relation pre-

diction accuracy and robust sense disambiguation. In this Section we have discussed

related work in ontology induction; in Section 3.2 we outline the basic definitions of

taxonomies, relations, and concepts; in Section 3.3 we give a probabilistic means for

calculating taxonomy likelihood; in Section 3.4 we show how to extend the simple

model to calculate evidence among word senses rather than simply word tokens; in

Section 3.5 we discuss a few basic operations on taxonomies and their effects on the

estimate of taxonomy likelihood; and in Section 3.6 we summarize our model and

conclude.
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3.2 Taxonomies, relations, and constraints

We define a taxonomy T as a function that maps each pair of concepts (ci, cj) in

some domain of objects CT to some (possibly empty) set of pairwise relations Rij

out of a domain of possible relations R. For example, the domain of relations in

WordNet include hypernymy, holonymy, verb entailment, and many others; the do-

main of concepts between which these relations hold in WordNet are its word senses

or synsets.

We define that each relation Rij ∈ R is a set of ordered or unordered pairs of

objects (ci, cj) ∈ CT. For example, consider the hypernym relation “Shakespeare is

a playwright” in WordNet: Shakespeare and playwright are represented by synsets in

WordNet, and the relation between them in is the hypernym relation. Thus, if there

are n total objects in the domain of concepts CT, we can represent a taxonomy T

as an n by n matrix, where each element Tij of the matrix lists the set of relations

between elements (ci, cj) ∈ CT.

That is:

T =















R11 R12 . . . R1n

R21 R22 . . . R2n

...
...

. . .
...

Rn1 Rn2 . . . Rnn















Typically this matrix is quite sparse; for example, if we consider the noun hierarchy

in WordNet, the total size of concepts |CT| is about 80,000; thus, the total number

of entries in the matrix T is more than six billion, i.e., (8 × 104)2, or 6.4 × 109.

However, the vast majority of these pairs have no direct relation in WordNet; the

total number of direct hypernym relations is approximately 82,000 (nearly all noun

hypernyms have only a single parent, but a small fraction have multiple parents),

and the other relations are more sparsely populated, with about 20,000 meronym

(part-whole) relations, and about 2,000 antonym relations.

A semantic taxonomy can enforce certain taxonomic constraints which disallow

particular taxonomies. For example, the hypernym relation in WordNet is required

to be transitive and acyclic (you cannot have a dog as a kind of a canine, and a canine
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as a kind of a dog); the hypernym transitivity constraint in WordNet requires that

each synset inherits the hypernyms of its hypernym. Similarly, the meronym (part-

whole) relation is acyclic, and the part-inheritance constraint requires that each synset

inherits the meronyms of its hypernyms.

We can express these contraints more formally using the following notation: we

can write a hypernym relation between two synsets (ci, cj) as Hij ; further, if ci and

cj are separated by n steps in the hypernym chain, we can write the relation as Hn
ij ,

where H1
ij represents the direct hypernym relation. Similarly, we can represent the

meronym relation between ci and cj as Mij . Since meronyms are inherited from a

synset’s hypernym(s), there are two possible superscripts to keep track of: first, a

synset can be a part of a part, so it is possible to be m steps away in the meronym

chain alone. Second, a meronym may be inherited from an arbitrary hypernym n

steps away. Thus we represent a meronym that is inherited from a synset n steps

away in the hypernym chain, and the meronym itself is m steps away in the meronym

chain as Mm,n
ij . Thus, for example, a direct meronym link will be represented as M1,0

ij ,

whereas a meronym with a direct link to a synset’s immediate parent will be M1,1
ij .

Using this notation we can express the hypernym and meronym constraints for-

mally as follows:

1. Hypernym Acyclicity Condition:

∀n, m.Hn
ij ⇒ ¬H

m
ji

2. Hypernym Transitivity:

Hm
ij ∧Hn

jk ⇒ Hm+n
ik

3. Meronym Acyclicity Condition:

∀n, m.Mn
ij ⇒ ¬M

m
ji
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4. Meronym Transitivity:

M
(m,n)
ij ∧M

(m,o)
jk ⇒M

(m,n+o)
ik

Hm
ik ∧M

(n,o)
jk ⇒ M

(m+n,o)
ik

Constraint (1) here requires that no pair of synsets can be hypernyms of one an-

other, and constraint (2) requires that each synset inherits the hypernyms of its direct

hypernym. Similarly, contraint (3) requires that no pair of synsets can be meronyms

of one another, and constraint (4) requires that each synset inherits the holonyms of

its holonym, and also that each synset inherits the meronyms of its hypernym. These

transitivity constraints imply that the addition of any new hypernym or meronym

relation to a preexisting taxonomy will typically necessitate the addition of a set of

other novel relations as implied by the taxonomic constraints. We will refer to the

full set of novel relations implied by a particular relation link Rij as I(Rij).

3.3 Taxonomy likelihood

We propose that the event Rij ∈ T has some prior probability P (Rij ∈ T), and

P (Rij ∈ T) + P (Rij 6∈ T) = 1. We define the probability of the taxonomy as a

whole as the joint probability of its component relations; given that the taxonomy T

is defined over relations over all pairs of concepts, we can express this as:

P (T) = P (R11, R12, . . . , Rnn) = P (
⋃

i,j

Rij)

Next, we assume that we have some set of observed evidence E consisting of

observed features over pairs of objects in some domain CE; we’ll begin with the

assumption that our features are over pairs of words, and that the objects in the tax-

onomy also correspond directly to words.1 We further assume that we can represent

the full set of evidence E as the union of several distinct individual pieces of evidence,

1In the next subsection we relax this assumption, extending this model to manage lexical ambi-
guity.
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each corresponding to a particular pair of concepts (ci, cj) and a specific relation Rij ,

represented as ER
ij , that is:

E =
⋃

R,i,j

ER
ij

Given a set of features ER
ij ∈ E, we assume we have some model for inferring

P (Rij ∈ T|ER
ij), i.e., the posterior probability of the event Rij ∈ T given the cor-

responding evidence ER
ij for that relation. For example, evidence for the hypernym

relation EH
ij might be the set of all observed lexico-syntactic patterns containing the

words wi and wj in all sentences in some corpus. We make no assumptions here about

how these estimates of P (Rij ∈ T|ER
ij) are calculated; in this way we make the claim

that this formulation of taxonomy likelihood is independent of the particular relation

extraction methods used. All that is required is that a particular relation extraction

algorithm produces probabilistic estimates of the form P (Rij ∈ T|ER
ij) for some set of

tokens or concepts CE or CT. Thus, we may observe that the output of each relation

classifier is actually a matrix of a similar form to the matrix for the taxonomy T

itself, i.e., if there are n concepts in CE, then we can represent the output of the

relation classifier as the matrix:















P (R11|E) P (R12|E) . . . P (R1n|E)

P (R21|E) P (R22|E) . . . P (R2n|E)
...

...
. . .

...

P (Rn1|E) P (Rn2|E) . . . P (Rnn|E)















For simplicity we make the following independence assumptions: first, we assume

that each item of observed evidence ER
ij is independent of all other observed evidence

given the taxonomy T, i.e.,

P (E|T) =
∏

ER
ij∈E

P (ER
ij |T)

This can be seen as a sort of “Naive Bayes” assumption; this is justified when the

actual individual sets of evidence used by the underlying relation classifiers are uncor-

related from one another. This assumption is violated, however, if multiple relation
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classifiers use correlated evidence; for example, multiple relation classifiers could use

exactly the same evidence to predict the same relation, and the violation of this

assumption would result in an overconfident prediction.

Further, we assume that each item of observed evidence ER
ij depends on the tax-

onomy T only by way of the corresponding relation Rij , i.e.,

P (ER
ij |T) =

{

P (ER
ij |Rij ∈ T) if Rij ∈ T

P (ER
ij |Rij 6∈ T) if Rij 6∈ T

For example, if our evidence EH
ij is a set of observed lexico-syntactic patterns indica-

tive of hypernymy between two words i and j, we assume that whatever dependence

the relations in T have on our observations may be explained entirely by dependence

on the existence or non-existence of the single hypernym relation H(i, j).

Applying these two independence assumptions we may express the conditional

probability of our evidence given the taxonomy:

P (E|T) =
∏

Rij∈T

P (ER
ij |Rij ∈ T)

·
∏

Rij 6∈T

P (ER
ij |Rij 6∈ T).

Rewriting the conditional probability in terms of our estimates of the posterior prob-

abilities P (Rij|E
R
ij) using Bayes Rule, we obtain:

P (E|T) =
∏

Rij∈T

P (Rij ∈ T|ER
ij)P (ER

ij )

P (Rij ∈ T)

·
∏

Rij 6∈T

P (Rij 6∈ T|ER
ij)P (ER

ij )

P (Rij 6∈ T)
.

Within our model we define the goal of taxonomy induction to be to find the

taxonomy T̂ that maximizes the conditional probability of our observations E given
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the relationships of T, i.e., to find:

T̂ = arg max
T

P (E|T).

3.4 Managing lexical ambiguity

Since word senses are typically not directly observable, if the objects in the taxonomy

are word senses (as in WordNet), we must extend our model to allow for a many-to-

many mapping (e.g., a word-to-sense mapping) between CE and CT. For this setting

we assume we know the function senses(i), mapping from the word i to all of i′s

possible corresponding senses. For example, in the case of predicting that Continental

is a kind carrier, the function senses(i) applied to the word carrier would result in

the 11 noun senses of carrier listed in WordNet.

We assume that each set of word-pair evidence ER
ij we possess is in fact sense-pair

evidence ER
kl for a specific pair of senses k0 ∈ senses(i), l0 ∈ senses(j). Further, we

assume that a new relation between two words is probable only between the correct

sense pair, i.e.:

P (Rkl|E
R
ij) = 1{k = k0, l = l0} · P (Rij|E

R
ij ).

When computing the conditional probability of a specific new relation Rkl ∈ I(Rab),

we assume that the relevant sense pair k0, l0 is the one which maximizes the probability

of the new relation, i.e. for k ∈ senses(i), l ∈ senses(j),

(k0, l0) = argmax
k,l

P (Rkl ∈ T|ER
ij).

Our independence assumptions for this extension need only to be changed slightly;

we now assume that the evidence ER
ij depends on the taxonomy T via only a single

relation between sense-pairs Rkl. Using this revised independence assumption the

derivation for taxonomy likelihood remains unchanged. One side effect of this revised

independence assumption is that the addition of the single “sense-collapsed” relation

Rkl in the taxonomy T will explain the evidence ER
ij for the relation over words i and

j now that such evidence has been revealed to concern only the specific senses k and
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l.

3.5 Operations over taxonomies

Among the most primitive operations one can define over a taxonomy are the addi-

tion and removal of relations between concepts. Here we define the Add-Relation

and Remove-Relation operations, and derive the effect of these operations on

the taxonomy likelihood. Additionally we define the corresponding Add-Concept

and Remove-Concept operations in terms of the Add-Relation and Remove-

Relation operations. Finally we define the Merge-Concepts operation, which

has the effect of combining two similar synsets.

3.5.1 Adding relations

The most primary operation over a taxonomy is the addition of a novel link between

two synsets. Here we refer to the operation of adding a new link of relation type R

between node ci and node cj in the taxonomy T as Add-Relation(Rij ,T). In order

to calculate how the taxonomy likelihood is effected by this operation, we may define

the multiplicative change ∆T(Rij) to the conditional probability P (E|T) given the

addition of a single relation Rij ; this may be expressed as:

∆T(Rij) = P (E|T′)/P (E|T)

=
P (Rij ∈ T|ER

ij)P (ER
ij)

P (Rij 6∈ T|ER
ij)P (ER

ij)
·
P (Rij 6∈ T)

P (Rij ∈ T)

= k

(

P
(

Rij ∈ T|ER
ij

)

1− P
(

Rij ∈ T|ER
ij

)

)

.

Here k is the inverse odds of the prior on the event Rij ∈ T; we consider this to

be a constant independent of ci, cj, and the taxonomy T.

To enforce the taxonomic constraints in T, for each application of the Add-

Relation operator we must add all new relations in the implied set I(Rij) not



3.5. OPERATIONS OVER TAXONOMIES 83

already in T.2 Thus we define the multiplicative change of the full set of implied

relations as the product over all new relations:

∆T(I(Rij)) =
∏

R∈I(Rij )

∆T(R).

In Section 4.3 we will discuss a search algorithm over the space of taxonomies using

this operator.

3.5.2 Removing relations

Similarly to Add-Relation, we may define the operation of removing a single link

of relation type R between two nodes ci and cj in a taxonomy T as Remove-

Relation(Rij ,T). In order to calculate how the taxonomy likelihood is effected

by this operation, we may define the multiplicative change ∆T(Rij) to the condi-

tional probability P (E|T) given the removal of a single relation Rij; this may be

expressed as:

∆T(Rij) = P (E|T′)/P (E|T)

=
P (Rij 6∈ T|ER

ij)P (ER
ij)

P (Rij ∈ T|ER
ij)P (ER

ij)
·
P (Rij ∈ T)

P (Rij 6∈ T)

= k

(

1− P
(

Rij ∈ T|ER
ij

)

P
(

Rij ∈ T|ER
ij

)

)

.

Here k is the odds of the prior of the event Rij ∈ T; as in the case of Add-

Relation, we consider this to be a constant independent of i, j, and the taxonomy

T.

As before, the removal of a particular relation may potentially violate certain

taxonomic constraints in T; upon the application of the Remove-Relation operator

2For example, in order to add the new synset microsoft under the noun synset company#n#1

in WordNet 2.1, we must necessarily add the new relations H2(microsoft, institution#n#1)
C11(microsoft, dotcom#n#1), and so on.



84 CHAPTER 3. SEMANTIC TAXONOMY INDUCTION

we must remove all other relations previously implied by that single link. Thus we

may again consider the set of implied relations by the relation to be removed as I(Rij);

in order to express the removal of the single link, we will remove all such links already

in T.3

Thus we define the multiplicative change of removing the full set of implied rela-

tions as the product over all implied relations:

∆T(I(Rij)) =
∏

R∈I(Rij )

∆T(R).

3.5.3 Adding concepts

The next most primitive operations we can apply to a taxonomy are to add and

remove concepts. We can easily perform these operations using the previously defined

Add-Relation and Remove-Relation operations. In particular, if we consider

that we are adding a concept ci with a set of relations R, we need only to apply

the Add-Relation operator to each relation in R. In this notation we will state

that the Add-Concept operator takes three arguments: the concept ci being added,

the set of relations R being added between the concept ci and other concepts in the

taxonomy, and the particular taxonomy T being modified. Using this terminology,

we may write the effect of the Add-Concept operator as:

Add-Concept(ci,R,T) :

∀Rij ∈ R :

Add-Relation(Rij,T)

3For example, in the inverse case of the Add-Relation operation above, if we remove a hypernym
link between microsoft under the noun synset company#n#1 in WordNet 2.1, we must necessarily
remove the implied relations H2(microsoft, institution#n#1), C11(microsoft, dotcom#n#1), and
so on.
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3.5.4 Removing concepts

Similarly we may define the Remove-Concept operation for a specific concept

ci by identifying the set of relations R that the concept ci participates in, and then

iteratively removing those relations from the taxonomy using the Remove-Relation

operator. As above we will state that the Remove-Concept operator takes three

arguments: the concept ci being added, the set of relations R being added between the

concept ci and other concepts in the taxonomy, and the particular taxonomy T being

modified. Using this terminology, we may write the effect of the Remove-Concept

operator as:

Remove-Concept(ci,R,T) :

∀Rij ∈ R :

Remove-Relation(Rij ,T)

3.5.5 Merging concepts

Having defined methods for adding and removing relations and concepts, we may

build upon these operations in order to describe an additional Merge-Concepts

operation. Here we will consider concepts and synsets interchangeably. There are

several reasons for calculating whether two concepts, or synsets should be merged;

there may be multiple synsets containing different words for the same concept, or

the senses used in a particular taxonomy may be too fine-grained for a particular

operation.

We define the Merge-Concepts operator so that it takes four arguments: the

two concepts ci and cj to be merged, the set of all existing relations in the taxon-

omy in which concept cj participates, and the taxonomy T being modified. With

this terminology we may write the effect of the Merge-Concepts operator as a

combination of the Add-Relation and Remove-Synset operators, as follows:
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Merge-Concepts(ci, cj,R,T) :

∀Rjk ∈ R :

Add-Relation(Rik,T)

Remove-Synset(cj ,R,T).

In this formulation we assume we have a classifier capable of predicting whether

two synsets should be merged based on some set of evidence E; we describe one

such classifier in Chapter 5. We derive the effect of the Merge-Concepts oper-

ator on taxonomy likelihood and corresponding search algorithm for coarse-grained

taxonomies in Chapter 5.

3.6 Discussion

We have presented a framework for inducing semantic taxonomies which attempts to

globally optimize the entire structure of the taxonomy. Our probabilistic architecture

also includes a model for learning coordinate terms based on (m, n)-cousin classifica-

tion. The model’s ability to integrate heterogeneous evidence from different classifiers

offers the ability to formally quantify the probabilistic effects of several operations

over a taxonomy, including adding and removing relations, and adding, removing,

and merging concepts.



Chapter 4

Creating Augmented Taxonomies

4.1 Introduction

A primary motivation for our work in semantic taxonomy induction has been the

goal of providing a means for automatically augmenting taxonomies from textual

data. This chapter focuses on the largest of our projects in this direction: the set

of augmented taxonomies that we have released as part of the Stanford Wordnet

Project. The lexical resources discussed in this chapter can be found at the Stanford

Wordnet Project homepage, at:

http://ai.stanford.edu/∼rion/swn

In this chapter we discuss the application of our framework for taxonomy induction

to the problem of automatically augmenting the WordNet taxonomy. In Section

4.2 we discuss the specific relations and taxonomic constraints in WordNet that we

augment and use; in Section 4.3 we propose a search algorithm over the space of

taxonomies using an operator for adding concepts; in Section 4.4 we discuss the

relation classifiers we use in order to construct augmented taxonomies; in Section

4.5 we give examples of inference and give specific details of our implementation;

in Section 4.6 we evaluate our taxonomy induction using a variety of performance

measures; and finally in Section 4.7 we conclude with discussion of our results.

87
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4.2 WordNet relations and constraints

In this section we discuss the relations and taxonomic constraints that we exploit in

order to automatically augment WordNet. For the case of hyponym acquisition, the

objects in our taxonomy are WordNet synsets. In this set of experiments we focus

on augmenting WordNet by inferring novel noun hyponyms. We focus on the two

WordNet relationships most relevant to hyponym induction: the hypernym relation

and the coordinate term relation.

4.2.1 The WordNet hypernym relation

Here we discuss our notation of the hypernym relation. We use the notation Hn
ij to

describe the relation between two concepts ci and cj if a sense cj is the n-th ancestor

of a sense ci in the hypernym hierarchy. We will simply use Hij to indicate that

cj is an ancestor of ci at some unspecified level. As an example, in Figure 4.1 we

have depicted a section of the WordNet noun hypernym hierarchy regarding animals.

According to the relations depicted in Figure 4.1 we would state that dog and canine

are in an H1 relation, while dog and mammal are in a H4 relation.

4.2.2 The WordNet coordinate term relation

Two senses are commonly considered to be “coordinate terms” or “taxonomic sisters”

if they share an immediate parent in the hypernym hierarchy. As introduced in Section

2.9.3, we generalize this notion of siblinghood to state that two senses ci and cj are

(m, n)-cousins if their closest least common subsumer (LCS) is within exactly m and

n links, respectively. A least common subsumer LCS(ci, cj) is defined as a synset that

is an ancestor in the hypernym hierarchy of both ci and cj which has no child that is

also an ancestor of both ci and cj . When there is more than one LCS (due to multiple

inheritance), we refer to the closest LCS, i.e.,the LCS that minimizes the maximum

distance to ci and cj . In this definition, an (m, n)-cousin for m ≥ 2 corresponds to

the English kinship relation “(m− 1)-th cousin |m− n|-times removed”. We use the

notation Cmn
ij to denote that i and j are (m, n)-cousins. Thus coordinate terms are
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Figure 4.1: Example of (m, n)-relations among animal concepts in WordNet
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oscine 
bird

living 
thing

corvine 
bird

raven

table

object

desk

writing 
desk

unit

7 nodes 4 nodes

Figure 4.2: Example of (m, n)-relation between raven and writing desk in WordNet

(1, 1)-cousins; technically the hypernym relation may also be seen as a specific case of

this representation; an immediate parent in the hypernym hierarchy is a (1, 0)-cousin,

and the k-th ancestor is a (k, 0)-cousin.

As an example of (m, n)-cousins in WordNet, consider Figure 4.1. Here we have

dog and cat in a C22 relation, bird and fish in a C12 relation, bird and horse in a C16

relation, and so forth.

As a sidenote, we can use the notion of (m, n)-cousins and WordNet to answer

Lewis Carroll’s riddle from Alice in Wonderland, “Why is a raven like a writing

desk?”—albeit in a rather boring way. As demonstrated in Figure 4.2, we may say

that raven and writing desk are (8−11)-cousins by way of their shared least common

subsumer, object.

4.2.3 Taxonomic constraints

As discussed in 3.2, a semantic taxonomy such as WordNet enforces certain taxonomic

constraints which disallow particular taxonomies T. For example, the hypernym

transitivity constraint in WordNet requires that each synset inherits the hypernyms
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of its hypernym, and the part-inheritance constraint requires that each synset inherits

the meronyms of its hypernyms.

For the specific case of hyponym acquisition we are concerned with the following

three taxonomic constraints on the hypernym and (m, n)-cousin relations: hypernym

acyclicity, hypernym transitivity, and (m, n)-cousinhood:

1. Hypernym Acyclicity Condition:

∀n, m.Hn
ij ⇒ ¬H

m
ji

2. Hypernym Transitivity:

Hm
ij ∧Hn

jk ⇒ Hm+n
ik .

3. Definition of (m, n)-cousinhood:

Cmn
ij ⇔ ∃k.k = LCS(i, j) ∧Hm

ik ∧Hn
jk.

Constraint (1) requires that no pair of synsets can be in a hypernym relationship

with each other, while constraint (2) requires that the each synset inherits the hy-

pernyms of its direct hypernym, and constraint (3) simply defines the (m, n)-cousin

relation in terms of the atomic hypernym relation.

The addition of any new hypernym relation to a preexisting taxonomy will usually

necessitate the addition of a set of other novel relations as implied by the taxonomic

constraints. We refer to the full set of novel relations implied by a new link Rij

as I(Rij). For example, if we were to add the single hyponym dachshund under

the concept dog in Figure 4.1, there would be a large number of implied relations

in addition to the direct H1 relation with dog : there would be a H2 relation with

canine, an H3 relation with placental mammal, an H4 relation with mammal, as well

as a C23 relation with cat, a C13 relation with feline, and so forth.
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4.3 Searching over taxonomies

In Chapter 3 we stated that the goal of semantic taxonomy induction was to find the

the taxonomy T̂ that satisfies the following equation:

T̂ = arg max
T

P (E|T).

Here we propose a search algorithm for finding T̂ for the case of hyponym ac-

quisition. We assume we begin with some initial (possibly empty) taxonomy T. We

restrict our consideration of possible new taxonomies to those created by the single

operation Add-Concept(Rij ,T).

As described in Section 3.5, Add-Concept adds the single concept ci to T; here

we suppose that we are adding the single relationship Rij between the concept ci and

the chosen hypernym cj. As derived in Chapter 3, The multiplicative change ∆T(Rij)

to the conditional probability P (E|T) given the addition of the single relation Rij

can be expressed as :

∆T(Rij) = P (E|T′)/P (E|T)

=
P (Rij ∈ T|ER

ij)P (ER
ij)

P (Rij 6∈ T|ER
ij)P (ER

ij)
·
P (Rij 6∈ T)

P (Rij ∈ T)

= k

(

P
(

Rij ∈ T|ER
ij

)

1− P
(

Rij ∈ T|ER
ij

)

)

Where k is the inverse odds of the prior on the event Rij ∈ T; we consider this to

be a constant independent of i, j, and the taxonomy T.

To enforce the taxonomic constraints in T, for each application of the Add-

Concept operator we must add all new relations in the implied set I(Rij) not already

in T. Thus we define the multiplicative change of the full set of implied relations as

the product over all new relations:

∆T(I(Rij)) =
∏

R∈I(Rij )

∆T(R).
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This definition leads to the following best-first search algorithm for hyponym

acquisition, which at each iteration defines the new taxonomy as the union of the

previous taxonomy T and the set of novel relations implied by the relation Rij that

maximizes ∆T(I(Rij)) and thus maximizes the conditional probability of the evidence

over all possible single relations:

While max
Rij 6∈T

∆T(I(Rij)) > 1

T← T ∪ I(arg max
Rij 6∈T

∆T(I(Rij)))

We discuss the details of our specific implementation of local search in Section

4.5.

4.4 Use of relation classifiers

Here we describe how we use the hyponym and coordinate term classifiers in the

creation of our augmented taxonomies.

4.4.1 Hyponym classification

Our classifier for the hypernym relation is derived from the “hypernym-only” classifier

described in Chapter 2. The features used for predicting the hypernym relationship

are obtained by parsing a large corpus of newswire and encyclopedia text with Mini-

par [81]. From the resulting dependency trees the evidence EH
ij for each word pair

(wi, wj) is constructed; the evidence takes the form of a vector of counts of occur-

rences of each labeled syntactic dependency path as the shortest path connecting wi

and wj in some dependency tree. The labeled training set is constructed by label-

ing the collected feature vectors as positive “known hypernym” or negative “known

non-hypernym” examples using WordNet 2.0; 49,922 feature vectors were labeled as

positive training examples, and 800,828 noun pairs were labeled as negative training

examples. The model for predicting P (Hij|E
H
ij ) is then trained using logistic regres-

sion, predicting the noun-pair hypernymy label from WordNet from the feature vector
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of lexico-syntactic patterns.

The hypernym classifier described above predicts the probability P (Hij|E
H
ij ) of the

generalized hypernym-ancestor relation over words. This is typical of algorithms that

attempt to predict relations from natural text, due to the difficulty of disambiguating

the sense of a word in context. Nonetheless, being able to determine the appropriate

sense of the word participating in the semantic relationship is critical to being able to

integrate this knowledge into an existing taxonomy. Mistakenly choosing the wrong

sense of the word to add could be disastrous for applications using that knowledge

source; due to the transitivity of the relations in a knowledge base, a single mistaken

disambiguation could result in many further mistaken inferences further down the

pipeline. Thus for the purposes of taxonomy induction, we would much prefer to

have a set of classifiers over senses, i.e., for ck ∈ senses(wi), cl ∈ senses(wj), the set of

classifiers estimating {P (H1
kl|E

H
ij ), P (H2

kl|E
H
ij ), . . . }.

One problem that arises from directly assigning the probability P (Hn
ij|E

H
ij ) ∝

P (Hij|E
H
ij ) for all n is the possibility of adding a novel hyponym to an overly-specific

hypernym, which might still satisfy P (Hn
ij|E

H
ij ) for some very large n. For example,

we might predict that San Francisco is a kind of city, and that it is similar to London,

and thus perhaps infer that San Francisco is a capital city. In order to discourage

unnecessary overspecification, we penalize each probability P (Hk
ij|E

H
ij ) by a factor

λk−1 for some λ < 1, and renormalize: Pnew(Hk
ij |E

H
ij ) ∝ λk−1P (Hij|E

H
ij ). In our

experiments we set λ = 0.95.

4.4.2 (m, n)-cousin classification

Our classifier for learning coordinate terms relies on the notion of distributional sim-

ilarity, i.e., the idea that two words with similar meanings will be used in similar

contexts [62]. We extend this notion to suggest that words with similar meanings

should be near each other in a semantic taxonomy, and in particular will likely share

a hypernym as a near parent. Distributional similarity is an extremely powerful source

of evidence for semantic relationships between concepts. In particular it is a much
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denser form of evidence than our hypernym evidence; because we can collect evi-

dence about the distributional properties of a word in every occurrence of that word,

our distributional similarity classifier is capable of collecting evidence for taxonomic

relations across many more words than our hypernym classifier.

Our classifier for predicting (m, n)-cousins from distributional similarity is derived

from the algorithm and corpus given in [119]. In that work an efficient randomized

algorithm is derived for computing clusters of similar nouns. First, the features for

each noun are collected using a word window, adding the two words on the left and

two words on the right of each noun as features; these features of co-occurring words

are collected from a very large corpus of over 70 million web pages. Each element

in the feature vector for each noun is computed as the pointwise mutual information

between that noun and one of its co-occurring features, across all occurrences of that

feature for all nouns.

We use a set of more than 1000 distinct clusters of English nouns collected by their

algorithm over 70 million webpages, with each noun wi having a score with respect

to the cluster equal to its cosine similarity to the centroid c of the cluster to which

it belongs, i.e., cos(θ(wi, c)). As a preprocessing step we hand-edit the clusters to

remove those containing non-English words, terms related to adult content, and other

webpage-specific clusters. An example of some clusters generated by this algorithm

for airlines, operating systems, and biological entities is given in Figure 4.3.

We use the cluster scores of noun pairs as input to our own algorithm for predicting

the (m, n)-cousin relationship between the senses of two words wi and wj. If two words

wi and wj appear in a cluster together, with cluster centroid c, we set our single coor-

dinate input feature to be the minimum cluster score min(cos(θ(wi, c)), cos(θ(wj, c))),

and zero otherwise. For each such noun pair feature, we construct a labeled training

set of (m, n)-cousin relation labels from WordNet 2.1. We define a noun pair (wi, wj)

to be a “known (m, n)-cousin” if for some senses ck ∈ senses(wi), cl ∈ senses(wj),

Cmn
ij ∈ WordNet. That is, we automatically label a noun pair as an (m, n)-cousin

if we can find that pair connected in WordNet by that relation. In this way we are

able to automatically construct a training set over an arbitrarily large unannotated

corpus by using the distant supervision of WordNet. If more than one potential
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British Airways
American Airlines
United Airlines
Air France
KLM

Air Canada
Lufthansa
US Airways

SunOS
AIX
Unix
Linux

Unix System
DOS

operating system
NT

cortisol
epinephrine
glucocorticoid
norepinephrine
catecholamine
leptin
ACTH
prolactin

…Unix commands...

…running AIX…

 …Linux platform…

…US Airways flight...

… KLM announced…

 …Lufthansa fares…

…cortisol injection...

…leptin release…

 …ACTH levels…

Figure 4.3: Examples of coordinate clusters generated from distributional similarity

(m, n)-cousinhood relation exists between the noun pair, we assume that (wi, wj) are

an example of the (m, n)-cousinhood relation with smallest sum m + n, breaking ties

by smallest absolute difference |m− n|.

For constructing our distantly-supervised training set for coordinate terms we

consider all (m, n)-cousinhood relationships labeled from WordNet with 0 ≤ m, n ≤ 7.

Those pairs of words that don’t have a corresponding pair of synsets connected within

the hypernym hierarchy in WordNet, or which are connected but which have a least

common subsumer with a distance of more than 7 hops away in the hypernym graph,

are assigned to a single class C∞ representing pairs of nouns that are “effectively

unconnected” by a taxonomic relation in WordNet. Finally, we note that our measure

for calculating distributional similarity is symmetric, and for the purpose of training

our coordinate classifier we explicitly merge instances of (m, n)-cousinhood with their

corresponding (n, m)-cousin instances. That is, we define each (m, n) class to be the

union of (m, n)-cousins and (n, m)-cousins, regardless of order, i.e., Cmn = Cmn∪Cnm.

Due to this merging of the symmetric cousinhood classes, the resulting classifier for the

cousinhood relations will predict, as expected given a symmetric input, P (Cmn
kl |E

C
ij ) =
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P(Cmn(x,y) | sim(x,y) = 0.20) P(Cmn(x,y) | sim(x,y) = 0.80)

Figure 4.4: Visualization of probability of (m, n)-cousinhood given similarity score

P (Cnm
kl |E

C
ij ).

We find 333,473 noun synset pairs in our training set with similarity score greater

than 0.15. We next apply softmax regression to learn a classifier that predicts

P (Cmn
ij |E

C
ij ), predicting the WordNet class labels from the single similarity score

derived from the noun pair’s cluster similarity. A visualization of the probability

of (m, n)-cousinhood given the distributional similarity score is shown in Figure 4.4.

Here two similarity scores are visualized: 0.20 and 0.80. For each similarity score

the probability of a term being an (m, n)-cousin is represented as proportional to the

area of the circle in the corresponding relation to the red diamond in the lower left

corner of the diagram. For example, for both similarity scores, the greatest proba-

bility is the ∞-cousin relation, or “no relation” within a distance of 7, followed by

the (1, 1)-relation, followed by the (2, 1)-relation, and so forth. However, the relative

proportions of a node being in a (1, 1) or other close relation is much higher in the

case of the higher similarity score.
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4.5 Examples and discussion of implementation

Hyponym acquisition is among the simplest and most straightforward of the possible

applications of our model; here we show how we efficiently implement our algorithm

for this problem. First, we identify the set of all the word pairs (wi, wj) over which we

have hypernym and/or coordinate evidence, and which might represent the addition

of a novel hyponym to the WordNet 2.1 taxonomy (i.e., that has a known noun

hypernym and an unknown hyponym, or has a known noun coordinate term and an

unknown coordinate term). This yields a list of 95,000 single links over threshold

P (Rij|E) > 0.12.

For each unknown hyponym wi we may have several pieces of evidence; for ex-

ample, for the unknown term continental we have 21 relevant pieces of hypernym

evidence, with links to possible hypernyms {carrier, airline, unit, . . .}; and we have

5 pieces of coordinate evidence, with links to possible coordinate terms {airline,

american eagle, airbus, . . . }.

For each proposed novel hyponym wi, we explicitly compute the set of proposed

candidate hypernyms for wi based on the set of predicted hypernym and coordinate

links involved with wi. In practice, for each predicted hypernym link predicting the

hypernym wj, we add all senses of wj to the set of considered hypernyms. For each

predicted coordinate term wk we add to set of considered hypernyms all senses of

wk, as well as the first two hypernym ancestors of each possible sense of wk. Our

choice to consider only these taxonomic relations for the set of candidate hypernyms

is justified in an analysis of the probability distributions given by the hypernym and

coordinate classifiers.

First, the hypernym classifier predicting the relation Hn
kl between two words wk

and wl will predict wl as the immediate hypernym with higher probability than any

other potential word or concept due to the explicit construction of the classifier as

discussed in Section 4.4.1. More formally, the hypernym classifier is constructed

such that, considering only the evidence for the direct relation H1
kl, P (H1

kl|E
H
ij ) >

P (Hn
kl|E

H
ij ) for all n > 1. Thus the immediately predicted word is the most relevant

word to consider as an immediate hypernym when formulating the set of candidate
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hypernyms.

Second, the coordinate classifier predicts a distribution over Cmn classes as dis-

cussed in Section 4.4.2 and visualized in Figure 4.4. We may observe from Figure

4.4 that for high similarity pairs, the immediate coordinate (or (1,1)-cousin) is the

most likely relation, followed by the (2-1)-cousin, followed by the (2,2)-cousin, and so

forth. Therefore the most important possible hypernyms to consider are the imme-

diate hypernym of the coordinate term and the second hypernym of the coordinate

term; considering the coordinate term itself is justified by the large probability of

the (0-1)-cousin. More formally, we can observe that generally the relation holds in

Figure 4.4 that:

P (C11
kl |E

C
ij ) > P (C12

kl |E
C
ij ) > P (C22

kl |E
C
ij ) > P (Cmn

kl |E
C
ij )∀m > 2.

.

As an example of the explicit construction of the potential hypernym candidate

set, in the continental example, from the 26 individual pieces of evidence over words

we construct a set of 99 unique synsets that we will consider as possible hypernyms.

This set includes the two senses of the noun airline, the eleven senses of the noun

carrier, and so forth.

Next, we iterate through each of the possible hypernym synsets cl under which we

might add the new word wi; for each synset cl we compute the change in taxonomy

score resulting from adding the implied relations I(H1
il) required by the taxonomic

constraints of T. Since typically our set of all evidence involving wi will be much

smaller than the set of possible relations in I(H1
il), we may efficiently check whether,

for each sense s ∈ senses(w), for all words where we have some evidence ER
iw, whether

s participates in some relation with wi in the set of implied relations I(H1
il).

1 If there

is more than one sense s ∈ senses(w), we add to I(H1
il) the single relationship Ris′

1Checking whether or not Ris ∈ I(H1

il) may be efficiently computed by checking whether s is in
the hypernym ancestors of cl or if it shares a least common subsumer with cl within 7 steps.
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that maximizes the taxonomy likelihood, that is:

s′ = arg max
s∈senses(w)

∆T(Ris)

4.5.1 Hypernym sense disambiguation

A major strength of our model is its ability to correctly choose the sense of a hypernym

to which to add a novel hyponym, despite collecting evidence over untagged word

pairs. Word sense disambiguation is an implicit side-effect of our algorithm; since our

algorithm chooses to add the single link which, with its implied links, yields the most

likely taxonomy, and since each distinct synset in WordNet has a different immediate

neighborhood of relations, our algorithm simply disambiguates each node based on

its surrounding structural information.

As an example of sense disambiguation in practice, consider our example of conti-

nental. Suppose we are iterating through each of the 99 possible synsets under which

we might add continental as a hyponym, and we come to the synset airline#n#2 in

WordNet 2.1, i.e., “a commercial organization serving as a common carrier.” In our

consideration of the implied relations of adding continental to this sense of airline,

we must consider each of the relations shown in the right hand side of Figure 4.5.

In this case we will iterate through each piece of hypernym and coordinate evidence;

we find that the relation H(continental, carrier) is satisfied with high probability

for the specific synset carrier#n#5, the grandparent of airline#n#2 ; thus the fac-

tor ∆T(H3(continental, carrier#n#5)) is included in the factor of the set of implied

relations ∆T (I(H1(continental, airline#n#2))).

Suppose we instead evaluate the first synset of airline, i.e., airline#n#1, with

the gloss “a hose that carries air under pressure”. Again we must consider each of

the implied relations, as shown in the left-hand side of Figure 4.5. For this synset

none of the other 20 relationships directly implied by hypernym evidence or the 5

relationships implied by the coordinate evidence are implied by adding the single link

H1(continental,airline#n#1); thus the resulting change in the set of implied links

given by the correct “carrier” sense of airline is much higher than that of the “hose”

sense. In fact, the correct sense is the most strongly predicted of all the 99 considered
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airline#1: (a hose that carries 
air under pressure)

airline#2: (a commercial enterprise 
that provides scheduled flights for 
passengers)

Figure 4.5: Example of enforcing taxonomic constraints for adding continental to two
different senses of airline

hypernym links for continental, and in this experiment H1(continental, airline#n#2)

is link #18,736 added to the taxonomy by our algorithm.

4.5.2 Example inference

In order to see a representation of the inference process, consider the following figures.

Here we are attempting to determine the appropriate concept to pick as the hypernym

of a novel concept node for the token continental. At this point, WordNet contains no

concept for the noun term continental. In order to add a new term, we must determine

which concept in WordNet we ought to choose as the appropriate hypernym. As an

example baseline, consider the algorithm which simply chooses the first sense of most

probable single link predicted by the underlying relation classifiers. As shown in

Figure 4.6, the most probable single link predicted by the hypernym classifier is that

continental is a kind of carrier. While this inference is correct for one sense of carrier

(in fact, the fifth sense of carrier listed in WordNet), it is only true for that one sense –

and there are 11 different senses of carrier to choose from. Thus the naive algorithm

would fail to choose to correct sense; instead, it chooses the first sense of carrier,

a kind of a person. The gloss for that sense reads: “someone whose employment
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Predicted 

Hypernym

carrier 0.44

western 0.38

realist 0.25

partner 0.20

subsidiary 0.18

airline 0.18

Figure 4.6: Example of hypernym predictions for the token continental

involves carrying something”.

Suppose we consider the effect of taking into account the strongest prediction in

Figure 4.6, that continental is a kind of a carrier. Because our relation classifier does

not give us any explicit information about which word sense of carrier the relation

might refer to, our model correspondingly increments the prediction of each of the 11

different possible senses of carrier as the possible hypernym equally. The different

senses of the word carrier are not the only potential hypernyms whose probability are

increased; estimates that continental is a kind of airline, railway, bus line, Typhoid

Mary, luggage carrier, and ski rack all increase as well (along with many other con-

cepts), as these are each extended hyponyms of the various senses of carrier. Thus, if

continental is chosen as, say, a kind of bus line, this would explain the hypernym pre-

diction of continental as a carrier. In particular the concept of airline#n#2 increases

slightly due to this evidence, as airline#n#2 is a hyponym of carrier#n#5.

After taking into account the next piece of evidence from Figure 4.6—that con-

tinental is a kind of a western—we see little change in the overall estimates. Here

WordNet contains two senses for western—one as a kind of film, and one as a kind

of a sandwich. These senses do not interact with the senses of carrier until very high

up in the hierarchy (as a physical entity), and thus the relative probabilities for the

different senses of carrier or the other senses are unaffected.
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Term is a kind of 

aix 0.37 bird genus

unix 0.29 OS

linux 0.27 unix

ux 0.22 wife

unix system 0.18 OS

dos 0.18 exec. dept.

operating

system

0.18 software

nt 0.15 NGO

macintosh 0.15 fabric

Figure 4.7: Example of coordinate and corresponding hypernym predictions for the
token SunOS

After considering the sixth piece of evidence, however, the landscape changes; here

we see evidence for continental as a kind of airline. There are two senses of airline

in WordNet – one as a kind of hose, and the other as a kind of carrier. Because

there is a strong interaction between the second sense of airline and the fifth sense

of carrier, the hypothesis that continental is a kind of airline#n#2 is now the most

probable interpretation of the evidence. We find that after these six relations are

considered, the prediction of continental as a kind of airline#n#2 remains as the

highest prediction; thus, out of the more than 80,000 possible concepts which our

system might choose as a hypernym, this inference process succeeds in finding the

most likely hypernym for this novel concept.

Similarly we may consider the same inference process for the novel term SunOS ;

while WordNet does not contain a concept for this operating system, it does contain

Unix, Linux, DOS and other operating systems. Here in Figure 4.7 we display the

most highly predicted coordinate terms using our coordinate classifier, along with

their direct hypernyms known in WordNet.

Here we see that our coordinate classifier predicts several strong associations with
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SunOS, including AIX, UNIX, Linux, and so forth. Unfortunately, WordNet only

knows a fraction of these as operating systems; for instance, WordNet only contains

the term AIX as a kind of bird genus, and the term UX as a kind of wife. Thus, again,

the naive algorithm of selecting the first sense of the most likely link will fail again

here: in this case, selecting AIX as the most likely coordinate, the naive algorithm

would assign the hypernym bird genus to SunOS as well.

Consider our estimate of the taxonomy likelihood after considering only the first

prediction for SunOS, that is, the prediction that SunOS is similar to AIX, and thus

a kind of a bird genus. Since there is only one sense of AIX listed in WordNet, the

probability for the hypernym bird genus and nearby concepts is increased by taking

into account this prediction.

After considering the next piece of evidence from Figure 4.7, that SunOS is similar

to UNIX, this gives the largest probability increase to SunOS sharing a hypernym

with UNIX, namely stating that SunOS is a kind of an operating system. However,

the probability that SunOS is a kind of a UNIX also increases, though not as much.

After considering six predictions, the distribution of hypernym probabilities begins

to stabilize. Here the sixth piece of evidence is that SunOS is similar to DOS. In this

case there are actualy two relevant senses of DOS within WordNet; first, the sense

that DOS is the Department of State, that is, an executive department. The second

listed sense of DOS is as the Disk Operating System, an operating system. Thus

taking into account this evidence increases the likelihood for both SunOS as a kind

of an executive department and as a kind of operating system; however, no other

evidence supports the interpretation of SunOS as an executive department, whereas

the interpretations of evidence of similarity to UNIX, LINUX, and UNIX operating

system all support the interpretation that SunOS is an operating system. Thus after

taking into account this evidence, operating system is the most likely hypernym by

far; this interpretation remains the most likely after taking into account all further

evidence.

In Figure 4.8 we give a brief listing of some of the other novel hyponyms inferred

by our algorithm. While some of the inferred hypernyms are fairly specific named

entities, such as new companies and markup languages, many of the inferences are
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Hypernym Hyponyms in 

WordNet

Not in WN, but added by 

our algorithm

hormone insulin

progesterone

leptin

pregnenolone

quality combustibility

navigability

arability

affordability

reusability

extensibility

markup 

language

HTML 

SGML

XML

XHTML

company “East India 

Company”

Microsoft

IBM

Figure 4.8: Example novel hypernyms inferred in SWN

actually quite general concepts, such as novel “qualities” which are, for one reason

or another, simply not listed in WordNet, including affordability, reusability, and

extensibility.

4.6 Evaluation

In order to evaluate our framework for taxonomy induction, we have applied hy-

ponym acquisition to construct several distinct taxonomies, starting with the base of

WordNet 2.1 and only adding novel noun hyponyms. Further, we have constructed

taxonomies using a baseline algorithm, which uses the identical hypernym and coordi-

nate classifiers used in our joint algorithm, but which does not combine the evidence

of the classifiers.

Here we describe our evaluation methodology, analyze the fine-grained precision

and disambiguation precision of our algorithm compared to the baseline, and com-

pare the coarse-grained precision of our links (motivated by categories defined by
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1 Tops 8 communication 15 object 22 relation
2 act 9 event 16 person 23 shape
3 animal 10 feeling 17 phenomenon 24 state
4 artifact 11 food 18 plant 25 substance
5 attribute 12 group 19 possession 26 time
6 body 13 location 20 process
7 cognition 14 motive 21 quantity

Table 4.1: The 26 WordNet supersenses

the WordNet supersenses) against the baseline algorithm and against an “oracle” for

named entity recognition. Finally, in section 4.6.5 we evaluate the taxonomies in-

ferred by our algorithm directly against the WordNet 2.1 taxonomy; we perform this

evaluation by testing each taxonomy on a set of human judgments of hypernym and

non-hypernym noun pairs sampled from newswire text.

4.6.1 Methodology

We evaluate the quality of our acquired hyponyms by direct judgment. In four sep-

arate annotation sessions, two judges labeled {50,100,100,100} samples uniformly

generated from the first {100,1000,10000,20000} single links added by our algorithm,

respectively.

For the direct measure of fine-grained precision, we simply ask for each link

H(X, Y ) added by the system, is X a Y ? In addition to the fine-grained preci-

sion, we give a coarse-grained evaluation, inspired by the idea of supersense-tagging

in [31]. The 26 supersenses used in WordNet 2.1 are listed in Table 4.1; we label a hy-

ponym link as correct in the coarse-grained evaluation if the novel hyponym is placed

under the appropriate supersense. This evaluation task is similar to a fine-grained

Named Entity Recognition [51] task with 26 categories; for example, if our algorithm

mistakenly inserts a novel non-capital city under the hyponym state capital, it will

inherit the correct supersense location.

Finally, we evaluate the ability of our algorithm to correctly choose the appropriate

sense of the hypernym under which a novel hyponym is being added. Our labelers

categorize each candidate sense-disambiguated hypernym synset suggested by our



4.6. EVALUATION 107

algorithm into the following categories:

c1: Correct sense-disambiguated hypernym.

c2: Correct hypernym word, but incorrect sense of that word.

c3: Incorrect hypernym, but correct supersense.

c4: Any other relation is considered incorrect.

A single hyponym/hypernym pair is allowed to be simultaneously labeled 2 and

3.

4.6.2 Fine-grained evaluation

Table 4.2 displays the results of our evaluation of fine-grained precision for the baseline

non-joint algorithm (Base) and our joint algorithm (Joint), as well as the relative

error reduction (ER) of our algorithm over the baseline. When we report accuracy

use the minimum of the two judges’ scores. Here we define fine-grained precision as

c1/total. We see that our joint algorithm strongly outperforms the baseline, and has

high precision for predicting novel hyponyms up to 10,000 links.

4.6.3 Hypernym sense disambiguation

Also in Table 4.2 we compare the sense disambiguation precision of our algorithm

and the baseline. Here we measure the precision of sense-disambiguation among all

examples where each algorithm found a correct hyponym word; our calculation for

disambiguation precision is c1/ (c1 + c2). Again our joint algorithm outperforms the

baseline algorithm at all levels of recall. Interestingly the baseline disambiguation

precision improves with higher recall; this may be attributed to the observation that

the highest-confidence hypernyms predicted by individual classifiers are likely to be

polysemous, whereas hypernyms of lower confidence are more frequently monosemous

(and thus trivial to disambiguate).
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Fine-grained Pre. Disambiguation Pre.
#Links Base Joint ER Base Joint ER

100 0.60 1.00 100% 0.86 1.00 100%
1000 0.52 0.93 85% 0.84 1.00 100%
10000 0.46 0.84 70% 0.90 1.00 100%
20000 0.46 0.68 41% 0.94 0.98 68%

Table 4.2: Fine-grained and disambiguation precision and error reduction (ER) for
hyponym acquisition

# Links NER Base Joint ER vs. ER vs.
Oracle NER Base

100 1.00 0.72 1.00 0% 100%
1000 0.69 0.68 0.99 97% 85%
10000 0.45 0.69 0.96 93% 70%
20000 0.54 0.69 0.92 83% 41%

Table 4.3: Coarse-grained precision and error reduction (ER) vs. non-joint baseline
and named entity recogzier (NER) oracle

4.6.4 Coarse-grained evaluation

We compute coarse-grained precision as (c1 + c3)/total. Inferring the correct coarse-

grained supersense of a novel hyponym can be viewed as a fine-grained (26-category)

Named Entity Recognition task; our algorithm for taxonomy induction can thus be

viewed as performing high-accuracy fine-grained NER. Here we compare against both

the baseline non-joint algorithm as well as an “oracle” algorithm for Named Entity

Recognition, which perfectly classifies the supersense of all nouns that fall under

the four supersenses {person, group, location, quantity}, but works only for those

supersenses. Table 4.3 shows the results of this coarse-grained evaluation. We see

that the baseline non-joint algorithm has higher precision than the NER oracle as

10,000 and 20,000 links; however, both are significantly outperformed by our joint

algorithm, which maintains high coarse-grained precision (92%) even at 20,000 links.
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# Links Baseline Joint ER
100 0.86 1.00 100%
1000 0.84 1.00 100%
10000 0.90 1.00 100%
20000 0.94 0.98 67%

Table 4.4: Sense-disambiguation precision and error reduction of sense-disambiguated
hyponym acquisition

WN +10K +20K +30K +40K
PRE 0.524 0.524 0.574 0.583 0.571
REC 0.165 0.165 0.203 0.211 0.211

F 0.251 0.251 0.300 0.309 0.307

Table 4.5: Taxonomy hypernym classification vs. WordNet 2.1 on hand-labeled test-
set

4.6.5 Comparison of inferred taxonomies and WordNet

For our final evaluation we compare our learned taxonomies directly against the

currently existing hypernym links in WordNet 2.1. In order to compare taxonomies

we use a hand-labeled test set of over 5,000 noun pairs, randomly-sampled from

newswire corpora, as described in Section 2.4. We measured the performance of both

our inferred taxonomies and WordNet against this test set.2 The performance and

comparison of the best WordNet classifier vs. our taxonomies is given in Table 4.5.

Our best-performing inferred taxonomy on this test set is achieved after adding 30,000

novel hyponyms, achieving a 23% relative improvement in F-score over the WN2.1

classifier.

2We found that the WordNet 2.1 model achieving the highest F-score used only the first sense
of each hyponym, and allowed a maximum distance of 4 edges between each hyponym and its
hypernym.
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2006:  

40,000 new synsets

2008:  

400,000 new synsets

Figure 4.9: Growth of the Stanford Wordnet

4.7 Discussion

In this chapter we have demonstrated the application of our framework for taxon-

omy induction to the problem of automatically augmenting the WordNet taxonomy.

We have presented a local search algorithm using an operation for adding novel con-

cepts, and shown that this algorithm is effective for creating augmented taxonomies.

We have shown that our taxonomy induction framework significantly outperforms a

baseline algorithm for taxonomy augmentation, and that our augmented taxonomies

significantly outperform WordNet in a hyponym recognition task in newswire text.

As shown in Figure 4.9, since the beginning of the Stanford Wordnet in 2006 we

have expanded the total size of the noun hypernym hierarchy in WordNet by more

than 400%; the first release of the Stanford Wordnet was in 2006, with 40,000 novel

noun synsets; in 2008 we released a version with a total of 400,000 new noun synsets,

also available at the Stanford Wordnet homepage at

http://ai.stanford.edu/∼rion/swn.



Chapter 5

Creating Sense-clustered

Taxonomies

5.1 Introduction

A major benefit and use case of taxonomies such as WordNet are as repositories for

the different possible senses or meanings of lexical items. Defining a discrete inventory

of senses for a word is extremely difficult [71, 58, 104]. Perhaps the greatest obstacle

is the dynamic nature of sense definition: the correct granularity for word senses

depends on the application. For language learners, a fine-grained set of word senses

may help in learning subtle distinctions, while coarsely-defined senses are probably

more useful in NLP tasks like information retrieval [57], query expansion [97], and

word sense disambiguation (WSD) [121, 104].

Lexical resources such as WordNet [50] use extremely fine-grained notions of word

sense, which carefully capture even minor distinctions between different possible word

senses (e.g., the 8 noun senses of bass shown in Figure 5.1). These very similar

senses can be clustered together, however, in order to produce more coarse-grained

inventories. Producing sense-clustered inventories of arbitrary sense granularity is

thus crucial for tasks which depend on lexical resources like WordNet, and is also

important for the task of automatically constructing new WordNet-like taxonomies. A

solution to this problem must also deal with the constraints of the WordNet taxonomy

111
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INSTRUMENT 7: ...the lowest range of a family of musical instruments

FISH

4: the lean flesh of a saltwater fish of the family Serranidae

5: any of various North American freshwater fish with lean flesh

8: nontechnical name for any of numerous... fishes

SINGER
3: an adult male singer with the lowest voice

6: the lowest adult male singing voice

PITCH
1: the lowest part of the musical range

2: the lowest part in polyphonic music

Figure 5.1: Sense clusters for the noun bass ; the eight WordNet senses as clustered
into four groups in the Senseval-2 coarse-grained evaluation data

itself; for example when clustering two senses, we need to consider the transitive effects

of merging synsets.

The state of the art in sense clustering is insufficient to meet these needs. Current

sense clustering algorithms are generally unsupervised, each relying on a different set

of useful features or hand-built rules. But hand-written rules have little flexibility to

produce clusterings of different granularities, and previously proposed methods offer

little in the direction of intelligently combining and weighting the many proposed

features.

In response to these challenges, we propose a new algorithm for clustering large-

scale sense hierarchies like WordNet. Our algorithm is based on a supervised classifier

that learns to make graduated judgments corresponding to the estimated probability

that each particular sense pair should be merged. This classifier is trained on gold

standard sense clustering judgments using a diverse feature space. We are able to

use the outputs of our classifier to produce a ranked list of sense merge judgments by

merge probability, and from this create sense-clustered inventories of arbitrary sense

granularity.1

1We have made sense-clustered Wordnets using the algorithms discussed in this chapter available
for download at http://ai.stanford.edu/∼rion/swn.
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A wide number of manual and automatic techniques have been proposed for clus-

tering sense inventories and mapping between sense inventories of different granular-

ities. Much work has gone into methods for measuring synset similarity; early work

in this direction includes [46], which attempted to discover sense similarities between

dictionary senses. A variety of synset similarity measures based on properties of

WordNet itself have been proposed; nine such measures are discussed in [112], includ-

ing gloss-based heuristics [79, 7], information-content based measures [120, 82, 66],

and others. Other approaches have used specific cues from WordNet structure to

inform the construction of semantic rules; for example, [114] suggest clustering two

senses based on a wide variety of structural cues from WordNet, including if they

are twins (if two synsets share more than one word in their synonym list) or if they

represent an example of autohyponymy (if one sense is the direct descendant of the

other). [93] implements six semantic rules, using twin and autohyponym features, in

addition to other WordNet-structure-based rules such as whether two synsets share

a pertainym, antonym, or are clustered together in the same verb group.

A large body of work has attempted to capture corpus-based estimates of word

similarity [113, 81]; however, the lack of large sense-tagged corpora prevent most such

techniques from being used effectively to compare different senses of the same word.

Some corpus-based attempts that are capable of estimating similarity between word

senses include the topic signatures method; here, [3] collect contexts for a polysemous

word based either on sense-tagged corpora or by using a weighted agglomeration

of contexts of a polysemous word’s monosemous relatives (i.e., single-sense synsets

related by hypernym, hyponym, or other relations) from some large untagged corpus.

Other corpus-based techniques developed specifically for sense clustering include [88],

which uses a combination of word-to-word distributional similarity combined with the

jcn WordNet-based similarity measure, and work by [30] in finding co-occurrences

of senses within documents in sense-tagged corpora. Other attempts have exploited

disagreements between WSD systems [3] or between human labelers [28] to create

synset similarity measures; while promising, these techniques are severely limited by

the performance of the WSD systems or the amount of available labeled data.

Some approaches to clustering have made use of regular patterns of polysemy
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among words. [114] uses the Cousin relation defined in WordNet 1.5 to cluster

hyponyms of categorically related noun synsets, e.g., “container/quantity” (e.g., for

clustering senses of “cup” or “barrel”) or ”organization/construction” (e.g., for the

building and institution senses of “hospital” or “school”); other approaches based

on systematic polysemy include the hand-constructed CORELEX database [17], and

automatic attempts to extract patterns of systematic polysemy based on minimal

description length principles [145].

Another family of approaches has been to use either manually-annotated or au-

tomatically constructed mappings to coarser-grained sense inventories; an attempt

at providing coarse-grained sense distinctions for the Senseval-1 exercise included

a mapping between WordNet and the Hector lexicon [104]. Other attempts in this

vein include mappings between WordNet and PropBank [103] and mappings to Levin

classes [80, 104]. [99] presents an automatic approach for mapping between sense

inventories; here similarities in gloss definition and structured relations between the

two sense inventories are exploited in order to map between WordNet senses and dis-

tinctions made within the coarser-grained Oxford English Dictionary. Other work has

attempted to exploit translational equivalences of WordNet senses in other languages,

for example using foreign language WordNet interlingual indexes [57, 30].

In Section 5.2 we discuss the gold standard datasets that we use in our work;

in Section 5.2 we introduce our battery of features and explain our sense merge

classifier; in Section 5.4 we show how to extend our sense-merging model to cluster

full taxonomies like WordNet; in Section 5.5 we evaluate our classifier against thirteen

previously proposed methods for sense clustering, and in 5.6 we summarize and discuss

our results.

5.2 Gold standard sense clustering data

Our approach for learning how to merge senses relies upon the availability of labeled

judgments of sense relatedness. In this work we focus on two datasets of hand-labeled

sense groupings for WordNet: first, a dataset of sense groupings over nouns, verbs,

and adjectives provided as part of the Senseval-2 English lexical sample WSD task
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Senseval-2
POS Total Pairs Merged Pairs Proportion

Nouns 16403 2593 0.1581
Verbs 30688 3373 0.1099

Adjectives 8368 2209 0.2640

OntoNotes
POS Total Pairs Merged Pairs Proportion

Nouns 3552 347 0.0977
Verbs 4663 1225 0.2627

Table 5.1: Gold standard datasets for sense merging; only sense pairs that share a
word in common are included; proportion refers to the fraction of synsets sharing a
word that have been merged

[72], and second, a corpus-driven mapping of nouns and verbs in WordNet 2.1 to the

Omega Ontology [115], produced as part of the OntoNotes project [64]. Each of

these datasets provide a clustering of the senses of WordNet similar to that displayed

in Figure 5.1. That is, for a specific set of words, all the senses of those words are

presented in a single, fixed, coarse-grained clustering.

A wide variety of semantic and syntactic criteria were used to produce the Senseval-

2 groupings [103, 104]; this data covers all senses of 411 nouns, 519 verbs, and 257

adjectives, and has been used as gold standard sense clustering data in previous work

[3, 88]2. The number of judgments within this data (after mapping to WordNet 2.1)

is displayed in Table 5.1.

Due to a lack of interannotator agreement data for this dataset, [88] performed an

annotation study using three labelers on a 20-noun subset of the Senseval-2 group-

ings; the three labelers were given the task of deciding whether the 351 potentially-

related sense pairs were “Related”, “Unrelated”, or “Don’t Know”3. In this task the

pairwise interannotator F-scores were (0.4874, 0.5454, 0.7926), for an average F-score

of 0.6084.

2In order to facilitate future work in this area, we have made cleaned versions of these groupings
available at http://ai.stanford.edu/∼rion/swn along with a “diff” with the original files.

3This gold standard data has been made available at
ftp://ftp.informatics.susx.ac.uk/pub/users/dianam/relateGS/.
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POS Overlap ON-True ON-False F-Score
S-T S-F S-T S-F

Nouns 2116 121 55 181 1759 0.5063
Verbs 3297 351 503 179 2264 0.5072

Table 5.2: Agreement data for gold standard datasets

The OntoNotes dataset4 covers a smaller set of nouns and verbs, but it has been

created with a more rigorous corpus-based iterative annotation process. For each of

the nouns and verbs in question, a 50-sentence sample of instances is annotated using

a preliminary set of sense distinctions; if the word sense interannotator agreement for

the sample is less than 90%, then the sense distinctions are revised and the sample

is re-annotated, and so forth, until an interannotator agreement of at least 90% is

reached.

An interesting point to note on the different gold standard datasets is the differ-

ent sense resolutions at which senses are clustered together; for example, Figure 5.2

shows the different clusterings used by the Senseval-2 and the OntoNotes judges for

the verb oppose. Here we see that Senseval-2 groups “passive” and “active” senses

of oppose, whereas OntoNotes does not distinguish those; whereas OntoNotes does

distinguish between two other senses of oppose. This difference in sense resolution

in the gold standard datasets lends credence to the notion of having an automatic

method for determining variable sense clusterings of various resolutions. Here is one

case where rational human judges came to different decision about which resolution

certain senses should be clustered to; clearly there are multiple reasonable decision

points, and a more nuanced representation capable of capturing multiple decision

points is desirable.

We construct a combined gold standard set from these Senseval-2 and OntoNotes

groupings, removing disagreements. The overlap and agreement/disagreement data

between the two groupings is given in Table 5.2; here, for example, the column with

4The OntoNotes groupings were used as the coarse-grained sense inventory for the English lex-
ical sample task (Task 17) of SemEval-2007, and are now available through the Linguistic Data
Consortium.
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“be 
against”

“fight 
against”

“oppose with 
equal 
weight”

“set in 
opposition 

to”

“be resistant 
to”

“act 
against”

oppose 
(1)

oppose 
(2)

oppose 
(4)

oppose 
(5)

oppose 
(6)

Passively oppose Actively oppose Other

oppose 
(3)

“be 
against”

“fight 
against”

“oppose with 
equal 
weight”

“set in 
opposition 

to”

“be resistant 
to”

“act 
against”

oppose 
(1)

oppose 
(2)

oppose 
(4)

oppose 
(5)

oppose 
(6)

Be/fight/act against

oppose 
(3)

oppose (3) oppose (4)

OntoNotes Clustering

Senseval-2 Clustering

Figure 5.2: Examples of different sense clustering resolutions in the gold standard
datasets for the verb oppose

ON-True and S-F indicates the count of senses that OntoNotes judged as posi-

tive examples of sense merging, but that Senseval-2 data did not merge. We also

calculate the F-score achieved by considering only one of the datasets as a gold stan-

dard, and computing precision and recall for the other. Since the two datasets were

created independently, with different annotation guidelines, we cannot consider this

as a valid estimate of interannotator agreement; nonetheless the F-score for the two

datasets on the overlapping set of sense judgments (50.6% for nouns and 50.7% for

verbs) is roughly in the same range as those observed in [88].
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 make, 
create, 

produce (6)

make, 
create (3)

 make, 
create (9)

 make, do (11)

 make, cause, 
induce (4)

make, cause, 
do (5)

Figure 5.3: Examples of twin features for the verb make

5.3 Learning to merge word senses

5.3.1 WordNet-based features

Here we describe the feature space we construct for classifying whether or not a pair

of synsets should be merged; first, we employ a wide variety of linguistic features

based on information derived from WordNet. We use eight similarity measures im-

plemented within the WordNet::Similarity package5, described in [112]; these include

three measures derived from the paths between the synsets in WordNet: hso [63],

lch [77], and wup [155]; three measures based on information content: res [120],

lin [82], and jcn [66]; the gloss-based Extended Lesk Measure lesk, [7], and finally

the gloss vector similarity measure vector [110]. We implement the twin feature

[114], which counts the number of shared synonyms between two synsets; an example

of the twin feature for the verb make is shown in Figure 5.3.

Additionally we produce pairwise features indicating whether two senses share an

antonym, pertainym, or derivationally-related forms (deriv). An example of the

deriv feature for the word bank is shown in Figure 5.4.

We also create the verb-specific features of whether two verb synsets are linked in

a VerbGroup (indicating semantic similarity) or share a VerbFrame, indicating

syntactic similarity. Also, we encode a generalized notion of siblinghood in the MN

features, recording the distance of the synset pair’s nearest least common subsumer

5We choose not to use the path measure due to its negligible difference from the lch measure.
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bank (3): do 
business 
with a bank

bank (1): a 
financial 
institution

 bank (4): bank 
building

 bank (2): 
sloping land

bank (2): 
enclose 

with a bank

bank (5): be in 
the banking 
business

bank (6): put 
into a bank 
account

 bank (10):   
a flight 

maneuver

bank (1): tip 
laterally

Verbs

Nouns

Figure 5.4: Examples of shared derivational features for the noun and verb senses of
bank

(i.e., closest shared hypernym) from the two synsets, and, separately, the maximum of

those distances (MaxMN). These features represent a superset of the autohyponym

feature previously used in other research; an example of autonhyponymy in the verb

make is shown in Figure 5.5.

Previous attempts at categorizing systematic polysemy patterns within WordNet

has resulted in the Cousin feature6 These cousins include regular polysemy patterns

like “container/quantity” (e.g., for “cup” or “barrel”) and ”organization/construc-

tion” (e.g., for the building and institution senses of “hospital” or “school”). For

example, in Figure 5.6 we show an example of the regular polysemy patterns for

organization and construction as represented in the “cousin.tops” file. We create

binary features which indicate whether a synset pair belongs to hypernym ancestries

indicated by one or more of these Cousin features, and the specific cousin pair(s)

involved. Finally we create sense-specific features, including SenseCount, the total

number of senses associated with the shared word between the two synsets with the

highest number of senses, and SenseNum, the specific pairing of senses for the shared

word with the highest number of senses. From this we might hope to learn whether

6This data is included in the WordNet 1.6 distribution as the “cousin.tops” file.
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 make (5): 
give rise to

make (3): 
cause to be

 make 
(7)

 make (8): 
compel 
somebody 
to act

 make (9): 
create by 
artistic 
means

 make (12): 
design in a 
certain way

 make 
(15)

 make 
(17)

make 
(23)

make 
(28)

 make 
(39)

 make 
(42)

 make 
(46)

Figure 5.5: Examples of autohyponymy under the verb make

organization

hospital 
(2)

school 
(1)

academy 
(1)  

church 
(1)

construction

hospital 
(1)

school 
(2)

academy 
(4)  

church 
(2)

Figure 5.6: Examples of regular polysemy under organization and construction

the most frequent sense of a word has a higher chance of having infrequently-occurring

derivative senses.

5.3.2 Features derived from corpora and other lexical re-

sources

In addition to WordNet-based features, we use a number of features derived from

corpora and other lexical resources. We use the publicly available topic signature

data7 described in [4], yielding representative contexts for all nominal synsets from

7The topic signature data is available for download at
http://ixa.si.ehu.es/Ixa/resources/sensecorpus.



5.3. LEARNING TO MERGE WORD SENSES 121

WordNet 1.6. These topic signatures were obtained by weighting the contexts of

monosemous relatives of each noun synset (i.e., single-sense synsets related by hyper-

nym, hyponym, or other relations); the text for these contexts were extracted from

snippets using the Google search engine. We then create a sense similarity feature

by taking a thresholded cosine similarity between pairs of topic signatures for these

noun synsets.

Additionally, we use the WordNet domain dataset described in [85, 10]. This

dataset contains one or more labels drawn from 164 hierarchically organized “do-

mains” or “subject fields” for each noun, verb, and adjective synset in WordNet; we

derive a set of binary features from this data, with a single feature indicating whether

or not two synsets share a domain, and one indicator feature per pair of domains

indicating respective membership of the sense pair within those domains.

Finally, we use as a feature the mappings produced in [99] of WordNet senses to

Oxford English Dictionary senses. This OED dataset was used as the coarse-grained

sense inventory in the Coarse-grained English all-words task of SemEval-20078; we

specify a single binary feature for each pair of synsets from this data; this feature is

true if the words are clustered in the OED mapping, and false otherwise.

5.3.3 Classifier, training, and feature selection

We encode the above features into a sparse binary feature space of more than 20,000

features. Most of these features come from the WordNet domain dataset, since we

represent the set of pairs of domains as individual binary features. Most of the

other features we consider only have a single binary representation. Except where

explicitly stated above, we construct binary features for each individual value of

integer features above (e.g., for Twin and MaxMN), and we convert real-valued

features (i.e., WN-Sim and TopicSignature) into binary features by binning them

in a specific quantile range; we choose the number of bins using 10-fold cross validation

on our training set.

8http://lcl.di.uniroma1.it/coarse-grained-aw/index.html
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For each part of speech, we split the merged gold standard data into a part-of-

speech-specific training set (70%) and a held-out test set (30%). For every synset pair

we use the binary “merged” or “not-merged” labels to train a support vector machine

classifier9 [68] for each POS-specific training set. We perform feature selection and

regularization parameter optimization using 10-fold cross-validation.

5.4 Clustering senses in WordNet

The previous section describes a classifier which predicts whether two synsets should

be merged; we would like to use the pairwise judgments of this classifier to cluster

the senses within a sense hierarchy. In this section we present the challenge implicit

in applying sense merging to full taxonomies, and present our model for clustering

within a taxonomy.

5.4.1 Challenges of clustering a sense taxonomy

The task of clustering a sense taxonomy poses certain challenges not present in the

problem of clustering the senses of a word; in order to create a consistent clustering of

a sense hierarchy an algorithm must consider the transitive effects of merging synsets.

This problem is compounded in sense taxonomies like WordNet, where each synset

may have additional structured relations, e.g., hypernym (IS-A) or holonym (is-part-

of) links. In order to consistently merge two noun senses with different hypernym

ancestries within WordNet, for example, an algorithm must decide whether to have

the new sense inherit both hypernym ancestries, or whether to inherit only one, and

if so it must decide which ancestry is more relevant for the merged sense.

Without strict checking, human labelers will likely find it difficult to label a

sense inventory with transitively-consistent judgments. As an example, consider the

Senseval-2 clusterings of the verbs require and need, as shown in Figure 5.7. In WN

2.1 require has four verb senses, of which the first has synonyms {necessitate, ask,

9We use the SV Mperf package, freely available for non-commercial use from
http://svmlight.joachims.org; we use the default settings in v2.00, except for the regulariza-
tion parameter (set in 10-fold cross-validation).
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Clusering based on ‘‘need’’

Clustering based on ‘‘require’’

need#v#1
require#v#1

require as useful, just, or proper

need#v#2
require#v#4

have need of
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require#v#1
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require#v#4
need#v#2

have need of

require#v#2 consider obligatory; request and expect

require#v#3 make someone do something

Figure 5.7: Inconsistent sense clusters for the verbs require and need from Senseval-

2 judgments

postulate, need, take, involve, call for, demand}, and gloss “require as useful, just, or

proper”; and the fourth has synonyms {want, need}, and gloss “have need of.”

Within the word require, the Senseval-2 dataset clusters senses 1 and 4, leaving

the rest unclustered. In order to make a consistent clustering with respect to the

sense inventory, however, we must enforce the transitive closure by merging the synset

corresponding to the first sense (necessitate, ask, need etc.), with the senses of want

and need in the fourth sense. In particular, these two senses correspond to WordNet

2.1 senses need#v#1 and need#v#2, respectively, which are not clustered according

to the Senseval-2 word-specific labeling for need—need#v#1 is listed as a singleton

(i.e., unclustered) sense, though need#v#2 is clustered with need#v#3, “have or feel
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a need for.”

While one might hope that such disagreements between sense clusterings are rare,

we found 178 such transitive closure disagreements in the Senseval-2 data. The

OntoNotes data is much cleaner in this respect, most likely due to the stricter

annotation standard [64]; we found only one transitive closure disagreement in the

OntoNotes data, specifically WordNet 2.1 synsets (head#n#2, lead#n#7: “be in

charge of”) and (head#n#3, lead#v#4: “travel in front of”) are clustered under head

but not under lead.

5.4.2 Sense clustering as maximizing taxonomy likelihood

As a solution to the challenges listed previously, we formulate the problem of cluster-

ing a sense hierarchy in the probabilistic framework for taxonomy induction described

in Chapter 3. Whereas the use of the model in Chapter 4 considers the problem of

combining multiple pairwise classifiers in order to predict whether and where a novel

synset should be added to the hypernym hierarchy (using the Add-Concept oper-

ation), we build upon that work to use an additional Merge-Concepts operation,

as described in Section 3.5. Additionally, we show that under certain assumptions

a simple model for maximizing the resulting taxonomy likelihood is equivalent to

performing agglomerative clustering using pairwise sense-merge probabilities as sim-

ilarity scores.

First, we define the merge event Mij as clustering together two synsets ci and cj

within a taxonomy. We use the feature space and gold standard data described in

Section 3 as evidence EM
ij for predicting the merging of any pair of synsets that share a

word. In order to produce pairwise probability estimates of the form P (Mij|E
M
ij ), we

may convert the pairwise outputs of our SVM classifier into probabilistic judgments

about whether two senses should be merged using the method described in [116].

As in Chapter 3 we consider a model for taxonomy likelihood, with our goal being

to find the taxonomy T̂ that maximizes the conditional probability of our observations
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E given the existing taxonomy T, i.e., to find

T̂ = arg max
T

P (E|T).

Our model for taxonomy induction is simpler than that used in Chapter 4 for two

reasons: first, our evidence is already grounded to sense-disambiguated synsets rather

than words, and second in the absence of additional sources of information we may

cluster synsets without considering other probabilistic effects on the taxonomy.

We define the multiplicative change ∆T(Mij) to the conditional probability P (E|T),

resulting in a new taxonomy T′ after the merge action Mij as follows:

∆T(Mij) = P (E|T′)/P (E|T)

=
P (Mij|E

M
ij )P (EM

ij )

P (¬Mij|EM
ij )P (EM

ij )
·
P (¬Mij)

P (Mij)

= k

(

P
(

Mij |E
M
ij

)

1− P
(

Mij |EM
ij

)

)

.

Here k is the inverse odds of the prior on the merge event Mij ; by varying the prior

distribution over the number of senses for a given word as a free parameter, potentially

conditioned upon the initial number of senses within a taxonomy, this formulation

can be used to produce sense-clustered semantic taxonomies of arbitrarily coarse sense

granularity. We propose the corresponding best-first search algorithm for incremental

synset merging:

While max
Mij 6∈T

∆T(Mij) > 1

T← arg max
Mij 6∈T

∆T(Mij)

The primary benefit of this formulation is that additional sources of evidence for

sense relationships can directly be incorporated into the likelihood computation, for

example distributional similarity for predicting coordinate terms, or lexico-syntactic



126 CHAPTER 5. CREATING SENSE-CLUSTERED TAXONOMIES

patterns for predicting hypernyms. As shown in Chapter 4, robust prediction of

relationships in semantic taxonomies can greatly benefit from the use of multiple

interrelated sources of evidence.

One drawback to this model is that it requires an expensive recalculation of synset

features after each pair of senses is merged. Rather than recomputing each feature

and performing a new set of pairwise classifications after each merge operation, we in-

stead approximate the pairwise similarity score between a given synset with a merged

sense as the average of the similarity scores between the given synset and clustered

sense’s component synsets. Using this approximation, and without using additional

sources of evidence, the resulting algorithm for incrementally maximizing the taxon-

omy likelihood is equivalent to average-link agglomerative clustering. This may be

seen to be true by observing that after each successive merge event, only the pair-

wise probability judgments concerning the merged pair need to be updated; without

taking into account additional sources of evidence, the likelihood of other relations or

merge events remain unaffected.

Without exploiting additional hypernym or coordinate-term evidence, our algo-

rithm does not distinguish between judgments about which hypernym ancestry or

other structured relationships to keep or remove upon merging two synsets. In lieu of

additional evidence, for our experiments we choose to keep a single hypernym ances-

try, specifically the sense with the highest frequency in SemCor; we break frequency

ties by choosing the base sense as the earliest-listed sense in WordNet. For other

relationships (meronyms, entailments, pertainyms, etc.) we simply add each of these

relationships to the new merged sense (except in the rare case where adding a rela-

tion would cause a cycle in acyclic relations like hypernymy or holonymy, in which

case we omit it). Also, for the purpose of sense clustering we assume a zero sense

similarity score between synsets with no intersecting words. Using this approach to

taxonomy clustering we have produced several sense-clustered WordNets of varying

sense granularity, available at:

http://ai.stanford.edu/∼rion/swn
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Figure 5.8: Full sense clustering dendrogram for the noun bass

For the example of clustering the senses of the noun bass, the resulting dendrogram

is shown in Figure 5.8. Here we see that first the two senses of bass as a fish are

clustered together; then, with lower probability, the musical senses are clustered.

As a second example, consider the senses of the verb oppose. In the gold standard

datasets we observed that OntoNotes and Senseval-2 clustered this verb at two res-

olutions; we see that our automatic clustering is capable of capturing both of these

resolutions, in addition to more. The full dendrogram captured by our algorithm is

displayed in Figure 5.9.

5.5 Evaluation

We evaluate our classifier in a comparison with thirteen previously proposed similarity

measures and automatic methods for sense clustering. We conduct a feature ablation

study to explore the relevance of the different features in our system. Finally, we eval-

uate the sense-clustered taxonomies we create on the problem of providing improved

coarse-grained sense distinctions for WSD evaluation.
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Figure 5.9: Full sense clustering dendrogram for the verb oppose

5.5.1 Evaluation of automatic sense merging

We evaluate our classifier on two held-out test sets; first, a 30% sample of the sense

judgments from the merged gold standard dataset consisting of both the Senseval-

2 and OntoNotes sense judgments; and, second, a test set consisting of only the

OntoNotes subset of our first held-out test set. For comparison we implement

thirteen of the methods discussed in Section 5.1. First, we evaluate each of the eight

WordNet::Similarity measures individually. Next, we implement cosine similarity of

topic signatures (TopSig) built from monosemous relatives [3], which provides a

real-valued similarity score for noun synset pairs.

Additionally, we implement the two methods proposed in [114], namely using

metonymy clusters (MetClust) and generalization clusters (GenClust) based on the

Cousin relationship in WordNet. While [114] only considers four cousin pairs, we re-

implement their method for general purpose sense clustering by using all 226 cousin

pairs defined in WordNet 1.6, mapped to WordNet 2.1 synsets. These methods each

provide a single clustering of noun synsets.
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Senseval-2 + OntoNotes

OntoNotes

Method Nouns Verbs Adj Nouns Verbs
SVM 0.4228 0.4319 0.4727 0.3698 0.4545
RES 0.3817 0.2703 — 0.2807 0.3156
WUP 0.3763 0.2782 — 0.3036 0.3451
LCH 0.3700 0.2440 — 0.2857 0.3396
OED 0.3310 0.2878 0.3712 0.2183 0.3962
Lesk 0.3174 0.2956 0.4323 0.2914 0.3774
HSO 0.3090 0.2784 0.4312 0.3025 0.3156

TopSig 0.3072 — — 0.2581 —
VEC 0.2960 0.2315 0.4321 0.2454 0.3420
JCN 0.2818 0.2292 — 0.2222 0.3156
Lin 0.2759 0.2464 — 0.2056 0.3471

Baseline 0.2587 0.2072 0.4312 0.1488 0.3156
MiMo 0.0989 0.2142 0.0759 0.1833 0.2157

GenClust 0.0973 — — 0.0264 —
MetClust 0.0876 — — 0.0377 —

Table 5.3: F-score sense merging evaluation on hand-labeled testsets

Next, we implement the set of semantic rules described in [93] (MiMo); this al-

gorithm for merging senses is based on 6 semantic rules, in effect using a subset of

the Twin, MaxMN, Pertainym, Antonym, and VerbGroup features; in our

implementation we set the parameter for when to cluster based on number of twins

to K = 2; this results in a single clustering for each of nouns, verbs, and adjectives.

Finally, we compare against the mapping from WordNet to the Oxford English Dic-

tionary constructed in [99], equivalent to clustering based solely on the OED feature.

Considering merging senses as a binary classification task, Table 5.3 gives the

F-score performance of our classifier vs. the thirteen other tested classifiers along

with an uninformed “merge all synsets” baseline on our held-out gold standard test

set. This table shows that our SVM classifier outperforms all implemented methods

on the basis of F-score on both datasets for all parts of speech. In Figure 5.10 we

give a precision/recall plot for noun sense merge judgments for the Senseval-2 +

OntoNotes dataset. For sake of simplicity we plot only the two best measures
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(RES and WUP) of the eight WordNet-based similarity measures; we see that our

classifier, RES, and WUP each have higher precision all levels of recall compared to

the other tested measures.

Of the methods we compare against, only the WordNet-based similarity measures,

[93], and [99] provide a method for predicting verb similarities; our learned measure

widely outperforms these methods, achieving a 13.6% F-score improvement over the

Lesk similarity measure. In Figure 5.11 we give a precision/recall plot for verb

sense merge judgments, plotting the performance of the three best WordNet-based

similarity measures; here we see that our classifier has significantly higher precision

than all other tested measures at nearly every level of recall.

Only the measures provided by Lesk, HSO, VEC, [93], and [99] provide a method

for predicting adjective similarities; of these, only Lesk and Vec outperform the un-

informed baseline on adjectives, while our learned measure achieves a 4.0% improve-

ment over the Lesk measure on adjectives.

5.5.2 Feature analysis

Next we analyze our feature space. Table 5.4 gives the ablation analysis for all features

used in our system as evaluated on our held-out test set; here the quantity listed in

the table is the F-score loss obtained by removing that single feature from our feature

space, and retraining and retesting our classifiers, keeping everything else the same.

Here negative scores correspond to an improvement in classifier performance with the

removal of the feature.

For noun classification, the three features that yield the highest gain in testset

F-score are the topic signature, OED, and derivational link features, yielding a 4.0%,

3.6%, and 3.5% gain, respectively.

For verb classification, we find that three features yield more than a 5% F-score

gain; by far the largest single-feature performance gain for verb classification found

in our ablation study was the Deriv feature, i.e., the count of shared derivational

links between the two synsets; this single feature improves our maximum F-score

by 9.8% on the testset. This is a particularly interesting discovery, as none of the
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Figure 5.10: Precision/Recall plot for noun sense merge judgments



132 CHAPTER 5. CREATING SENSE-CLUSTERED TAXONOMIES

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Recall

P
re

ci
si

on

Precision/Recall for Merging Verbs

SVM Classifier
Lesk Measure
Hirst & St−Onge
Wu & Palmer
OED Mapping
Semantic Rules

Figure 5.11: Precision/Recall plot for verb sense merge judgments



5.5. EVALUATION 133

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Precision/Recall for Merging Adjectives

SVM Classifier
OED Mapping
Semantic Rules

Figure 5.12: Precision/Recall plot for adjective sense merge judgments



134 CHAPTER 5. CREATING SENSE-CLUSTERED TAXONOMIES

Nouns Verbs Adjectives
F-Score 0.4228 0.4319 0.4727

Feature F-Score Ablation Difference
TopSig 0.0403 — —
OED 0.0355 0.0126 -0.0124
Deriv 0.0351 0.0977 0.0352
RES 0.0287 0.0147 —

TWIN 0.0285 0.0109 -0.0130
MN 0.0188 0.0358 —
Lesk 0.0183 0.0541 -0.0250

SenseNum 0.0155 0.0146 -0.0147
SenseCnt 0.0121 0.0160 0.0168
Domain 0.0119 0.0082 -0.0265
LCH 0.0099 0.0068 —
WUP 0.0036 0.0168 —
JCN 0.0025 0.0190 —

Antonym 0.0000 0.0295 0.0000
MaxMN -0.0013 0.0179 —

VEC -0.0024 0.0371 -0.0062
HSO -0.0073 0.0112 -0.0246
LIN -0.0086 0.0742 —

Cousin -0.0094 — —
VerbGrp — 0.0327 —
VerbFrm — 0.0102 —
Pertainym — — -0.0029

Table 5.4: Feature ablation study: F-score difference obtained by removal of the single
feature
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Figure 5.13: WSD Improvement with coarse-grained sense hierarchies

referenced automatic techniques for sense clustering presently make use of this very

useful feature. We also achieve large gains with the Lin and Lesk similarity features,

with F-score improvement of 7.4% and 5.4% gain respectively.

For adjective classification again the Deriv feature proved very helpful, with a

3.5% gain on the testset. Interestingly, only the Deriv feature and the SenseCnt

features helped across all parts of speech; in many cases a feature which proved to

be very helpful for one part of speech actually hurt performance on another part of

speech (e.g., Lin on nouns and OED on adjectives).
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5.5.3 Evaluation of sense-clustered Wordnets

Our goal in clustering a sense taxonomy is to produce fully sense-clustered WordNets,

and to be able to produce coarse-grained Wordnets at many different levels of reso-

lution. In order to evaluate the entire sense-clustered taxonomy, we have employed

an evaluation method inspired by Word Sense Disambiguation (this is similar to an

evaluation used in [99], however we do not remove monosemous clusters). Given past

system responses in the Senseval-3 English all-words task, we can evaluate past

systems on the same corpus, but using the coarse-grained sense hierarchy provided

by our sense-clustered taxonomy. We may then compare the scores of each system

on the coarse-grained task against their scores given a random clustering at the same

resolution. Our expectation is that, if our sense clustering is much better than a ran-

dom sense clustering (and, of course, that the WSD algorithms perform better than

random guessing), we will see a marked improvement in the performance of WSD

algorithms using our coarse-grained sense hierarchy.

We consider the outputs of the top 3 all-words WSD systems that participated in

Senseval-3: Gambl [44], SenseLearner [92], and KOC University [159]. A guess by

a system is given full credit if it was either the correct answer or if it was in the same

cluster as the correct answer.

Clearly any amount of clustering will only increase WSD performance. Therefore,

to account for this natural improvement and consider only the effect of our particular

clustering, we also calculate the expected score for a random clustering of the same

granularity, as follows: Let C represent the set of clusters over the possible N synsets

containing a given word; we then calculate the expectation that an incorrectly-chosen

sense and the actual correct sense would be clustered together in the random cluster-

ing as
P

c∈C |c|(|c|−1)

N(N−1)
.

Our sense clustering algorithm provides little improvement over random clustering

when too few or too many clusters are chosen; however, with an appropriate threshold

for average-link clustering we find a maximum of 3.55% F-score improvement in WSD

over random clustering (averaged over the decisions of the top 3 WSD algorithms).

Table 5.5 shows the improvement of the three top WSD algorithms given a sense

clustering created by our algorithm vs. a random clustering at the same granularity.
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System F-score Avg-link Random Impr.
Gambl 0.6516 0.7702 0.7346 0.0356

SenseLearner 0.6458 0.7536 0.7195 0.0341
KOC Univ. 0.6414 0.7521 0.7153 0.0368

Table 5.5: Improvement in Senseval-3 WSD performance using our average-link
agglomerative clustering vs. random clustering at the same granularity

5.6 Discussion

We have presented a classifier for automatic sense merging that significantly out-

performs previously proposed automatic methods. In addition to its novel use of

supervised learning and the integration of many previously proposed features, it is

interesting that one of our new features, the Deriv count of shared derivational links

between two synsets, proved an extraordinarily useful new cue for sense-merging,

particularly for verbs.

We also show how to integrate this sense-merging algorithm into a model for

clustering these senses of taxonomies like WordNet, with the additional capability of

incorporating taxonomic constraints such as the transitive effects of merging synsets.

Using this model, we have produced several WordNet taxonomies of various sense

granularities; we hope these new lexical resources will be useful for NLP applications

that require a coarser-grained sense hierarchy than that already found in WordNet.



Chapter 6

Applications of Semantic

Taxonomy Induction

6.1 Introduction

A wide variety of lexical taxonomies are available for use in the natural language

processing community; WordNet [50] is the most commonly used, and a number of

taxonomies with a similar construction have been created [23, 29, 143]. While much

work has focused on the automatic creation or augmentation of lexical taxonomies,

the usefulness and application of these resources is not well understood. It has been

claimed that these taxonomies might eventually contribute to significantly improved

performance on a wide range of NLP tasks, as they can provide relational knowledge

between words that might be difficult to obtain or represent through other means.

Due to the lack of comparative evaluations of these taxonomies in previous work,

our understanding of how effectively different taxonomies may be applied to various

problems is extremely limited. A wide variety of research has focused on a multi-

tude of different relations, further complicating attempts to compare taxonomies; for

example, if one algorithm induces hypernym (is-a) relations, and another induces

synonym relations, it is difficult to say which algorithm is better. Further, even if

two algorithms both only find hypernym relations, an algorithm that achieves higher

precision and recall as evaluated by the hypernyms it infers may not necessarily be

138
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the superior one if the relations it finds are less applicable to a particular problem

domain, e.g., if all the relations it finds are of infrequently occurring terms.

While some previous comparisons of lexical resources have been conducted, there

have been only a small number of application-based tasks proposed for comparison of

lexical taxonomies. Exceptions may be found in the work of [38] and [39]; there they

compare several sense-tagged lexical resources in an application to word sense disam-

biguation. While this comparison is interesting, it does not evaluate the hierarchical

organization of the taxonomies it evaluates; in fact, no use is made of the hypernym

relation at all.

In this chapter we discuss the topic of applying automatically inferred taxonomic

relations to applied tasks in natural language processing. In Section 6.2 we discuss

the application of our inferred taxonomies to the problem of question answering in the

QACTIS system; in Section 6.3 we apply our inferred taxonomies to the problem of

text categorization; in Section 6.4 we discuss the application of our model to domain-

specific taxonomy induction; in Section 6.5 we consider the problem of applying

our framework to inferring foreign language taxonomies; finally, in Section 6.6 we

summarize our applications and conclude.

6.2 Question answering

To correctly extract answers, modern question answering systems depend on matching

words between questions and retrieved passages containing answers. We consider the

problem of applying augmented taxonomies to question answering because we believe

that the learned hyponym relations can be exploited to improve question answering

performance on a significant class of questions.

For example, consider the following questions:

• What island produces Blue Mountain coffee?

• In which game show do participants compete based on their knowledge of con-

sumer prices?

• What villain is the nemesis of Dudley Do-Right?
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Knowledge that Jamaica is an island, that The Price is Right is a game show, and

that Snidely Whiplash is a villain, is crucial to answering these questions.

Sometimes these relations are evident in the same context as answers to questions,

for example, in “The island of Jamaica is the only producer of Blue Mountain coffee”;

however, “Jamaica is the only producer of Blue Mountain coffee” should be sufficient,

despite the fact that it is not directly inferable from the sentence that Jamaica is an

island.

The dynamic nature of named entities (NEs) makes it difficult to enumerate all

of their evolving properties; thus manual creation and curation of this information in

a lexical resource such as WordNet [50] is problematic. Pasca and Harabagiu discuss

how insufficient coverage of named entities impairs QA [109]. They write:

“Because WordNet was not designed as an encyclopedia, the hyponyms

of concepts such as composer or poet are illustrations rather than an

exhaustive list of instances. For example, only twelve composer names

specialize the concept composer ... Consequently, the enhancement of

WordNet with NE information could help QA.”

The chief contribution of this study is demonstrating that an automatically mined

knowledge base, which naturally contains errors as well as correctly distilled knowl-

edge, can be used to improve QA performance. In our work we have demonstrated

how our s can be tailored to identify named entity hyponyms, and how as a result,

superior question answering performance can be obtained. We ranked candidate hy-

ponyms on 75 categories of named entities and attained 53% mean average precision.

On TREC QA data our method produces a 9% improvement in performance.

One area where we have seen gains has been the application of automatically in-

ferred taxonomies to improving the QACTIS question answering system on the TREC

2005-2006 QA task [91]. This work has shown that large-scale, weakly-supervised hy-

ponym learning is capable of producing improvements in an end-to-end QA system.

This is an important contribution, as previous studies have often proposed the in-

tuitive notion that discovering is-a relations for entities would improve factoid QA,

but have failed to demonstrate gains in a realistic application. In this work we have
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Size Sentences Genre

TREC Disks 4,5 81 MB 0.70 M Newswire
AQUAINT 1464 MB 12.17 M Newswire
Wikipedia (4/04) 357 MB 3.27 M Encyclopedia

Table 6.1: Sources used for training named entity hyponym classifiers

shown that using automatically inferred hyponyms can generate substantial perfor-

mance gains over WordNet for question answering on certain query types.

The acquisition of novel named entity hyponyms can be viewed as solving the

Named Entity Recognition problem as a subtask; rather than simply categorizing

named entities into a small number of categories (e.g., person, group, location, quan-

tity), grounding the novel hyponyms to a semantic taxonomy returns a much finer-

grained classification. For example, using this approach someone might be classified

under the author or president synset, or a company might be classified as an airline

or bank rather than simply as a person or organization, respectively.

6.2.1 Experimental design

We rely on large amounts of text; in all our experiments we worked with a corpus

from the sources given in Table 6.1. Sentences that presented difficulties in parsing

were removed and those remaining were parsed with Minipar [81]. We extracted 17.3

million noun pairs that co-occurred in at least one sentence. All pairs were viewed as

potential hypernym/hyponym pairs.

The experimental conditions for our three classifiers are summarized in Table

6.2. The baseline model used 71,068 pairs as training data; it is comparable to

the distantly-supervised hypernym classifier discussed in Chapter 2 which used only

dependency parse features, although here the corpus is larger. The entity-enriched

data extended the baseline training set by adding positive examples. The +Feat

model uses additional features besides dependency paths.
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Pos. Pairs Neg. Pairs Total Features

Baseline 7975 63093 162528
+NE 9331 63093 164298
+Feat 7975 63093 162804

Table 6.2: Characteristics of training sets

Feature Comment

Hypernym contained in hyponym Sands Hotel is-a hotel

Length in chars / words Chars: 1-4, 5-8, 9-16, 17+
Words: 1, 2, 3, 4, 5, 6, 7+

Has preposition Treaty of Paris; Statue of Liberty

Common suffixes -ation, -ment, -ology, etc...

Figurative term Such as goal, basis, or problem

Abstract category Like person, location, amount

Contains digits Usually not a good hyponym

Day of week; month of year Indiscriminately co-occurs with many nouns.

Presence and depth in WordNet graph Shallow hypernyms are unlikely
to have entity hyponyms. Presence in
WN suggests word is not an entity.

Lexname of 1st synset in WordNet Root classes like person,
location, quantity, and process.

Capitalization Helps identify entities.

Binned document frequency Partitioned by base 10 logs

Table 6.3: Features considered for +Feat model

Additional Features

The +Feat model incorporates an additional 276 binary features which are listed in

Table 6.3.

To evaluate the usefulness of our learned NE hyponyms for question answering,

we used the QACTIS system [133]. QACTIS was fielded at the 2004-2006 TREC QA

evaluations and placed fifth at the 2005 workshop. We worked with a version of the

software from July 2005.

QACTIS uses WordNet to improve matching of question and document words,
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Classes Class Instances

Baseline 76 11,066

SFD 1,140 75,647

SWN 7,327 458,370

+Feat 44,703 1,868,393

Table 6.4: Additional knowledge sources by size

and a resource, the Semantic Forest Dictionary (SFD), which contains many hyper-

nym/hyponym pairs. The SFD was populated through both automatic and manual

means [133], and was updated based on questions asked in TREC evaluations through

2004.

We used factoid questions from the TREC 2005-2006 QA evaluations [149] and

measured performance with mean reciprocal rank (MRR) and percent correct at rank

1. All runs made use of WordNet 2.0, and we examined several other sources of hyper-

nym knowledge. The baseline condition added a small subset of the Semantic Forest

Dictionary consisting of 76 classes seen in earlier TREC test sets (e.g., nationalities,

occupations, presidents). We also tested: (1) the full SFD; (2) the Stanford Wordnet

with 30,000 additional nodes discussed in Section 4.6.5; and, (3) the +Feat model.

The number of classes and entries of each is given in Table 6.4.

6.2.2 Evaluation

To compare our different models we created a test set of 75 categories. The classes

are diverse and include personal, corporate, geographic, political, artistic, abstract,

and consumer product entities. From the top 100 responses of the different learners, a

pool of candidate hyponyms was created, randomly reordered, and manually judged.

To assess the quality of purported hyponyms we used average precision, a measure in

ranked information retrieval evaluation, which combines precision and recall.

Table 6.5 gives average precision values for the three models on 15 classes of mixed

difficulty. Performance varies considerably based on the hypernym category, and for

a given category, by classifier. N is the number of known correct instances found in

the pool that belong to a given category. Aggregate performance, as mean average
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N Baseline +NE +Feat

chemical element 78 0.9096 0.9781 0.8057
african country 48 0.8581 0.8521 0.4294
prep school 26 0.6990 0.7098 0.7924
oil company 132 0.6406 0.6342 0.7808
boxer 109 0.6249 0.6487 0.6773
sculptor 95 0.6108 0.6375 0.8634
cartoonist 58 0.5988 0.6109 0.7097
volcano 119 0.5687 0.5516 0.7722
horse race 23 0.4837 0.4962 0.7322
musical 80 0.4827 0.4270 0.3690
astronaut 114 0.4723 0.5912 0.5738
word processor 26 0.4437 0.4426 0.6207
chief justice 115 0.4029 0.4630 0.5955
perfume 43 0.2482 0.2400 0.5231
pirate 10 0.1885 0.3070 0.2282

Table 6.5: Average precision on 15 categories

Baseline +NE +Feat

MAP 0.4801 0.5001 (+4.2%) 0.5320 (+10.8%)

Table 6.6: Mean average precision over 75 categories

precision, was computed over all 75 categories and is given in Table 6.6. Both the

+NE and +Feat models yielded improvements that were statistically significant at a

99% confidence level. The +Feat model gained 11% over the baseline condition. The

maximum F-score for +Feat is 0.55 at 70% recall.

Mean average precision emphasizes precision at low ranks, so to capture the error

characteristics at multiple operating points we present a precision-recall graph in

Figure 6.1.The +NE and +Feat models both attain superior performance at all but

the lowest recall levels. For question answering this is important because it is not

known which entities will be the focus of a question, so the ability to deeply mine

various entity classes is important.

Table 6.7 lists top responses for four categories. Helpful examples of named entity
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Sculptor Horse Race Astronaut Perfume

1 Evelyn Beatrice Tevis Cup Mark L Polansky * Avishag
Longman

2 Nancy Schon Kenilworth Park Richard O Covey Ptisenbon
Gold Cup

3 Phidias Cox Plate George D Nelson Poeme

4 Stanley Brandon Grosser Bugatti Guion Bluford Jr Parfums
Kearl Preis International

5 Andy Galsworthy Melbourne Cup Stephen S Oswald Topper
Schroeder

6 Alexander Collin * Great Budda Hall Eileen Collins * Baccarin

7 Rachel Feinstein Travers Stakes Leopold Eyharts Pink Lady

8 Zurab K Tsereteli English Derby Daniel M Tani Blue Waltz

9 Bertel Thorvaldsen * Contrade Ronald Grabe WCW Nitro

10 Cildo Meireles Palio * Frank Poole Jicky

11 Victor Salmones Bastille Stakes Toktar Aubakirov * Popular
Muppet

12 Nico Yektai Kentucky Derby Wilson Kime * Mish Mosh

13 Grace Weir * El Nuevo William Readdy Bulgari
Comandante

14 Alexander Munro * Jax Jacobsen Ellison Onizuka Kenzo

15 Ludwig Gies St. Leger Stakes Alan B Shepard Jr * Jalapa

Table 6.7: Top responses for four categories using the +Feat model, starred entries
were judged incorrect
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Comparing Three NE Hyponym Learners
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Figure 6.1: Precision-recall graph for three hyponym/hypernym classifiers

hyponyms include learning a meteorite (Q84.1), a university (Q93.3), a chief oper-

ating officer (Q108.3), a political party (Q183.3), a pyramid (Q186.4), and a movie

(Q211.5).

In Table 6.8 we compare performance on questions from the 2005 and 2006 test

sets. We assessed performance primarily on test questions that were deemed likely to

benefit from hyponym knowledge—questions that had a readily discernible category

(e.g., “What film ...”, “In what country ...”)—but we also give results on the entire

test set. The WordNet-only run suffers a large decrease compared to the baseline.

This is expected because WordNet lacks coverage of entities and the baseline condition

specifically populates common categories of entities that have been observed in prior



6.3. TEXT CLASSIFICATION 147

Hyponym-Relevant Subset (242) All Questions (734)

MRR % Correct MRR % Correct

WN-alone 0.189 (-45.6%) 12.8 (-51.6%) 0.243 (-29.0%) 18.26 (-30.9%)

Baseline 0.348 26.4 0.342 26.4

SFD 0.405 (+16.5%) 31.0 (+17.2%) 0.362 (+5.6%) 27.9 (+5.7%)

SWN 0.351 (+1.0%) 26.9 (+1.6%) 0.343 (+0.3%) 26.6 (+0.5%)

Feat 0.373 (+7.4%) 28.9 (+9.4%) 0.351 (+2.5%) 27.3 (+3.1%)

Table 6.8: QA Performance on TREC 2005 & 2006 Data

TREC evaluations. Nonetheless, WordNet is useful to the system because it addresses

lexical mismatch that does not involve entities.

The full SFD, the SWN, and the +Feat model achieved 17%, 2%, and 9% im-

provements in answer correctness, respectively. While no model had exposure to the

2005-2006 TREC questions, the SFD database was manually updated based on train-

ing on the TREC-8 through TREC-2004 data sets. It approximates an upper bound

on gains attributable to addition of hyponym knowledge: it has an unfair advantage

over the other models because recent question sets use similar categories to those

in earlier TRECs. Our +Feat model, which has no bias towards TREC questions,

realizes larger gains than the SWN. This is probably at least in part because it pro-

duced a more diverse set of classes and a significantly larger number of class instances.

Compared to the baseline condition the +Feat model sees a 7% improvement in mean

reciprocal rank and a 9% improvement in correct first answers; both results repre-

sent a doubling of performance compared to the use of WordNet alone. We believe

that these results illustrate clear improvement attributable to automatically learned

hyponyms.

6.3 Text classification

This section describes the application of taxonomic information to the problem of

text categorization. We specifically focus on the use of noun synonym and hypernym

information within taxonomies, as this is among the most commonly applied and

inferred form of taxonomic knowledge. We choose the text categorization task because
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it is a well-studied task with clear practical benefit. We perform our comparison using

two canonical text categorization datasets: the Reuters-21578 collection1 and the

20-Newsgroups dataset2 [76]. We expect the effect of lexical taxonomies to be most

pronounced in the setting where there are relatively few training examples, and where

additional information supplied by the taxonomy therefore has the greatest relative

effect; thus it is also in this setting that we expect that the relative improvement

conferred upon a text classification algorithm can be most easily studied.

Text categorization has been widely studied, though most work in text classifi-

cation has typically assumed that the categorization algorithm lacks any source of

world knowledge or external semantic features. An excellent summary of text clas-

sification excluding the use of world knowledge may be found in [135]. While most

work in text classification has eschewed the use of external lexical resources, a few

studies have considered the effect of using lexical resources. These studies have come

to mixed conclusions; [134] found small but statistically significant improvements us-

ing WordNet hypernyms on the USENET dataset and a dataset of folk lyrics, but no

improvement on the Reuters dataset; [42] found large gains on the Reuters-21578

dataset using synonym expansion from manually disambiguated datasets, and [87]

found no positive effect from a variety of features derived from WordNet as input to

Naive Bayes and SVM classifiers on any of four major document collections.

A related area where the effect of lexical taxonomies has been studied is that

of information retrieval; while initial studies showed no improvement for detailed

queries, and relatively small gains for shorter queries [150], more recent studies have

shown that more refined techniques for query expansion can significantly improve

performance on standard TREC collections [84, 49, 97].

Throughout the course of these experiments the primary lexical resource evaluated

has been WordNet, and there has so far been little comparison between WordNet and

other similarly structured resources. The recent introduction of multiple WordNet-

like resources raises the question of whether these new resources can significantly

1The Reuters-21578 collection is available at:
http://www.daviddlewis.com/resources.

2We use the dataset provided at:
http://people.csail.mit.edu/jrennie/20Newsgroups.
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increase the performance of existing systems above and beyond what has already

been found using WordNet; in our evaluation we address this question by provid-

ing a comparison of text categorization using WordNet, YAGO, a taxonomy built

from the Fleischman instances, and two of the Wordnets we have constructed using

our framework for semantic taxonomy induction: the Stanford Wordnet with 40,000

automatically-inferred synsets, and the Stanford Wordnet with 450,000 automatically-

inferred synsets.

In our application to text classification we begin with a simple baseline Naive Bayes

text classification procedure. We then augment this baseline with a straightforward

query expansion procedure that depends only on the synonym and hypernym links

within a taxonomy, and is otherwise independent of the particular taxonomy involved.

For each of the taxonomies we wish to evaluate, we thus perform a simple feature

expansion, retrain the Naive Bayes classifier, and evaluate the change in performance

on the text classification task.

6.3.1 Experimental design

We perform text categorization experiments over both the Reuters-21578 and 20-

Newsgroups datasets. For the Reuters-21578 dataset we hold out a test set of

1,535 documents across the 18 most populated categories. We then run a series of

experiments with an increasing number of training examples in the range [1, 2, 5, 10,

15, 20].

For the 20-Newsgroups set we use the dataset sorted by date, with duplicate

articles removed, and all newsgroup-identifying information removed3. Here we have

a test set of 7,532 documents across 20 different categories, and we similarly stage a

set of experiments using an increasing number of training examples in the range [1,

2, 5, 10, 15, 20].

3We use the ‘bydate’ dataset available at
http://people.csail.mit.edu/jrennie/20Newsgroups.
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Document classification with Naive Bayes

Here we describe our baseline model for document classification, including our tok-

enization, part-of-speech tagging, lemmatization, phrase recognition, and stopword

removal.

For each document we tokenize and part-of-speech tag the sentence using the

Stanford Parser4. Since we are comparing the noun hypernym relations inferred in the

different taxonomies, we remove any token from our representation of the document

that is not tagged as a noun.

After tokenization and part-of-speech tagging we apply the WordNet Morphy

function to each lexeme; this applies a set of heuristics in order to determine the

possible lemmas that a particular lexeme might be an inflected form of. If more than

one lemma known to WordNet is found by Morphy, we choose the lemma that has

the highest frequency count in the SemCor corpus [95].

Next we apply the specific taxonomy T currently being evaluated to recognize

potential noun multiword entities in the sentence using the following greedy approach:

starting from the first token in each sentence we progress until we find the first noun

n1; then, we identify the longest noun phrase p in the sentence beginning with n1 that

is also in T; we then chunk this as a phrase and repeat this process starting with the

next noun in the sentence not already contained in p. Finally, for all single tokens that

have not been chunked into a larger multiword phrase, we perform stopword removal5.

Given the remaining lemmas and phrases W , our baseline model then performs text

categorization by assigning the category label according to the highest probability in

a Naive Bayes model over the bag-of-lemmas. Specifically, we choose the class C that

maximizes the function:

C ′ = arg max
c

P (c)
∏

wi∈W

P (wi|c)

4The Stanford Parser is available for download at
http://nlp.stanford.edu/software.

5We use a list based on the one at
http://www.d.umn.edu/∼tpederse/Group01/WordNet/words.txt.
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Query expansion using taxonomies

We extend our baseline model using query expansion in the following simple way:

for each noun lemma or multiword noun phrase in each document, if that noun is

recognized in a given taxonomy, we selectively add observations of other related nouns

from the taxonomy. We perform a variety of possible expansions for each taxonomy.

The parameters we vary are as follows: for a lemma w in the sentence, we choose the

maximum number of senses s to expand; we choose the total number of synonyms

from each sense to use; finally, we choose the maximum number of ancestors to add.

Specifically, we explore the addition of terms in a synonymy and hypernymy re-

lation. This effectively results in augmenting the feature vector for each training and

test document with additional lemmas corresponding to strongly-related concepts for

each noun lemma.

For example, in the Reuters-21578 dataset article we have an article belonging

to the acq or “acquisition” topic which discusses American Express; here our tax-

onomy identifies the term American Express as a hyponym of the WordNet synset

company#n#1 ; if this article were in the training set, than this query expansion

would lead the Naive Bayes classifier to increase the weighting of an observed hyper-

nym synset company#n#1 with the “acquisition” topic.

Similarly, in the 20-Newsgroups dataset, an article in the comp.graphics con-

tains the term Adobe Illustrator. Since our augmented taxonomy identifies this term

as a hyponym of the synset software#n#1, then it will similarly associate this synset

with the comp.graphics topic.

6.3.2 Evaluation

Here we consider the comparative evaluation of several taxonomies for use in the text

classification task.

Comparison of taxonomies

In our evaluation of text classification we compare the Stanford Wordnets that we have

constructed to three previously proposed taxonomies and to a Naive Bayes baseline
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Taxonomy Noun synsets
Baseline 0
WordNet 81426

Stanford Wordnet + 40K 121426
YAGO 376919

Stanford Wordnet + 450K 531426
Fleischman 783928

Table 6.9: Summary of the sizes of the taxonomies in our comparison

that does not use a taxonomy.

[52] proposes an instance discovery method for automatically inferring novel in-

stances from text, and published a list of over 2,000,000 instances derived with this

method; while these instances have not been sense-disambiguated, we can nonetheless

consider them in a taxonomy by supposing they have been added to the first sense

of the hypernym. We give a brief summary of the sizes of each of the taxonomies we

compare in Table 6.9.

Taxonomy selection

In our experiments using different taxonomies we explored a wide parameter space

in order to maximize the effectiveness of the taxonomies. These parameters include:

the number of distinct senses of a word to use, the number of synonyms to use, and

the number of steps to expand the query up the hypernym chain. In each case we

performed parameter selection based on the best performance of WordNet 2.1; thus

we are giving WordNet the best chance it can get, and using the same parameters

for the rest of the taxonomies. The best parameters for the Reuters-21578 corpus

was to use only a single sense (the first listed sense in WordNet), up to 5 synonyms,

and expand up to 2 steps in the hypernym chain, while the best parameters for the

20-Newsgroups data was to use only a single sense (again, the first listed sense in

WordNet), up to 2 synonyms, and expand up to 2 steps in the hypernym chain.
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System R-1 R-2 R-5 R-10 R-15 R-20
Baseline 0.358 0.371 0.501 0.586 0.666 0.676
WordNet 0.359 0.423 0.515 0.608 0.638 0.650

Fleischman 0.455 0.444 0.551 0.607 0.638 0.650
YAGO 0.455 0.444 0.550 0.608 0.638 0.650

SWN-40K 0.479 0.442 0.553 0.606 0.635 0.650
SWN-450K 0.469 0.448 0.551 0.604 0.636 0.652

Table 6.10: Accuracy of Naive Bayes text categorization using different taxonomies
in the Reuters-21578 dataset for different training set sizes

The Reuters-21578 dataset

As shown in Table 6.10, the text categorization performance using taxonomies all

track very closely. In particular, the performance using the taxonomies derived from

YAGO and from the Fleischman instances are nearly indistinguishable to themselves

or to the original WordNet.

The 20-Newsgroups dataset

As shown in Table 6.11 we found that, as in the Reuters-21578 datase, the set

of augmented taxonomies perform very similarly. Indeed, the taxonomies based on

YAGO and the Fleischman instance data are nearly indistinguishable from using

WordNet alone, with our augmented taxonomy marginally better for up to two train-

ing examples. Also, as in the Reuters data, we observe that after a small number of

training examples (in this case 5 training examples) the Naive Bayes baseline without

a taxonomy is superior compared to using any of the taxonomies.

Our results suggest that taxonomies are indeed helpful in the text categorization

task, but only when the amount of training data is very small; using a taxonomy

actually hurts performance after there are more than 5 examples (in the case of the

20-Newgroups data) or more than 10 examples (in the case of the Reuters-21578

data). Further, our comparison suggests that acquiring more training examples is

almost always a better choice than using a taxonomy; in almost all cases the baseline

algorithm with more examples performs as well or better than an algorithm using a
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System N-1 N-2 N-5 N-10 N-15 N-20
Baseline 0.352 0.399 0.458 0.520 0.550 0.579
WordNet 0.367 0.401 0.460 0.500 0.523 0.544

Fleischman 0.367 0.401 0.460 0.500 0.522 0.544
YAGO 0.367 0.401 0.460 0.500 0.523 0.544

SWN-40K 0.366 0.400 0.463 0.499 0.525 0.545
SWN-450K 0.371 0.405 0.462 0.498 0.520 0.540

Table 6.11: Accuracy of Naive Bayes text categorization using different taxonomies
in the 20-Newsgroups dataset for different training set sizes

taxonomy with fewer examples.

6.4 Inferring domain-specific taxonomies

In addition to inferring general purpose knowledge, our probabilistic taxonomy frame-

work offers opportunities for creating domain-specific ontologies. One area that is

particularly relevant for the application of our framework is the biomedical research

literature domain. Text drawn from the biomedical research literature is particularly

promising for taxonomy induction as it has a large vocabulary of domain-specific

terminology and a wide range of typed entities (e.g., cells, proteins, hormones, etc.)

and structured relations between entities (e.g., X regulates Y, X phosphorylates Y,

etc.). Further, just as WordNet provided a seed set of relationship tuples for general-

purpose taxonomy induction, there already exist a large number of rich, hand-curated

databases explicitly stating known relationships between biological entities, such as

the Gene Ontology [6] and the Open Biomedical Ontologies6.

In the same way that WordNet provided the initial seed data for eventually ex-

tending WordNet, we can directly apply the same relationship extraction techniques

and taxonomy induction formulation to augment these biological ontologies using

biomedical text. A consequence of our method also allows us to decompose the input

articles from biomedical literature into the constituent structured relationships that

6The Open Biomedical Ontologies are available at http://obofoundry.org.
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those articles give evidence for; this leads to a promising new approach for represent-

ing articles in the biomedical literature in the form of structured, machine-readable

relationships. The general framework for taxonomy induction we have described here

has been applied to the problem of automatically extracting structured representa-

tions of more than one million full-text articles in the biomedical research domain in

the form of “Structured Digital Abstracts” [142].

In this application we have demonstrated that, using the Gene Ontology as an

initial seed set, our algorithm is capable of extracting dozens of different kinds of

ontological relationships from free text, ranging from gene localizations to chemical

modifications and anatomical structures. Moreover, we have shown that our algorithm

is able to expand upon the set of known ontological relationships in the Gene Ontology

by an order of magnitude. We anticipate that such techniques will have significant

impact in the area of machine-readable content summary for intelligent search and

indexing.

6.5 Augmenting foreign-language taxonomies

A major advantage of our probabilistic formulation for taxonomy likelihood is that

it can be applied in any language. In this section we address the task of automated

taxonomy mapping and taxonomy translation. Lexical resources are very scarce in the

vast majority of languages. A number of languages have thesauruses like WordNet or

projects to create them, but many do not. Automated techniques which could induce

a foreign-language Wordnet via machine translation from the English thesaurus could

vastly speed the process of creating thesauruses in many languages.

Consider the task of mapping from the English synsets Se in WordNet to a sense

taxonomy using the target language words F as nodes. For a particular lexicon of

words F in the target language , for any particular mapping M of F → Se (English

WordNet synsets) we get a corresponding map N of foreign language words to foreign

synsets F → Sf . We can find the best taxonomy by ranking the hierarchies via global

inference using multiple sources of evidence. Here we use the following definitions in

our framework for automatically inferring foreign-language taxonomies:
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translation probability p(f |e): the probability of a word e in English mapping to

a foreign word f . This can be derived from a parallel corpus using standard

techniques in statistical machine learning (perhaps even simplified techniques

like IBM Model 1 [16]), or from off-the-shelf engines.

foreign word similarity S(w1, w2): a similarity function between two words in the

foreign language. This can be derived from unsupervised distributional infor-

mation in the foreign language [106].

taxonomy node distance P (Cmn(w1, w2)|S(w1, w2)): The probability of two words

being a particular distance apart in the hierarchy, i.e., (m, n)-cousins Cmn, i.e.

being m steps up and n steps down in the hypernym hierarchy from each other,

given the similarity function S(w1, w2). We have shown how to compute this

function in Section 4.4.2.

Given this knowledge we can formulate a taxonomy likelihood as:

P (Tf |Te) ∝
∏

wf

P (wf |M(wf))

×
∏

wi,wj∈F s.t. Cmn(N(wi),N(wj))∈Tf

P (Cmn(wi, wj)|S(wi, wj))

Our goal is then to find the mapping M ′ that will maximize this taxonomy likeli-

hood, i.e.,

M ′ = arg max
M

∏

wf

P (wf |M(wf ))

×
∏

wi,wj∈F s.t. Cmn(N(wi),N(wj))∈Tf

P (Cmn(wi, wj)|S(wi, wj))

Given this formulation, various search algorithms may be explored to find map-

pings which increase the conditional taxonomy likelihood. This approach can also

be extended with additional knowledge, such as a mapping from the English gloss, a



6.6. DISCUSSION 157

hypernym classifier or other relationship classifier in the target language, and other

sources of evidence.

6.6 Discussion

In our experiments we have shown that our framework for taxonomy induction may

be applied to the problems of domain-specific taxonomy induction, foreign-language

taxonomy induction, question answering, and text categorization. In our experiments

with question answering we have demonstrated that automatically inferred hyponyms

can significantly improve the performance of a question answering system. In our

experiments with text categorization we have provided an evaluation methodology for

augmented taxonomies for the application of text categorization with various amount

of training examples. We have further provided a comparison of several previously

proposed lexical taxonomies.



Chapter 7

Conclusion

Bridging the gap between structured knowledge and unstructured text is a long-held

goal of artificial intelligence and natural language processing. We have approached

this problem by addressing the acquisition and organization of structured representa-

tions of binary semantic relations. We have shown that we can use existing knowledge

bases and arbitrarily large unannotated bodies of text in order to train probabilis-

tic relation classifiers using distant supervision. Our experiments have demonstrated

that, given a sufficiently large unlabeled corpus, our automatic relation extraction

algorithms trained with distant supervision can outperform WordNet for the identi-

fication of hypernym relations and coordinate term relations in newswire text.

Our formulation of taxonomy likelihood provides a framework allowing predic-

tions from multiple classifiers to be combined. We have shown how this framework

can be used to implicitly resolve lexical ambiguity and discover the appropriate map-

ping between words and the concepts within an existing structured representation of

knowledge. We have discussed several operations that may be applied to a taxonomy

in order to create modified versions of that taxonomy including adding and remov-

ing relations, and adding, removing, and merging concepts. Using this framework

we have created several augmented Wordnets, and shown that these automatically-

constructed resources outperform the manually-constructed WordNet on a variety of

tasks.

We have also created a supervised algorithm for measuring sense similarity within
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a Wordnet, and shown that our algorithm performs favorably compared to previously

proposed methods for measuring sense similarity based on a gold-standard testset.

Using this algorithm we have constructed several sense-clustered Wordnets of varying

degrees of sense granularity, and we have publicly released these lexical resources

for use in natural language applications. Finally, we have discussed a variety of

applications of our framework and lexical resources, including applications to domain-

specific taxonomy induction, the extension of foreign-language Wordnets, question

answering, and text categorization. Many open avenues of research follow from this

work. Open questions remain in each of the areas we have discussed, particularly in

the areas of relation extraction, taxonomy augmentation, and the use of taxonomies

in applied tasks.

Our distantly-supervised relation extraction classifiers could be improved with the

use of techniques previously proposed in the literature, as discussed in Section 1.1.

The feature space we use in distantly-supervised relation extraction could be greatly

expanded by the use of kernel methods. Further, our work could be extended to

use the bootstrapping framework explored by Dipre, Snowball, and others. The

taxonomy constraints we discuss in Section 3.2 might be employed to filter the possible

terms used in successive iterations within a learning framework using bootstrapping.

An additional area we have not yet explored is the interaction between relation

extraction and taxonomy induction. A promising extension of the bootstrapping

framework would be to retrain a relation extraction classifier with the additional

concepts and relations inferred in the process of taxonomy induction, then again

use the classifier in a second round of taxonomy induction, and so forth. Such a

framework suggests the idea of jointly maximizing the likelihood of the taxonomy

and the likelihood functions of the base relation classifiers.

Our work in taxonomy augmentation has so far focused only on inferring leaf

noun hypernyms corresponding to words that have no current representation within

the existing taxonomy. Our primary focus has been the extension of large, previously

existing taxonomies. Our framework could be extended to include the addition of

intermediate nodes in the noun hypernym hierarchy, or adding nodes in the verb hy-

pernym hierarchy. Further, there is a great deal of promise in using this framework
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for inferring cross-part-of-speech relations. Possible relations include, for instance,

discovering the likely noun arguments of verbs, or the adjective classes likely to de-

scribe certain nouns, and so forth. There is also the possibility of inferring taxonomies

from scratch, rather than merely augmenting existing taxonomies. These explorations

would likely require a more nuanced search algorithm than the simple local search

that we propose. Whereas the local search we propose works well when applied to

a large, preexisting taxonomy, the problem of encountering pipeline errors becomes

much more critical when inferring a taxonomy from scratch.

Finally, our model for semantic taxonomy induction has laid the groundwork for

a wide variety of applications in computational semantics. We have only explored

a fraction of these. In this work we have considered the problems of augmenting

a taxonomy and merging the senses of a taxonomy; other possible applications in-

clude the possibility of pruning a taxonomy to make it relevant for a specific corpus.

Such a modification might be helpful for domain-specific taxonomy induction; having

senses in a taxonomy that are irrelevant to the domain of interest can only reduce the

effectiveness of the taxonomy. We have given one framework for mapping between

taxonomies of different languages in Section 6.5; a similar approach might be ex-

tended to consider mapping between taxonomies in the same language, but that use

different terms to represent overlapping sets of information. Finally there is broad po-

tential application of our framework for summarization and search, as touched upon

in Section 6.4.

Bridging the gap between unstructured text and structured representations of

knowledge is a crucial step towards the computational understanding of language.

In this work we have presented several new powerful techniques for acquiring and

organizing structured knowledge. We hope that the algorithms and resources that we

have presented will provide a foundation for many future advances in acquiring and

organizing machine-readable knowledge from unstructured text.
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