
Appears in AAAI-94

Bottom-Up Induction of

Oblivious Read-Once Decision Graphs:

Strengths and Limitations

Ron Kohavi

Computer Science Department

Stanford University

Stanford, CA 94305

ronnyk@CS.Stanford.EDU

Abstract

We report improvements to HOODG, a supervised

learning algorithm that induces concepts from labelled

instances using oblivious, read-once decision graphs

as the underlying hypothesis representation structure.

While it is shown that the greedy approach to vari-

able ordering is locally optimal, we also show an

inherent limitation of all bottom-up induction algo-

rithms, including HOODG, that construct such de-

cision graphs bottom-up by minimizing the width of

levels in the resulting graph. We report our empirical

experiments that demonstrate the algorithm's gener-

alization power.

Introduction

In supervised classi�cation learning, one tries to �nd

a structure, such as a decision-tree, a neural net, or

a Boolean formula, that can be used to accurately

predict the label of novel instances. A given concept

can be represented by di�erent structures that di�er

in many aspects, including comprehensibility, storage

size, and query time.

Decision trees provide one structure that is com-

monly constructed using top-down induction tech-

niques (Quinlan 1993; 1986; Moret 1982). However,

the tree structure used to represent the hypothesized

target concept su�ers from some well-known problems,

most notably the replication problem and the fragmen-

tation problem (Pagallo & Haussler 1990). The repli-

cation problem forces duplication of subtrees in dis-

junctive concepts such as (A ^ B) _ (C ^ D); the

fragmentation problem causes partitioning of the data

into fragments, when a high-arity attribute is tested at

a node. Both problems reduce the number of instances

at lower nodes in the tree|instances needed for sta-

tistical signi�cance of tests performed during the tree

construction process.

In (Kohavi 1994), Oblivious read-Once Decision

Graphs (OODGs) were introduced as an alternative

representation structure for supervised classi�cation

learning. OODGs retain most of the advantages of de-

cision trees, while overcoming the two problems men-

tioned above. OODGs are similar to Ordered Binary

Decision Diagrams (OBDDs) (Bryant 1986), which

have been used in the engineering community to rep-

resent state-graph models of systems, allowing veri�-

cation of �nite-state systems with up to 10

120

states

(Burch, Clarke, & Long 1991). We refer the reader to

(Kohavi 1994) for a discussion of related work.

OODGs have a di�erent bias from that of decision

trees, and thus some concepts that are hard to rep-

resent as trees are easy to represent as OODGs, and

vice-versa. Since OODGs are graphs, they are easy

for humans to perceive, and should be preferred over

other representations (e.g., neural nets) whenever it is

important to comprehend the meaning and structure

of the induced concept.

In this paper, we investigate the strength and limi-

tations of inducing OODGs bottom-up using HOODG,

a greedy hill-climbing algorithm for inducing OODGs,

previously introduced in (Kohavi 1994). We show that

on the one hand, a greedy choice of variables always

yields an ordering that is locally optimal for fully spec-

i�ed functions and cannot be improved by a single ex-

change of adjacent variables (a technique sometimes

used in the engineering community). On the other

hand, there is an optimization step in the algorithm

that is shown to be intractable, unless P=NP.

In the next two sections, we describe the OODG

structure, some of its properties, and the framework of

the bottom-up induction algorithm. We then describe

the HOODG algorithm, discuss the heuristics and im-

provements made since its introduction, and new the-

oretical results. We follow with the experimental re-

sults, and conclude with a summary and discussion of

future work.

Oblivious Read-Once Decision Graphs

In this section, we formally de�ne the structure of de-

cision graphs and then specialize it to oblivious, read-

once decision graphs (OODGs).

Given n discrete variables (attributes), X

1

; X

2

; : : : ;

X

n

, with domains D

1

; : : : ; D

n

respectively, the in-

stance space X is the cross-product of the domains,

i.e., D

1

� � � ��D

n

. A k-categorization function is a

function f mapping each instance in the instance space

to one of k categories, i.e., f : X 7! f0; : : : ; k� 1g.

Without loss of generality, we assume that for each

category there is at least one instance in X that maps

to it.

A decision graph for a k-categorization function

over variables X

1

; X

2

; : : : ; X

n

with domains D

1

; D

2

;

: : : ; D

n

, is a directed acyclic graph (DAG) with the

following properties:

1. There are exactly k nodes, called category nodes,

that are labelled 0; 1; : : : ; k� 1, and have outdegree

zero.

2. Non-category nodes are called branching nodes.

Each branching node is labelled by some variable

X

i

and has jD

i

j outgoing edges, each labelled by a

distinct value from D

i

.

3. There is one distinguished node|the root|that is

the only node with indegree zero.

The category assigned by a decision graph to a given

variable assignment (an instance), is determined by

tracing the unique path from the root to a category

node, branching according to the labels on the edges.

In a read-once decision graph, each variable occurs

at most once along any computation path. In a lev-

elled decision graph, the nodes are partitioned into

a sequence of pairwise disjoint sets, the levels, such

that outgoing edges from each level terminate at the

next level. An oblivious decision graph is a levelled

graph such that all nodes at a given level are labelled

by the same variable. An oblivious decision graph is

reduced if there do not exist two distinct nodes at

the same level that branch in exactly the same way on

the same values. If two such nodes exist, they can be

united.

An OODG is a reduced oblivious, read-once deci-

sion graph. The size of an OODG is the number of

nodes in the graph, and the width of a level is the

number of nodes at that level. A constant node is a

node, such that all edges emanating from it, terminate

at the same node of the subsequent level. Figure 1

shows an OODG for 3-bit parity with one totally irrel-

evant attribute.

OODGs have many interesting properties. These in-

clude: an OODG is canonical for any total function if

an ordering on the variables is given; any symmetric

function (e.g., parity, majority, and m of n) can be

represented by an OODG of size O(n

2

); and the width

of levels in OODGs is bounded by min

n

2

i

; k

2

(n�i)

o

for

Boolean inputs. We refer the reader to (Kohavi 1994)

for a more detailed description of these properties.

Bottom-Up Construction of OODGs

In this section we present an algorithm for construct-

ing a reduced OODG given the full (labelled) instance

space. The algorithm is recursive and nondetermin-

istic. For simplicity of notation, we assume Boolean

variables and an arbitrary number of categories.

0 1

X4

1 0

X4

0 1

X3 (constant node)

10

X3 (constant node)

10

X2

1 0

X2

0 1

X1

10

Figure 1: An OODG for 3-bit parity:

f = X

1

� X

2

� X

4

:

(� denotes exclusive-or, X

3

is totally irrelevant.)

The input to the algorithm is a set of sets, fC

0

; C

1

;

: : : ; C

k�1

g, where each set C

i

is the set of all instances

labelled with category i. The output of the algorithm

is an OODG that correctly categorizes the training set.

The algorithm, shown in Figure 2, creates sets of in-

stances, such that each set corresponds to one node in

the graph (the input sets corresponding to the cate-

gory nodes). Intuitively, we would like an instance in

a set C

i

to reach node V

i

(corresponding to the set),

when the instance's path is traced from the root of

the completed OODG, branching at branching nodes

according to the attribute values.

Given the input, the algorithm nondeterministically

selects a variable X to test at the penultimate level

of the OODG. It then creates new sets of instances

(corresponding to the nodes in the penultimate level

of the �nal OODG), which are projections of the orig-

inal instances with variable X deleted. The sets are

created so that a set C

0

xy

(which matches a branching

node V

0

xy

) contains all projections of instances that are

in C

x

when augmented with X = 0, and in C

y

when

augmented with X = 1. In the graph, the branching

node corresponding to C

0

xy

will have the edge labelled

0 terminating at node V

x

, and the edge labelled 1 ter-

minating at node V

y

.

The new sets now form a smaller problem over n�1

variables, and the algorithm calls itself recursively to

compute the rest of the OODG with the nonempty sets

of the new level serving as the input. The recursion

stops when the input to the algorithm is a single set,

possibly consisting of the null instance (0 variables).

Input: k sets C

0

; : : : ; C

k�1

, such that X =

S

k�1

i=0

C

i

(the whole instance space).

Output: Reduced OODG correctly categorizing all instances in X .

1. If (k = 1), then return a graph with one node.

2. Nondeterministically select a variable X to be deleted from the instances.

3. Project the instances in C

0

; : : : ; C

k�1

onto the instance space X

0

, such that variable X is deleted. Formally, if X is the

ith variable,

X

0

 �

(X

1

;:::;X

i�1

;X

i+1

;:::;X

n

)

k�1

[

i=0

C

i

(where �

(~x)

means project on ~x) :

4. For all i; j 2 f0; : : : ; k � 1g, let C

0

ij

be the set containing instances from X

0

such that the instances are in set C

i

when

augmented with X = 0, and in C

j

when augmented with X = 1. Formally,

C

0

ij

=

�

hX

1

; : : : ;X

i�1

;X

i+1

; : : : ;X

n

i

�

�

�

�

hX

1

; : : : ;X

i�1

; 0; X

i+1

; : : : ;X

n

i 2 C

i

and

hX

1

; : : : ;X

i�1

; 1; X

i+1

; : : : ;X

n

i 2 C

j

�

:

5. Let k

0

be the number of non-empty sets from

�

C

0

ij

	

. Call the algorithm recursively with the k

0

non-empty sets, and let

G be the OODG returned.

6. Label the k

0

leaf nodes of G, corresponding to the non-empty sets C

0

ij

with variable X. Create a new level with k

nodes corresponding to the sets C

0

; : : : ; C

k�1

. From the node corresponding to each C

0

ij

, create two edges: one labelled

0, terminating at the category node corresponding to C

i

, and the other labelled 1, terminating at the category node

corresponding to C

j

.

7. Return the augmented OODG.

Figure 2: A nondeterministic algorithm for learning OODGs.

HOODG: A Hill Climbing Algorithm

For Constructing OODGs

In this section, we address the two problems ignored

in the algorithm previously described:

1. Ordering the variables for selection (Step 2).

2. If the full instance space is not available, the set C

0

ij

in Step 4 may be not uniquely de�ned, and there

may be many sets consistent with the projection.

Ordering the Variables

Given the full instance space, it is possible to �nd

the optimal ordering using dynamic programming, by

checking 2

n

di�erent orderings (Friedman & Suppowit

1990). Since this is impractical in practice, our imple-

mentation greedily select the variable that yields the

smallest width at the next level, excluding constant

nodes. We break ties in favor of minimizing the num-

ber of edges. If all nodes are constant nodes (the at-

tribute is deemed irrelevant), we do another lookahead

step and pick the variable that maximizes the number

of irrelevant attributes at the next level.

This heuristic is di�erent from the original one pro-

posed in (Kohavi 1994). The main di�erence is the

fact that the minimization is done excluding constant

nodes. By ignoring constant nodes, the algorithm

scales better when the target concept is decomposable.

For example, suppose the target concept can be de-

composed into a disjunction of three subproblems on

disjoint variables, such as the following target concept:

f = (A ^ B ^ C) _ (D ^ E) _ (F ^ G)

An OODG with leaves 0 and 1 that implements

A ^ B ^ C can be extended by connecting an OODG

that implements the other two subproblems into the 0

leaf. The 1 leaf can be made into a series of constant

nodes at the lower levels until the 1 node of the �nal

OODG is reached. When the bottom-up construction

takes place, we would like to take into account only

the number of non-constant nodes, as these indicate

the actual dependencies on the variable.

The following theorem shows that in a bottom-up

construction, where the full instance space is avail-

able, the above heuristic is locally optimal and cannot

be improved by a single exchange of neighboring vari-

ables. Such exchanges were done to improve the size of

OBDDs when created top-down in (Fujita, Matsunaga,

& Kakuda 1991).

Theorem 1 If during a bottom-up construction, the

variable that creates the smallest width at each level

is chosen, no exchange of two adjacent variables will

improve the size of the OODG or OBDD.

The proof is based on the fact that exchanging neigh-

boring variables changes the number of nodes at only

one of the two levels.

Incomplete Projections

If the full instance space is not given, there will be

projections of instances for which some values of the

deleted attribute will be missing (e.g., a projected in-

stance must branch to some node on values 0 and 2,

but the destinations for values 1 and 3 are unknown).

Call such projections Incomplete Projections, or IPs.

Assigning values to the missing destinations of the IPs

constitutes a bias, since it determines how unseen in-

stances will be classi�ed.

Following Occam's razor, we would like to �nd the

smallest OODG consistent with the data (we assume

no noise). We are thus looking for a minimal set of

branching nodes that \covers" all projections, i.e., a

minimal cover.

An IP is consistent with another projection, P (at

the same level of the graph), if they do not have con-

icting destinations on the same value of the deleted

variable. An IP is included in another projection, P,

if they are consistent, and if all destinations de�ned for

the IP are also de�ned for the projection P. (Note that

included is an asymmetric relation.)

The greedy strategy for assigning incomplete projec-

tions to nodes, starts creating projection sets (branch-

ing nodes) from projections having the greatest num-

ber of known destinations, and then from projections

with fewer known destinations. Following a least com-

mitment strategy, each projection is placed in a projec-

tion set it is included in, whenever possible (hence not

forcing a new destination); otherwise, it is placed in a

set where it is consistent with all instances, if possible;

otherwise, a new projection set is created, consisting

of the single projection.

Our heuristic breaks ties in favor of projection set

that has the most instances di�ering by at most one

bit, and given equality, breaks ties in favor of adding

the minimumnumber of new destinations (again, least

commitment). These tie-breakers were added to the

original heuristic, presented in (Kohavi 1994), after it

was noted that there are many cases where they are

needed. We have tried di�erent tie-breaking heuristics,

and many reasonable heuristics perform better than

the arbitrary tie-breaking originally used.

As the following results show, it is unlikely that an

algorithm �nding the smallest consistent OODG will

be found, even for a given ordering. In (Takenaga &

Yajima 1993), it was shown that identifying whether

there exists an OBDD with k nodes that is consistent

with labelled instances is NP-complete, and this result

applies to OODGs too. The following theorem shows

that minimizing even a single level in an OBDD or

OODG is NP-complete:

Theorem 2 (Hardness of minimal projection)

The following decision problem is NP-complete:

Given a set of labelled instances, an ordering on the

variables, and two positive integers w and `; is there

an OODG (or OBDD) that has width � w at level `,

and that correctly classi�es all instances?

The reduction was done from graph k-colorability

(chromatic number) using only Boolean variables. This

is a strong negative result, since it is known that

the chromatic number of a graph cannot be approxi-

mated to within any constant multiplicative factor un-

less P=NP (Lund & Yannakakis 1993). Note that this

result applies to any algorithm that attempts to mini-

mize the width of an OODG at a given level, whether

done incrementally as in HOODG, or otherwise.

Experimental Results

We now turn to a series of experiments that attempt

to evaluate the performance of the HOODG algo-

rithm. Table 1 shows the accuracy results

1

for ID3,

C4.5 (Quinlan 1993), Oliver's decision graph algo-

rithm, DGRAPH (Oliver 1993), and HOODG, on the

following datasets that we generated or retrieved from

(?):

Monk 1,2 In (Thrun et al. 1991), 24 authors com-

pared 25 machine learning algorithms on problems

called the monks problems. In this domain there

are six attributes with discrete values. The Monk 1

problem has a single training set, but it is too easy.

To make the problem harder, we ran the algorithms

on 10 sets of 60 instances each|about half of the

original training set. The test set is the whole space.

In the Monk 2 problem, we ran the algorithms on

10 sets of 169 instances each, the same size as the

original training set. The problem is very hard, but

becomes easier under local encoding, where each at-

tribute value is assigned an indicator variable. This

encoding was used for neural networks in the com-

parison.

Parity The target concept is the parity of 5 bits out

of 10 bits with 5 (uniformly random) irrelevant bits.

We averaged 10 sets of 100 instances each.

Vote The vote database includes votes for each of the

U.S. House of Representatives Congressmen on 16

key votes. The classes are Democrat and Republi-

can. There are 435 instances with duplicates. We

ran ten-fold cross-validation.

Breast In the Wisconsin breast-cancer database, the

task is to predict reoccurrence or non-reoccurrence

of breast-cancer sometime after an operation. There

are nine attributes, each with 10 discretized values.

There are 699 instances with duplicates. We ran ten-

fold cross validation on the original encoding and

then using binary encoding.

The worst-case time complexity of the HOODG al-

gorithm is O(ns

2

+ is

2

(n� 1)) per level, where i is the

number of irrelevant attributes at the given level, and

s is the number of projected instances at that level.

This assumes that the number of values per attribute

1

C4.5 runs were made with -m 1, and the better result of

running with and without the -s ag for grouping. Oliver's

DGRAPH was run with 2 levels of lookahead and with

di�erent p values (we give the one that yields the minimum

message length as suggested by Oliver). HOODG was run

without the 2-level lookahead on irrelevant attributes for

the Breast-cancer database because the lookahead was too

expensive time-wise.

Data Set ID3 C4.5 DGRAPH HOODG

Monk 1 (60/432) 80:32%� 6:45% 83:56%� 9:27% 73:89%� 2:68% XF 100:00%� 0:00%

Monk 2 (169/432) 69:17%� 2:01% 72:73%� 5:66% 66:67%� 1:46% XF 91:30%� 1:98%

Monk 2 local 78:08%� 6:66% 75:75%� 7:83% 67:13%� 0:00% XF 99:14%� 0:62%

Parity (100/1024) 54:00%� 2:68% 51:56%� 2:32% 50:00%� 0:00% XF 100:00%� 0:00%

Vote (435/XV) 93:57%� 4:00% X 95:43%� 4:31% XF 95:63%� 3:69% X 94:03%� 3:46%

Breast (699/XV) X 94:42%� 4:68% XF 94:64%� 6:16% X 93:85%� 4:26% 86:99%� 6:50%

Breast binary X 94:01%� 4:57% XF 96:07%� 6:16% 92:84%� 5:94% X 95:03%� 2:77%

Table 1: Comparison of di�erent algorithms. Results are averages of 10 runs with standard deviation after the

� sign. Number in parentheses denote the training set size and test set size; XV means ten-fold cross validation.

\local" means local encoding, \binary" means binary encoding. The best accuracy for each dataset is shown with

a star (F), and accuracies within one half standard deviation of the best, are marked with a checkmark (X). Such

small di�erences in accuracy indicate comparable performance.

is a bounded constant. If we ignore the two-level looka-

head for irrelevant attributes, the time complexity of

the overall algorithm is O(n

2

m

2

), where m is the num-

ber of instances in the training set.

Running on a SPARCstation ELC, the execution

time for HOODG varies from about 3 seconds for

Monk 1 and Parity5+5, to 20 minutes for the vote

database. The large time requirement in the vote

database is due to the large correlations between the

attributes, which make many attributes weakly rele-

vant (John, Kohavi, & Peger 1994), thus forcing a

two-ply lookahead.

HOODG does much better on all the arti�cial data

sets, and about the same on the real datasets, except

for breast-cancer in the original encoding, where we

noted that its myopic hill-climbing forces a ten-way

split at the root variable. This is circumvented in the

binary encoding because the equivalent of a multi-way

split requires extra non-constant intermediate nodes,

thus penalizing such a split

2

.

We now turn to further empirical experiments to

help us evaluate the appropriateness of the algorithm

and the structure. We picked two arti�cial domains on

which to conduct further experiments. The �rst was

the Monk 1 problem mentioned in the previous sec-

tion. The second was the multiplexer problem. In the

multiplexer problem, there are n \address bits" and 2

n

\data" bits. An instance is labelled positive if the data

bit indicated by the address bits is on. The structure

of the smallest target concept is a tree, even if the con-

cept space allows general graphs. The n address bits

are tested �rst, and then all the (di�erent) data bits

are tested on the same level. There is no advantage in

trying to construct a graph or OODG; moreover, one

would expect the oblivious restriction to make the task

harder for HOODG, since each data bit would need to

be tested on a di�erent level. As noted in (Quinlan

1988), this domain is hard for decision trees also, since

2

The multi-way split problem suggests using a di�erent

measure, perhaps similar to Quinlan's gain-ratio (Quinlan

1986).

the entropy criteria favors a data bit at the root. The

learning curves in Figure 3 show the accuracy of the

hypotheses versus the training set size for HOODG and

ID3. Each data point in the graph is the average of 10

runs on uniformly sampled training sets for that size.

The twenty training set sizes were chosen at increments

equal to 5% of the instance space.

The graphs clearly show that for Monk 1, HOODG

has a large advantage over ID3, mainly because the

concept is graph-like. HOODG quickly reaches the

100% level, while ID3 trails behind. Only at 410 in-

stances, do all 10 runs of ID3 yield an accuracy of

100%. In the multiplexer domain, the algorithms per-

form roughly the same (within one standard deviation

except for one data point at 42).

Summary and Future Work

We have described OODG, a structure for represent-

ing concepts, and a hill-climbing algorithm, HOODG,

for inferring OODGs from labelled instances. Tie-

breaking heuristics were added to the original HOODG

algorithm, improving the accuracy and learning rate.

Although limited in its myopic view, the HOODG

algorithm performs well, especially if the concept is

graph-like (e.g., Monk 1, Monk 2), or has totally irrel-

evant attributes (John, Kohavi, & Peger 1994). The

algorithm clearly outperforms other algorithms on the

arti�cial domains tested, and is comparable on real

domains, even though it currently does not deal with

noise and probably over�ts the data. Theorem 1 shows

that the greedy approach always creates an OODG

that is locally optimal if the full instance space is given.

Theorem 2 shows that a multi-level projection step

that �nds the minimalwidth is intractable in the worst

case (unless P=NP).

Deeper lookahead for variable selection is an obvious

possible extension, especially since one motivation for

growing the graph from the bottom is the asymmetric

bound on the width at the di�erent levels.

The OODG structure can be extended to allow splits

on ranges and continuous values, but more research is

0 100 200 300 400
TS size

Monk1

0.7
0.75
0.8

0.85
0.9
0.95

1

Accuracy

HOODG

ID3

0 10 20 30 40 50 60
TS size

Multiplexer 6

0.6

0.7

0.8

0.9

1

Accuracy

HOODG

ID3

Figure 3: Learning curves for HOODG and ID3 and Monk 1 and 6 multiplexer.

required to extend the HOODG algorithm itself. Other

important issues include dealing with noise (pruning),

handling unknown values (here graphs might have ad-

vantages over trees due to reconverging paths), and

�nding more clever methods for ordering the variables

Acknowledgements We would like to thank the

anonymous reviewers, James Kittock, Andrew Kosore-

sow, Shaul Markovitch, Nils Nilsson, Karl Peger, Ed-

die Schwalb, Yoav Shoham, and Tomas Uribe for their

comments. The experimental section would not have

been possible without theMLC

++

project, partly sup-

ported by National Science Foundation Grant IRI-

9116399. We wish to thank everyone working on

MLC

++

, especially Richard Long.

References

Bryant, R. E. 1986. Graph-based algorithms for

boolean function manipulation. IEEE Transactions

on Computers C-35(8):677{691.

Burch, J. R.; Clarke, E. M.; and Long, D. E.

1991. Representing circuits more e�ciently in sym-

bolic model checking. In Proceedings of the 28th

ACM/IEEE Design Automation Conference, 403{

407.

Friedman, S. J., and Suppowit, K. J. 1990. Finding

the optimal variable ordering for binary decision dia-

grams. IEEE Transactions on Computers 39(5):710{

713.

Fujita, M.; Matsunaga, Y.; and Kakuda, T. 1991. On

variable ordering of binary decision diagrams for the

application of multilevel logic synthesis. In Proceed-

ings of the European Conference on Design Automa-

tion, 50{54. IEEE Computing Press.

John, G.; Kohavi, R.; and Peger, K. 1994. Irrelevant

features and the subset selection problem. InMachine

Learning: Proceedings of the Eleventh International

Conference, 121{129. Morgan Kaufmann. Available

by anonymous ftp from:

starry.Stanford.EDU:pub/ronnyk/ml94.ps.

Kohavi, R. 1994. Bottom-up induction of oblivious,

read-once decision graphs. In Proceedings of the Eu-

ropean Conference on Machine Learning. Available

by anonymous ftp from

starry.Stanford.EDU:pub/ronnyk/euroML94.ps.

Lund, C., and Yannakakis, M. 1993. On the hardness

of approximating minimization problems. In ACM

Symposium on Theory of Computing.

Moret, B. M. E. 1982. Decision trees and diagrams.

ACM Computing Surveys 14(4):593{623.

Oliver, J. J. 1993. Decision graphs | an extension of

decision trees. In Proceedings of the fourth Interna-

tional workshop on Arti�cial Intelligence and Statis-

tics, 343{350.

Pagallo, G., and Haussler, D. 1990. Boolean fea-

ture discovery in empirical learning. Machine Learn-

ing 5:71{99.

Quinlan, J. R. 1986. Induction of decision trees. Ma-

chine Learning 1:81{106. Reprinted in Shavlik and

Dietterich (eds.) Readings in Machine Learning.

Quinlan, J. R. 1988. An empirical comparison of

genetic and decision-tree classi�ers. In Proceedings of

the Fifth International Conference on Machine Learn-

ing, 135{141. Morgan Kaufmann.

Quinlan, J. R. 1993. C4.5: Programs for Machine

Learning. Los Altos, California: Morgan Kaufmann.

Takenaga, Y., and Yajima, S. 1993. NP-completeness

of minimum binary decision diagram identi�cation.

Technical Report COMP 92-99, IEICE.

Thrun, S.; Bala, J.; Bloedorn, E.; Bratko, I.; Cestnik,

B.; Cheng, J.; De Jong, K.; Dzeroski, S.; Fahlman,

S.; Fisher, D.; Hamann, R.; Kaufman, K.; Keller, S.;

Kononenko, I.; Kreuziger, J.; Michalski, R.; Mitchell,

T.; Pachowicz, P.; Reich, Y.; Vafaie, H.; de Weldel,

W. V.; Wenzel, W.; Wnek, J.; and Zhang, J. 1991.

The monk's problems: A performance comparison of

di�erent learning algorithms. Technical Report CMU-

CS-91-197, Carnegie Mellon University.

