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Abstract

Many supervised machine learning algo-

rithms require a discrete feature space. In

this paper, we review previous work on con-

tinuous feature discretization, identify de�n-

ing characteristics of the methods, and con-

duct an empirical evaluation of several meth-

ods. We compare binning, an unsupervised

discretization method, to entropy-based and

purity-based methods, which are supervised

algorithms. We found that the performance

of the Naive-Bayes algorithm signi�cantly

improved when features were discretized us-

ing an entropy-based method. In fact, over

the 16 tested datasets, the discretized version

of Naive-Bayes slightly outperformed C4.5 on

average. We also show that in some cases,

the performance of the C4.5 induction algo-

rithm signi�cantly improved if features were

discretized in advance; in our experiments,

the performance never signi�cantly degraded,

an interesting phenomenon considering the

fact that C4.5 is capable of locally discretiz-

ing features.

1 Introduction

Many algorithms developed in the machine learning

community focus on learning in nominal feature spaces

(Michalski & Stepp 1983, Kohavi 1994). However,

many real-world classi�cation tasks exist that involve

continuous features where such algorithms could not

be applied unless the continuous features are �rst dis-

cretized. Continuous variable discretization has re-

ceived signi�cant attention in the machine learning

community only recently. Often, uniform binning of

the data is used to produce the necessary data trans-

formations for a learning algorithm, and no careful

study of how this discretization a�ects the learning

process is performed (Weiss & Kulikowski 1991). In

decision tree methods, such as C4.5 (Quinlan 1993),

continuous values are discretized during the learning

process. The advantages of discretizing during the

learning process have not yet been shown. In this pa-

per, we include such a comparison.

Other reasons for variable discretization, aside from

the algorithmic requirements mentioned above, in-

clude increasing the speed of induction algorithms

(Catlett 1991b) and viewing General Logic Diagrams

(Michalski 1978) of the induced classi�er. In this

paper, we address the e�ects of discretization on

learning accuracy by comparing a range of discretiza-

tion methods using C4.5 and a Naive Bayes classi-

�er. The Naive-Bayes classi�er is the one implemented

in MLC

++

(Kohavi, John, Long, Manley & Peger

1994), which is described in Langley, Iba & Thompson

(1992).

There are three di�erent axes by which discretization

methods can be classi�ed: global vs. local, supervised

vs. unsupervised, and static vs. dynamic.

Local methods, as exempli�ed by C4.5, produce par-

titions that are applied to localized regions of the

instance space. Global methods (Chmielewski &

Grzymala-Busse 1994), such as binning, produce a

mesh over the entire n-dimensional continuous in-

stance space, where each feature is partitioned into

regions independent of the other attributes. The mesh

contains

Q

n

i=1

k

i

regions, where k

i

is the number of

partitions of the ith feature.

Several discretization methods, such as equal width

interval binning, do not make use of instance labels

in the discretization process. In analogy to super-

vised versus unsupervised learning methods, we refer

to these as unsupervised discretization methods. In

contrast, discretization methods that utilize the class

labels are referred to as supervised discretization meth-

ods.



We believe that di�erentiating static and dynamic

discretization is also important. Many discretiza-

tion methods require some parameter, k, indicating

the maximum number of intervals to produce in dis-

cretizing a feature. Static methods, such as binning,

entropy-based partitioning (Catlett 1991b, Fayyad &

Irani 1993, Pfahringer 1995), and the 1R algorithm

(Holte 1993), perform one discretization pass of the

data for each feature and determine the value of k for

each feature independent of the other features. Dy-

namic methods conduct a search through the space

of possible k values for all features simultaneously,

thereby capturing interdependencies in feature dis-

cretization. While we believe such methods are a

promising avenue of research, we do not pursue these

methods in this paper.

We present work related to feature discretization in

Section 2. In Section 3, we describe in detail the meth-

ods we used in our comparative study of discretization

techniques. We explain our experiments and results in

Section 4. Section 5 and 6 are reserved for a discussion

and summary of this work.

2 Related Work

The simplest discretization method, Equal Interval

Width, merely divides the range of observed values

for a variable into k equal sized bins, where k is a

user-supplied parameter. As Catlett (1991a) points

out, this type of discretization is vulnerable to out-

liers that may drastically skew the range. A related

method, Equal Frequency Intervals, divides a contin-

uous variable into k bins where (given m instances)

each bin contains m=k (possibly duplicated) adjacent

values.

Since these unsupervised methods do not utilize in-

stance labels in setting partition boundaries, it is likely

that classi�cation information will be lost by binning

as a result of combining values that are strongly asso-

ciated with di�erent classes into the same bin (Kerber

1992). In some cases this could make e�ective classi�-

cation much more di�cult.

A variation of equal frequency intervals|maximal

marginal entropy| adjusts the boundaries to decrease

entropy at each interval (Chmielewski & Grzymala-

Busse 1994, Wong & Chiu 1987).

Holte (1993) presented a simple example of a super-

vised discretization method. His 1R algorithm at-

tempts to divide the domain of every continuous vari-

able into pure bins, each containing a strong majority

of one particular class with the constraint that each

bin must include at least some prespeci�ed number of

instances. This method appears to work reasonably

well when used in conjunction with the 1R induction

algorithm.

The ChiMerge system (Kerber 1992) provides a sta-

tistically justi�ed heuristic method for supervised dis-

cretization. This algorithm begins by placing each ob-

served real value into its own interval and proceeds by

using the �

2

test to determine when adjacent intervals

should be merged. This method tests the hypothesis

that the two adjacent intervals are statistically inde-

pendent by making an empirical measure of the ex-

pected frequency of the classes represented in each of

the intervals. The extent of the merging process is

controlled by the use of a �

2

threshold, indicating the

maximum �

2

value that warrants merging two inter-

vals. The author reports that on random data a very

high threshold must be set to avoid creating too many

intervals.

Another method for using statistical tests as a means

of determining discretization intervals, StatDisc, has

been proposed by Richeldi & Rossotto (1995). Simi-

lar in avor to ChiMerge, this bottom-up method cre-

ates a hierarchy of discretization intervals using the

� measure as a criterion for merging intervals. Stat-

Disc is more general than ChiMerge, however, in that

it considers merging up to N adjacent intervals at a

time (where N is a user-set parameter), rather than

just two adjacent intervals at a time as in ChiMerge.

Merging of intervals continues until some � threshold

is achieved. The �nal hierarchy of discretizations can

then be explored and a suitable �nal discretization au-

tomatically selected.

A number of entropy-based methods have recently

come to the forefront of work on discretization. Chiu,

Cheung & Wong (1990) have proposed a hierarchical

discretization method based on maximizing the Shan-

non entropy over the discretized space. This method

uses a hill-climbing search to �nd a suitable initial par-

tition of the continuous space into k bins along each

axis and then re-applies this method to particular in-

tervals to obtain �ner intervals. This method has been

applied primarily to an information synthesis task yet

it bears strong similarities to work in discretization by

machine learning researchers.

Catlett (1991b) has explored the use of entropy-based

discretization in decision tree domains as a means of

achieving an impressive increase in the speed of in-

duction on very large data sets with many continuous

features. His D-2 discretizer uses several conditions as

criteria for stopping the recursive formation of parti-

tions for each attribute: a minimum number of sam-

ples in one partition, a maximumnumber of partitions,

and a minimum information gain.

Fayyad & Irani (1993) use a recursive entropy min-



Global Local

1RD (Holte)

Adaptive Quantizers

ChiMerge (Kerber) Vector Quantization

Supervised D-2 (Catlett) Hierarchical Maximum Entropy

Fayyad and Irani / Ting Fayyad and Irani

Supervised MCC C4.5

Predictive Value Max.

Equal width interval

Unsupervised Equal freq. interval k-means clustering

Unsupervised MCC

Table 1: Summary of discretization methods

imization heuristic for discretization and couple this

with a Minimum Description Length criterion (Rissa-

nen 1986) to control the number of intervals produced

over the continuous space. In the original paper, this

method was applied locally at each node during tree

generation. The method was found to be quite promis-

ing as a global discretization method (Ting 1994), and

in this paper the method is used for global discretiza-

tion.

Pfahringer (1995) uses entropy to select a large num-

ber of candidate split-points and employs a best-�rst

search with a Minimum Description Length heuristic

to determine a good discretization.

Adaptive Quantizers (Chan, Batur & Srinivasan 1991)

is a method combining supervised and unsupervised

discretization. One begins with a binary equal width

interval partitioning of the continuous feature. A set of

classi�cation rules are then induced on the discretized

data (using an ID3-like algorithm) and tested for ac-

curacy in predicting discretized outputs. The interval

that has the lowest prediction accuracy is then split

into two partitions of equal width and the induction

and evaluation processes are repeated until some per-

formance criteria is obtained. While this method does

appear to overcome some of the limitations of unsu-

pervised binning, it has a high computational cost as

the rule induction process must be repeated numerous

times. Furthermore, the method makes an implicit as-

sumption that high accuracy can be attained. For ex-

ample, on random data, the system might make many

splits and a post-processing step needs to be added.

Bridging the gap between supervised and unsupervised

methods for discretization, Van de Merckt (1993) de-

veloped two methods under the general heading of

Monothetic Contrast Criterions (MCC). The �rst cri-

terion, dubbed unsupervised by the author, makes use

of an unsupervised clustering algorithm that seeks

to �nd the partition boundaries that \produce the

greatest contrast" according to a given contrast func-

tion. The second method, referred to as mixed su-

pervised/unsupervised, simply rede�nes the objective

function to be maximized by dividing the previous

contrast function by the entropy of a proposed par-

tition. Since calculating the entropy for the candi-

date partition requires class label information, this

method can be thought of as supervised. Chmielewski

& Grzymala-Busse (1994) have taken a similar ap-

proach using a cluster-based method to �nd candi-

date interval boundaries and then applying an entropy-

based consistency function from the theory of Rough

Sets to evaluate these intervals.

The Predicative Value Maximization algorithm (Weiss,

Galen & Tadepalli 1990) makes use of a supervised

discretization method by �nding partition boundaries

with locally maximal predictive values|those most

likely to make correct classi�cation decisions. The

search for such boundaries begins at a coarse level and

is re�ned over time to �nd locally optimal partition

boundaries.

Dynamic programming methods have been applied to

�nd interval boundaries for continuous features (Ful-

ton, Kasif & Salzberg 1994). In such methods, each

pass over the observed values of the data can iden-

tify a new partition on the continuous space based on

the intervals already identi�ed up to that point. This

general framework allows for a wide variety of impu-

rity functions to be used to measure the quality of

candidate splitting points. Maass (1994) has recently

introduced a dynamic programming algorithm which

�nds the minimum training set error partitioning of a

continuous feature in O(m(log m + k

2

)) time, where

k is the number of intervals and m is the number of

instances. This method has yet to be tested experi-

mentally.

Vector Quantization (Kohonen 1989) is also related to

the notion of discretization. This method attempts



to partition an N -dimensional continuous space into

a Voronoi Tessellation and then represent the set of

points in each region by the region into which it falls.

This discretization method creates local regions and

is thus a local discretization method. Alternatively, it

can be thought of as a complete instance space dis-

cretization as opposed to the feature space discretiza-

tions discussed here.

Table 1 shows a summary of these discretization

methods, identi�ed by the global/local and super-

vised/unsupervised dimensions. All the methods pre-

sented are static discretizers.

3 Methods

In our study, we consider three methods of dis-

cretization in depth: equal width intervals, 1RD, the

method proposed by Holte for the 1R algorithm, and

the entropy minimization heuristic (Fayyad & Irani

1993, Catlett 1991b).

3.1 Equal Width Interval Binning

Equal width interval binning is perhaps the simplest

method to discretize data and has often been applied

as a means for producing nominal values from contin-

uous ones. It involves sorting the observed values of a

continuous feature and dividing the range of observed

values for the variable into k equally sized bins, where

k is a parameter supplied by the user. If a variable x

is observed to have values bounded by x

min

and x

max

then this method computes the bin width

� =

x

max

� x

min

k

and constructs bin boundaries, or thresholds, at x

min

+

i� where i = 1; :::; k�1. The method is applied to each

continuous feature independently. It makes no use of

instance class information whatsoever and is thus an

unsupervised discretization method.

3.2 Holte's 1R Discretizer

Holte (1993) describes a simple classi�er that in-

duces one-level decision trees, sometimes called deci-

sion stumps (Iba & Langley 1992). In order to prop-

erly deal with domains that contain continuous valued

features, a simple supervised discretization method is

given. This method, referred to here as 1RD (One-

Rule Discretizer), sorts the observed values of a con-

tinuous feature and attempts to greedily divide the

domain of the feature into bins that each contain only

instances of one particular class. Since such a scheme

could possibly lead to one bin for each observed real

value, the algorithm is constrained to forms bins of at

least some minimum size (except the rightmost bin).

Holte suggests a minimum bin size of 6 based on an

empirical analysis of 1R on a number of classi�ca-

tion tasks, so our experiments used this value as well.

Given the minimum bin size, each discretization in-

terval is made as \pure" as possible by selecting cut-

points such that moving a partition boundary to add

an observed value to a particular bin cannot make the

count of the dominant class in that bin greater.

3.3 Recursive Minimal Entropy Partitioning

A method for discretizing continuous attributes based

on a minimal entropy heuristic, presented in Catlett

(1991b) and Fayyad & Irani (1993), is also used in our

experimental study. This supervised algorithm uses

the class information entropy of candidate partitions

to select bin boundaries for discretization. Our nota-

tion closely follows the notation of Fayyad and Irani.

If we are given a set of instances S, a feature A, and

a partition boundary T , the class information entropy

of the partition induced by T , denoted E(A; T ;S) is

given by:

E(A; T ;S) =

jS

1

j

jSj

Ent(S

1

) +

jS

2

j

jSj

Ent(S

2

) :

For a given feature A, the boundary T

min

which min-

imizes the entropy function over all possible parti-

tion boundaries is selected as a binary discretization

boundary. This method can then be applied recur-

sively to both of the partitions induced by T

min

un-

til some stopping condition is achieved, thus creating

multiple intervals on the feature A.

Fayyad and Irani make use of the Minimal Descrip-

tion Length Principle to determine a stopping criteria

for their recursive discretization strategy. Recursive

partitioning within a set of values S stops i�

Gain(A; T ;S) <

log

2

(N � 1)

N

+

�(A; T ;S)

N

;

where N is the number of instances in the set S,

Gain(A; T ;S) = Ent(S) � E(A; T ;S);

�(A; T ;S) = log

2

(3

k

� 2)�

[k �Ent(S) � k

1

�Ent(S

1

)� k

2

�Ent(S

2

)];

and k

i

is the number of class labels represented in

the set S

i

. Since the partitions along each branch

of the recursive discretization are evaluated indepen-

dently using this criteria, some areas in the continuous

spaces will be partitioned very �nely whereas others

(which have relatively low entropy) will be partitioned

coarsely.



Dataset Features Train Test Majority

continuous nominal sizes Accuracy

1 anneal 6 32 898 CV-5 76.17�0.10

2 australian 6 8 690 CV-5 55.51�0.18

3 breast 10 0 699 CV-5 65.52�0.14

4 cleve 6 7 303 CV-5 54.46�0.22

5 crx 6 9 690 CV-5 55.51�0.18

6 diabetes 8 0 768 CV-5 65.10�0.16

7 german 24 0 1000 CV-5 70.00�0.00

8 glass 9 0 214 CV-5 35.51�0.45

9 glass2 9 0 163 CV-5 53.37�0.56

10 heart 13 0 270 CV-5 55.56�0.00

11 hepatitis 6 13 155 CV-5 79.35�0.79

12 horse-colic 7 15 368 CV-5 63.04�0.25

13 hypothyroid 7 18 2108 1055 95.45�0.05

14 iris 4 0 150 CV-5 33.33�0.00

15 sick-euthyroid 7 18 2108 1055 90.89�0.06

16 vehicle 18 0 846 CV-5 25.53�0.09

Table 2: Datasets and baseline accuracy

4 Results

In our experimental study, we compare the discretiza-

tion methods in Section 3 as a preprocessing step

to the C4.5 algorithm and a Naive-Bayes classi�er.

The C4.5 induction algorithm is a state-of-the-art

top-down method for inducing decision trees. The

Naive-Bayes induction algorithm computes the poste-

rior probability of the classes given the data, assum-

ing independence between the features for each class.

The probabilities for nominal features are estimated

using counts, and a Gaussian distribution is assumed

for continuous features.

The number of bins, k, in the equal width inter-

val discretization was set to both k = 10 and k =

maxf1; 2 � log `g, where l is the number of distinct ob-

served values for each attribute. The heuristic was

chosen based on examining S-plus's histogram binning

algorithm (Spector 1994).

We chose sixteen datasets from the U.C. Irvine repos-

itory (Murphy & Aha 1994) that each had at least one

continuous feature. For the datasets that had more

than 3000 test instances, we ran a single train/test

experiment and report the theoretical standard de-

viation estimated using the Binomial model (Kohavi

1995). For the remaining datasets, we ran �ve-fold

cross-validation and report the standard deviation of

the cross-validation.

Table 2 describes the datasets with the last column

showing the accuracy of predicting the majority class

on the test set. Table 3 shows the accuracies of the

C4.5 induction algorithm (Quinlan 1993) using the dif-

ferent discretization methods. Table 4 shows the ac-

curacies of the Naive-Bayes induction algorithm. Fig-

ure 1 shows a line plot of two discretization methods:

log `-binning and entropy. We plotted the di�erence

between the accuracy after discretization and the in-

duction algorithm's original accuracy.

5 Discussion

Our experiments reveal that all discretization meth-

ods for the Naive-Bayes classi�er lead to a large av-

erage increase in accuracy. Speci�cally, the best

method|entropy|improves performance on all but

three datasets, where the loss is insigni�cant. On seven

out of 16, the entropy discretization method provides a

signi�cant increase in accuracy. We attribute this dis-

parity in accuracy to the shortcomings of the Gaussian

distribution assumption that is inappropriate in some

domains. As observed by Richeldi & Rossotto (1995),

discretization of a continuous feature can roughly ap-

proximate the class distribution for the feature and

thus help to overcome the normality assumption used

for continuous features in the Naive-Bayesian classi�er

we used.

C4.5's performance was signi�cantly improved on two

datasets|cleve and diabetes|using the entropy dis-

cretization method and did not signi�cantly degrade

on any dataset, although it did decrease slightly on

some. The entropy-based discretization is a global

method and does not su�er from data fragmentation

(Pagallo & Haussler 1990). Since there is no signi�cant



Dataset C4.5

Continuous Bin-log ` Entropy 1RD Ten Bins

1 anneal 91.65�1.60 90.32�1.06 89.65�1.00 87.20�1.66 89.87�1.30

2 australian 85.36�0.74 84.06�0.97 85.65�1.82 85.22�1.35 84.20�1.20

3 breast 94.71�0.37 94.85�1.28 94.42�0.89 94.99�0.68 94.57�0.97

4 cleve 73.62�2.25 76.57�2.60 79.24�2.41 79.23�2.48 77.58�3.31

5 crx 86.09�0.98 84.78�1.82 84.78�1.94 85.51�1.93 84.64�1.64

6 diabetes 70.84�1.67 73.44�1.07 76.04�0.85 72.40�1.72 72.01�1.07

7 german 72.30�1.37 71.10�0.37 74.00�1.62 70.10�0.94 70.10�0.48

8 glass 65.89�2.38 59.82�3.21 69.62�1.95 59.31�2.07 59.83�2.04

9 glass2 74.20�3.72 80.42�3.55 76.67�1.63 71.29�5.10 74.32�3.80

10 heart 77.04�2.84 78.52�1.72 81.11�3.77 82.59�3.39 80.74�0.94

11 hepatitis 78.06�2.77 80.00�2.37 75.48�1.94 79.35�4.28 80.00�2.37

12 horse-colic 84.78�1.31 85.33�1.23 85.60�1.25 85.60�1.24 85.33�1.23

13 hypothyroid 99.20�0.27 97.30�0.49 99.00�0.30 98.00�0.43 96.30�0.58

14 iris 94.67�1.33 96.00�1.25 94.00�1.25 94.00�1.25 96.00�1.25

15 sick-euthyroid 97.70�0.46 94.10�0.72 97.30�0.49 97.40�0.49 95.70�0.62

16 vehicle 69.86�1.84 68.45�2.19 69.62�1.57 66.80�3.39 68.33�2.12

Average 82.25 82.19 83.26 81.81 81.84

Table 3: Accuracies using C4.5 with di�erent discretization methods. Continuous denotes running C4.5 on the

undiscretized data; Bin-log ` and Ten Bins use equal-width binning with the respective number of intervals;

Entropy refers to a global variant of the discretization method proposed by Fayyad and Irani.

Dataset Naive-Bayes

Continuous Bin-log ` Entropy 1RD Ten Bins

1 anneal 64.48�1.47 95.99�0.59 97.66�0.37 95.44�1.02 96.22�0.64

2 australian 77.10�1.58 85.65�0.84 86.09�1.06 84.06�1.02 85.07�0.75

3 breast 96.14�0.74 97.14�0.50 97.14�0.50 97.14�0.60 97.28�0.52

4 cleve 84.19�2.01 83.86�3.10 82.87�3.11 81.86�1.84 82.21�2.63

5 crx 78.26�1.15 84.78�1.17 86.96�1.15 85.22�1.25 85.07�1.35

6 diabetes 75.00�1.77 74.87�1.39 74.48�0.89 72.14�1.52 75.00�1.74

7 german 72.60�2.65 75.60�0.87 73.30�1.38 71.80�1.29 74.40�1.19

8 glass 47.19�0.71 70.13�2.39 71.52�1.93 69.19�3.18 62.66�3.11

9 glass2 59.45�2.83 76.04�3.06 79.17�1.71 82.86�1.46 77.88�2.52

10 heart 84.07�2.24 82.22�2.72 81.48�3.26 81.85�2.44 82.96�2.77

11 hepatitis 84.52�3.29 83.87�4.08 84.52�4.61 83.87�4.67 85.81�4.16

12 horse-colic 80.14�2.45 79.60�2.52 80.96�2.50 80.13�3.17 80.14�2.09

13 hypothyroid 97.82�0.44 97.54�0.47 98.58�0.36 98.29�0.40 97.25�0.50

14 iris 95.33�1.33 96.00�1.25 94.00�1.25 93.33�1.05 95.33�1.70

15 sick-euthyroid 84.64�1.11 88.44�0.98 95.64�0.62 94.98�0.67 91.09�0.87

16 vehicle 44.21�1.58 60.76�1.75 59.22�1.56 62.18�1.88 60.29�2.32

Average 76.57 83.28 83.97 83.40 83.00

Table 4: Accuracies using Naive-Bayes with di�erent discretization methods
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Figure 1: Comparison of entropy (solid) and log `-binning (dashed). Graphs indicate accuracy di�erence from

undiscretized C4.5/Naive-Bayes. The 0% line indicates the performance of C4.5/Naive-Bayes without prior

discretization. The datasets were arranged by increasing di�erences between the discretization methods.



degradation in accuracy when a global discretization

method is used, we conjecture that the C4.5 induction

algorithm is not taking full advantage of possible local

discretization that could be performed on the data or

that such local discretization cannot help the induc-

tion process for the datasets we tested.

One possible advantage to global discretization as op-

posed to local methods is that it provides regulariza-

tion because it is less prone to variance in estimation

from small fragmented data.

At the 95% con�dence level, the Naive-Bayes with

entropy-discretization is better than C4.5 on �ve

datasets and worse on two. The average performance

(assuming the datasets are coming from some real-

world distribution) of the entropy-discretized Naive-

Bayes is 83.97% compared to C4.5 at 82.25% and the

original Naive-Bayes at 76.57%.

The supervised learning methods are slightly better

than the unsupervised methods, although even simple

binning tends to signi�cantly increase performance of

the Naive-Bayesian classi�er that assumes a Gaussian

distribution for continuous attributes.

6 Summary

We presented an empirical comparison of discretiza-

tion for continuous attributes and showed that dis-

cretization prior to induction can sometimes signi�-

cantly improve the accuracy of an induction algorithm.

The global entropy-based discretization method seems

to be the best choice of the discretization methods

tested here.

We found that the entropy-discretized Naive-Bayes im-

proved so much, that its average performance slightly

surpassed that of C4.5. C4.5's performance did not

degrade if data were discretized in advance using the

entropy discretization method, and in two cases even

improved signi�cantly.

None of the methods tested was dynamic, i.e., each

feature was discretized independent of other features

and of the algorithm's performance. We plan to pur-

sue wrapper methods (John, Kohavi & Peger 1994)

that search through the space of k values, indicating

the number of intervals per attribute. Another variant

that could be explored is local versus global discretiza-

tion based on Fayyad & Irani's method.
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