Appeared in International Journal on Artificial Intelligence Tools
Vol. 6, No. 4 (1997) 537-566

This is a long version of the paper with the same title that appeared in
IEEE Tool with Artificial Intelligence 1996, pages 234-245
and received the best paper award.

Data Mining using MLC++
A Machine Learning Library in C++

http://www.sgi.com/Technology/mlc

Ron Kohavi! Dan Sommerfield! James Dougherty

ronnyk@engr.sgi.com sommda@engr.sgi.com jfd@engr.sgi.com

! Data Mining and Visualization,
2 Scalable Server Division

Silicon Graphics, Inc.
2011 N. Shoreline Blvd
Mountain View, CA 94043-1389

Received 21 April 1997
Revised 7 July 1997

Abstract

Data mining algorithms including machine learning, statistical analysis, and
pattern recognition techniques can greatly improve our understanding of data
warehouses that are now becoming more widespread. In this paper, we focus
on classification algorithms and review the need for multiple classification
algorithms. We describe a system called MLC++, which was designed to help
choose the appropriate classification algorithm for a given dataset by making
it easy to compare the utility of different algorithms on a specific dataset
of interest. MLC++ not only provides a workbench for such comparisons,
but also provides a library of C++ classes to aid in the development of new
algorithms, especially hybrid algorithms and multi-strategy algorithms. Such
algorithms are generally hard to code from scratch. We discuss design issues,
interfaces to other programs, and visualization of the resulting classifiers.

Keywords: data mining, machine learning, classification, benchmark.

2

1 Introduction

Data warehouses containing massive amounts of data have been built in the last
decade. Many organizations, however, find themselves unable to understand, in-
terpret, and extrapolate the data to achieve a competitive advantage. Machine
learning methods, statistical methods, and pattern recognition methods provide al-
gorithms for mining such databases in order to help analyze the information, find
patterns, and improve prediction accuracy.

One problem that users and analysts face when trying to uncover patterns, build
predictors, or cluster data is that there are many algorithms available and it is very
hard to determine which one to use. We detail a system called MLC++, a Machine
Learning library in C++ that was designed to aid both algorithm selection and
development of new algorithms.

The MLC++ project started at Stanford University in the summer of 1993 and
is currently public domain software (including sources). A brief description of the
library and plan was given in Kohavi, John, Long, Manley & Pfleger (1994). The
distribution moved to Silicon Graphics in late 1995. Dozens of people have used it,
and over 300 people are on the mailing list.

We begin the paper with the motivation for the M LC++ library, namely the fact
that there cannot be a single best learning algorithm for all tasks. This has been
proven theoretically and shown experimentally. Our recommendation to users is to
actually run the different algorithms. Developers can use MLC++ to create new
algorithms suitable for their specific tasks.

In the second part of the paper we describe the M LC++ system and its dual role
as a system for end-users and algorithm developers. We show a large comparison
of 22 algorithms on eight large datasets for the UC Irvine repository (C. Blake
& Merz 1998). A study of this magnitude would be extremely hard to conduct
without such a tool, yet with MLC++, it was mostly a matter of CPU cycles and a
few scripts to parse the output. Our study shows the behavior of different algorithms
on different datasets and stresses the fact that while there are no clear winners, some
algorithms are (in practice) better than others on these datasets. More importantly,
for each specific task, it is relatively easy to choose the best algorithms to use based
on accuracy estimation and other utility measures (e.g., comprehensibility).

In the third part of the paper we discuss the software development process in
hindsight. We were forced to make many choices on the way and briefly describe
how the library evolved. We conclude with related work.

2 The Best Algorithm for the Task

In theory, there is no difference between theory and practice; In practice, there is
—Chuck Reid

Statements that one classifier structure is better than another, such as “rules are
much more than decision trees” made by Parsaye (1996) are usually irrelevant and
often misinterpreted. There are two problems with such claims: what is “better”
and how the semantics of “better” relate to learning:

What is better Several criteria can be used for comparing structures, such as
comprehensibility and compactness. For some applications, such as medical
domains, it is probably important to understand the classifiers whereas for
others, such as hand writing recognition, it is not very important. Compact-
ness may or may not be important. Two chained neurons may compactly
represent a target that would be hard to understand by many people. Rules
are known to be more compact than decision trees when one is looking at the
leaves as rules described by the path from the root. However, a decision tree
provides a natural structure and data segmentation that can help users group
rules together and look at them hierarchically.

Relevance to learning The fact that one structure is more general or more
powerful does not imply that it is easier to learn; in fact, the opposite
is true: more powerful structures are provably harder to learn in some
frameworks, such as Valiant’s Probably Approximately Correct framework
(Valiant 1984, Kearns & Vazirani 1994). Inductive Logic Programming mod-
els (Lavrac & Dzeroski 1994, Muggleton 1992) are more powerful than propo-
sitional learning methods, yet very few practical systems are available that
are as accurate as propositional systems. Most learning algorithms attempt
to solve NP-hard problems (Garey & Johnson 1979) using heuristics such as
limited lookahead. It is still unclear how general the heuristics are and when
they will lead to solutions that are far from the global optimum.

Theoretical results show that there is not a single algorithm that can be uni-
formly more accurate than others in all domains. Although such theorems are of
limited applicability in practice, very little is known about which algorithms to
choose for specific problems.

We claim that unless an organization has specific background knowledge that
can help it choose an algorithm or tailor an algorithm based on specific needs, it
should simply try a few of them and pick the best one for the task.

2.1 There is Not a Single Best Algorithm Overall

There is a theoretical result that no single learning algorithm can outperform any
other when the performance measure is the expected generalization accuracy. This
result, sometimes called the No Free Lunch Theorem or Conservation Law (Wolpert
1994, Schaffer 1994), assumes that all possible targets are equally likely. A brief
review of theoretical results is presented in Appendix A.

In practice, of course, the user of a data mining tool is interested in accuracy,
efficiency, and comprehensibility for a specific domain, just as the car buyer is in-
terested in power, gas mileage, and safety for specific driving conditions. Averaging
an algorithm’s performance over all target concepts, assuming they are all equally
likely, would be like averaging a car’s performance over all possible terrain types,
assuming they are all equally likely. This assumption is clearly wrong in practice;
for a given domain, it is clear that not all concepts are equally probable.

In medical domains, many measurements (attributes) that doctors have devel-
oped over the years tend to be independent: if the attributes are highly correlated,

only one attribute will be chosen. In such domains, a certain class of learning al-
gorithms might outperform others. For example, Naive-Bayes seems to be a good
performer in medical domains (Kononenko 1993). Quinlan (1994) identifies families
of parallel and sequential domains and claims that neural-networks are likely to per-
form well in parallel domains, while decision-tree algorithms are likely to perform
well in sequential domains.

Therefore, although a single induction algorithm cannot build the most accurate
classifiers in all situations, some algorithms will be clear winners in specific domains,
just as some cars are clear winners for specific driving conditions. One is usually
given the option to test-drive a range of cars because it is not obvious which car
will be best for which purpose. The same is true for data mining algorithms. The
ability to easily test-drive different algorithms was one of the factors that motivated
the development of MLC++.

2.2 Take Each Algorithm for a Test Drive

First, decide on the type of vehicle—a large luzury car or a small economy
model, a practical family sedan or a sporty coupe. . . at this point you’re
ready for your first trip to a dealership—but only for a test drive. ..
—Consumer Reports 1996 Buying Guide: How to Buy a New Car

Organizations mine their databases for different reasons. We note a few that
are relevant for classification algorithms:

Classification accuracy The accuracy of predictions made about an instance.
For example, whether a customer will be able to pay a loan or whether he
or she will respond to a yet another credit card offer. Using methods such
as holdout, bootstrap, and cross-validation (Weiss & Kulikowski 1991, Efron
& Tibshirani 1995, Kohavi 1995b), one can estimate the future prediction
accuracy on unseen data quite well in practice.

Comprehensibility The ability for humans to understand the data and the clas-
sification rules induced by the learning algorithm. Some classifiers, such as
decision rules and decision trees are inherently easier to understand than neu-
ral networks. In some domains (e.g., medical), the black box approach offered
by neural networks is inappropriate. In others, such as handwriting recogni-
tion, it is not as important to understand why a prediction was made so long
as it is accurate.

Compactness While related to comprehensibility, one does not necessarily imply
the other. A Perceptron (single neuron) might be a compact classifier, yet
given an instance, it may be hard to understand the labelling process. Alter-
natively, a decision table (Kohavi 1995a) may be very large, yet labelling each
instance is trivial: one simply looks it up in the table.

Training and classification time The time it takes to classify versus the train-
ing time. Some classifiers, such as neural networks are fast to classify but slow
to train. Other classifiers, such as nearest-neighbor algorithms and other lazy
algorithms (see Aha (1997) for details), are usually fast to train but slow in
classification.

Given these factors, one can define a utility function to rank different algorithms
(Fayyad, Piatetsky-Shapiro & Smyth 1996). The last step is to test drive the
algorithms and note their utility for your specific domain problem. We believe that
although there are many rules of thumb for choosing algorithms, choosing a classifier
should be done by testing the different algorithms, just as it is best to test-drive a
car. MLC++ is analogous to your friendly car dealer, only more honest.

3 MLC+H+ for End-Users

The computer industry has not noticed the deteriorating quality of their
products, partly due to the frog factor: Drop a frog in boiling water and it will
jump out instantly. Put it in tepid water and raise the temperature slowly, and
the frog will sit there staring at you while you boil it to death. With quality
ebbing away slowly, we failed to notice the heat

—Tognazzing (1994)

While MLC++ is useful for writing new algorithms, most users simply use it
to test different learning algorithms. Pressure from reviewers to compare new al-
gorithms with others led us to interface external inducers, which are induction
algorithms written by other people. MLC++ provides the appropriate data trans-
formations and the same interface to these external inducers. Thus while you will
not find every type of car in our dealership, we provide shuttle service to take you
to many other dealerships so you can easily test their cars.

3.1 Inducers
The following induction algorithms were implemented in MLC++:
Const A constant predictor based on majority.

Decision Table A simple lookup table. A simple algorithm that is useful with
feature subset selection.

ID3 The decision tree algorithm based on Quinlan (1986). It does not do any
pruning.

Lazy decision trees An algorithm for building the “best” decision tree for every
test instance described in Friedman, Kohavi & Yun (1996).

Nearest-neighbor The classical nearest-neighbor with options for weight setting,
normalizations, and editing (Dasarathy 1990, Aha 1992, Wettschereck 1994).

Naive-Bayes A simple induction algorithm that assumes a conditional indepen-
dence model of attributes given the label (Domingos & Pazzani 1997, Langley,
Iba & Thompson 1992, Duda & Hart 1973, Good 1965).

1R The 1R algorithm described by Holte (1993).

OODG Oblivous read-Once Decision Graph induction algorithm described in Ko-
havi (1995¢).

Option Decision Trees The trees have option nodes that allow several optional
splits, which are then voted as experts during classification (Kohavi & Kunz
1997).

Perceptron The simple Perceptron algorithm described in Hertz, Krogh & Palmer
(1991).

Winnow The multiplicative algorithm described in Littlestone (1988).

The following external inducers are interfaced by MLC++:

C4.5 The C4.5 decision-tree induction by Quinlan (1993).
C4.5-rules The trees to rules induction algorithm by Quinlan (1993).

CART The commercial version of CART (Breiman, Friedman, Olshen & Stone
1984) from Salford system was interfaced. In the experiments we have used
version 2.0 with a memory limit of 50,000,000 4-word workarea (200MB). The
CVLEARN parameter was increased to be larger than the training set size
so that the more accurate cross-validation estimation would be used for the
pruning phase.

CN2 The direct rule induction algorithm by Clark & Niblett (1989) and Clark &
Boswell (1991).

IB The set of Instance Based learning algorithms (Nearest-neighbors) by Aha
(1992).

Neural network: Aspirin Migraines The Aspirin/MIGRAINES neural net-
work environment version 6.0 from 29 Aug 1996 uses standard backpropa-
gation (Hertz et al. 1991, Rumelhart, Hinton & Williams 1986). The interface
is very simple: the nominal attributes are converted to local encoding and the
network constructed contains three layers with the hidden layer containing k
nodes. k is automatically set to the number of input and output nodes divided
by two, which is a commonly mentioned rule of thumb. Although this rule of
thumb is often criticized (e.g., ftp://ftp.sas.com/pub/neural/FAQ.html),
there are no other good candidates for automatically selecting this number
and for comparison purposes we wanted to avoid manual tuning.

OC1 The Oblique decision-tree algorithm by Murthy, Kasif & Salzberg (1994).
PEBLS Parallel Exemplar-Based Learning System by Cost & Salzberg (1993).
Ripper Ripper is a rule-learning system by Cohen (1995).

T2 The two-level error-minimizing decision tree by Auer, Holte & Maass (1995).

Not all algorithms are appropriate for all tasks. For example, Perceptron and
Winnow are limited to two-class problems, which reduces their usefulness in many
problems we encounter, including those tested in Section 3.5.

3.2 Wrappers and Hybrid Algorithms

Because algorithms are encapsulated as C++ objects in MLC++, we were able to
build useful wrappers. A wrapper is an algorithm that treats another algorithm as
a black box and acts on its output. Once an algorithm is written in MLC++, a
wrapper may be applied to it with no extra work.

The two most important wrappers in MLC++ are accuracy estimators and
feature selectors. Accuracy estimators use any of a range of methods, such as
holdout, cross-validation, or bootstrap to estimate the performance of an inducer
(Kohavi 1995b). Feature selection methods run a search using the inducer itself to
determine which attributes in the database are useful for learning. The wrapper
approach to feature selection automatically tailors the selection to the inducer being
run (John, Kohavi & Pfleger 1994, Kohavi & John 1997).

A voting wrapper runs an algorithm on different portions of the dataset and lets
them vote on the predicted class (Wolpert 1992, Breiman 19965, Perrone 1993, Ali
1996). A discretization wrapper pre-discretizes the data, allowing algorithms that
do not support continuous features (or those that do not handle them well) to work
properly. A parameter optimization wrapper allows tuning the parameters of an
algorithm automatically based on a search in the parameter space that optimizes
the accuracy estimate with different parameters.

The following inducers are created as combinations of others:

IDTM Induction of Decision Tables with Majority. A feature subset selection
wrapper on top of decision tables (Kohavi 1995a, Kohavi 1995c¢).

C4.5-auto Automatic parameter setting for C4.5 (Kohavi & John 1995).

FSS Naive-Bayes Feature subset selection on top of Naive-Bayes (Kohavi &
Sommerfield 1995).

NBTree A decision tree hybrid with Naive-Bayes at the leaves (Kohavi 1996).

The ability to create hybrid algorithms and wrapped algorithms is a very im-
portant and powerful approach for multistrategy learning. With MLC++ you do
not have to implement two algorithms; you just have to decide on how to integrate
them or wrap one around the other.

3.3 MLCH+ Utilities

The MLC++ utilities are a set of individual executables built using the MLC++
library. They are designed to be used by end users with little or no programming
knowledge. All utilities employ a consistent interface based on options that may be
set on the command line or through environment variables.

Several utilities are centered around induction. These are Inducer, AccEst,
LearnCurve, and biasVar. Inducer simply runs the induction algorithm of your
choice on the dataset, testing the resulting classifier using a test file. AccEst es-
timates the performance of an induction algorithm on a dataset using any of the
accuracy estimation techniques provided (holdout, cross-validation, or bootstrap).
LearnCurve builds a graphical representation of the learning curve of an algorithm

physician fee freeze
184, 116

education spending
167,1

n/y u u
democrat democrat democrat republican
131,0 24,0 12,1 0,2

Figure 1: A dot display of a decision tree for the congressional voting dataset.

by running the algorithm on differently sized samples of the given dataset; the out-
put can be displayed using Mathematica or Gnuplot. The biasVar utility provides a
bias-variance decomposition of the classification error based on Kohavi & Wolpert
(1996).

The remaining utilities provide dataset operations. The Info utility generates
descriptive statistics about a dataset, including counts of the number of attributes,
class probabilities, and the number of values for each attribute. The Project utility
performs the equivalent of a database’s SELECT operation, allowing the user to
remove attributes from a dataset. The Discretization utility converts real-valued
attributes into nominal-valued attributes using any of a number of supervised
discretization methods supported by the library. Finally, the Conversion utility
changes multi-valued nominal attributes to local or binary encodings which may be
more useful for nearest-neighbor or neural-network algorithms.

3.4 Visualization

Some induction algorithms support visual output of the classifiers. All graph-based
algorithms support can display two-dimensional representations of their graphs us-
ing dot and dotty (Koutsofios & North 1994). Dotty is also capable of showing
extra information at each node, such as class distributions. Figure 1 shows such a
graph.

The decision tree algorithms, such as ID3, may generate output for Silicon
Graphics’ MineSet product. The Tree Visualizer provides a three-dimensional view
of a decision tree with interactive fly-through capability. Figure 2 shows a snapshot
of the display.

MLC++ also provides a utility for displaying General Logic Diagrams from clas-
sifiers implemented in MLC++. General Logic Diagrams (GLDs) are graphical pro-
jections of multi-dimensional discrete spaces onto two dimensions. They are similar
to Karnaugh maps, but are generalized to non Boolean inputs and outputs. A GLD
provides a way of displaying up to about ten dimensions in a graphical representa-
tion that can be understood by humans. GLDs were described in Michalski (1978)
and later used in Wnek, Sarma, Wahab & Michalski (1990), Thrun et al. (1991),
and Wnek & Michalski (1994) to compare algorithms. They are sometimes called
Dimensional Stacking (LeBlank, Ward & Wittels 1990) and have been rediscovered
many times. Figure 3 shows a GLD for the monk1 problem.

e——> | L E T TTT D

deifioerat republican

Figure 2: A snapshot of the MineSet Tree Visualizer fly-through for a decision tree.

round

round square

octagon

round

yes square square
octagon

round

octagon square

octagon

round

round square

octagon

round

no square square
octagon

round

octagon square

octagon

swbafl swhafl swbafl swbafl swbafl swbafl swbafl swbafl
red yelow green blue red yellow green blue

yes no

Figure 3: A GLD for the monk1 problem.

G THIEN) TES EVIDERCE

Income

L " T.TTT .

o s o e g P

Ml =l el ekl el e

& -n-n-a-"‘ﬁﬁ't“

[l pal)| ol

Figure 4: The evidence visualizer’s pie-chart display of the Naive-Bayes model. The
height of each pie represents the number of instances for that value or range.

Finally, the Naive Bayes algorithm may be visualized two distinct ways, both
provided through the Evidence Visualizer utility in MineSet. The first view, in
Figure 4, shows straight probabilities as three dimensional pie charts. Each chart
represents the distribution of classes given that a single attribute is set to a specific
value. The pies are a useful visualization, but their probability values must be
multiplied to form the posterior probabilities used for prediction. The second view,
in Figure 5, is based on the selection of a single class. The pie charts are replaced by
a three dimensional bar chart. The height of each bar represents the log probability
(evidence) in favor of the specified class given that a single attribute is set to a
specific value. Log probabilities are useful because they may be added to form the
posterior, thereby making the Naive Bayes classification process more intuitive.

Both views support interactive classification of data. A single pie chart at the
right initially displays the prior class distribution. Users may interact with the
visualization by selecting values for the attributes and observing how the posterior
probability (pie chart on the right) changes. For example, selecting the pie for
sepal-length < 5.45 inches and the pie for sepal-width > 3.05 inches shows that an
iris with these characteristics is probably an iris-setosa (Figure 6). Users can ask
questions of the form: “what if I had an instance with certain values” and see the
classifier predictions and the posterior probabilities according to the Naive-Bayes
model.

3.5 A Global Comparison

Statlog (Taylor, Michie & Spiegalhalter 1994) was a large project that compared
about 20 different learning algorithms on 20 datasets. The project, funded by
the ESPRIT program of the European Community, lasted from October 1990 to
June 1993. Without a tool such as MLC++, an organization with specific domain
problems cannot easily repeat such an effort in order to choose the appropriate
algorithms. Converting data formats, learning the different algorithms, and running
many of them is usually out of the question. MLC++, however, can easily provide
such a comparison.

ATTRIBLITES

marital

Figure 5: The evidence visualizer’s bar-chart display of the Naive-Bayes model. The bars
become less saturated as the number of instances decreases, signifying a wider confidence
interval.

ENDETIE

ATTRIBUTES

Figure 6: Closeup on some attribute values (left) and selection of specific value ranges to
see the posterior probability (right). Users can highlight a pie chart by moving the cursor
over it. A message then appears at the top showing the attribute value (or range) and
the number of instances having that value (or range). The pie’s height is proportional to
this number. Pointing to the items in the legend on the right pane, shows the numerical
probabilities corresponding to the slice size.

10

Table 1: The datasets used, the number of attributes, the training and test-set sizes,
and the baseline accuracy (majority class).

Dataset Attributes Train Test ~ Majority

size size accuracy
adult 14 30,162 15,060 75.22
chess 36 2,130 1,066 52.22
DNA 180 2,000 1,186 51.91
led24 24 200 3000 10.53
letter 16 15,000 5,000 4.06
shuttle 9 43,500 14,500 78.60
satimage 36 4,435 2,000 23.82
waveform-40 40 300 4,700 33.84

In this section we present a comparison on some large datasets from the UC
Irvine repository (C. Blake & Merz 1998). We also take this opportunity to correct
some misunderstandings of results in Holte (1993). Table 1 shows the basic charac-
teristics of the chosen domains. Instances with unknown values were removed from
the original datasets.

Holte showed that for many small datasets commonly used by researchers in
machine learning circa 1990, simple classifiers perform surprisingly well. Specifically,
Holte proposed an algorithm called 1R, which learns a complex rule (with many
intervals), but using only a single attribute. He claimed that such a simple rule
performed surprisingly well. On sixteen datasets from the UCI repository, the error
rate of 1R was 19.82% while that of C4.5 was 14.07%, a difference of 5.7%.

While it is surprising how much one can do with a single attribute, a different
way to look at this result is to look at the relative error, or the increase in error of
1R over C4.5. This increase is over 40%, which is very significant if an organization
has to pay a large amount of money for every mistake made.

Figures 7 to 10 show a comparison of 22 algorithms on eight large datasets
from the UC Irvine repository. The Aspirin/MIGRAINES neural-network did not
converge on letter and adult and we took the saved model after 60 hours or running
time on an SGI Origin 2000.

Our results show that for different domains different algorithms perform differ-
ently and that there is no single clear winner. However, they also show that for the
larger real-world datasets at UC Irvine, some algorithms are generally safe-bets and
some are pretty bad in general. Specifically, algorithms 5 (C4.5-auto), 6 (Voted ID3
0.6), 7 (Voted ID3 0.8), 8 (Bagging ID3), 9 (Option Decision Trees), 11 (NBTree),
and 13 (FSS Naive-Bayes) were among the best performers in at least three out of
the eight datasets, while algorithms 1 (1R), 2 (T2) were consistently worst perform-
ers. In fact, 1R was in the worst set in seven out of eight datasets and T2 was in
the worst set in four out of eight datasets and could not even be run on two other
datasets because it required over 512MB of memory.

While there is very little theory on how to select algorithms in advance, simply
running many algorithms and looking at the output and accuracy is a practical

11

error

relative error

error

relative error

adult
23

5 3
204 % % %

194

iEa 3 i $
e S B . i

T 1 1T 1T "1 "1 "1 "1 "1 "1 1T 71
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1.6

1.5
1.44
1.34
1.24
1.14

l T T T l : T T l l l T l T : T T T T l l l T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
algorithm

Best algorithms: 5,11,13,14, worst algorithms: 16,17,18

chess

R %z
; Pt

4

T T T T T T T T T T T
10 11 12 13 14 15 16 17 18 19 20 21 22

o

A
B
T1-{KA
KA

~ e
O KA

°] N
[R R

o

T T T T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
algorithm
Best algorithms: 3,4,5,6,7,8,9,11, worst algorithms: 1,2,15

1 1R 2 T2 3 CART

4 C4.5 5 C4.5-auto 6 Voted ID3 (0.6)
7 Voted ID3 (0.8) 8 Bagging ID3 9 Option trees

10 OC1 11 NBTree 12 HOODG

13 FSS Naive Bayes 14 IDTM (Decision table) 15 Naive-Bayes

16 Nearest-neighbor (1) 17 Nearest-neighbor (3) 18 PEBLS

19 C4.5 rules 20 CN2 21 Ripper

22 NN-AM

Figure 7: Error and relative errors for the learning algorithms.

12

error

relative error

error

relative error

45

DNA

40
354
304
254
204
154
10

54

T 3 & 5 3 5 & 3 s & 3 &

3 5 3
&

8_
7
6
54
44
3
24

Best algorithms:

. |
T T T T T T T T T T T T T T
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
algorithm
13,14,22, worst algorithms: 1,2,12,16

led24

90
80
704
60
50
40
30

z T g T T

20

T T T T T T T T T T T T T T
9 10 11 12 13 14 15 16 17 18 19 20 21 22

o0

2.8
2.6
2.4
2.2

2_
1.84
1.6
1.4+
1.24

Best algorithms:

T T T T T T T T T T T T T T T

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
algorithm

3,5,12,13, worst algorithms: 1,2,16

1R 2
C4.5 5
Voted ID3 (0.8) 8
OC1 11
FSS Naive Bayes 14
Nearest-neighbor (1) 17
C4.5 rules 20
NN-AM

T2 3 CART
C4.5-auto 6 Voted ID3 (0.6)
Bagging ID3 9 Option trees
NBTree 12 HOODG
IDTM (Decision table) 15 Naive-Bayes
Nearest-neighbor (3) 18 PEBLS

CN2 21 Ripper

Figure 8: Error and relative errors for the learning algorithms.

13

letter

90
80 =
70
60
50
40 o @
30 & T

20 -
104 e & o e o s & o o & &

error

T 1T 1T 1T "1 T 1T 1T T "“"T “"T 1
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

10
9_
8_
7_
6_
5_
2]
: |

2] |

l T T T T T T T T T l T T T T
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

algorithm
Best algorithms: 16,17, worst algorithms: 1,2,12,22 (2 needed more than 512MB of memory)

relative error

shuttle
0.6

0.5 I

0.4-

0.3 %
0.2
0.1 $ % %

£ 1 $ $ % % T T T T % % T % T % T
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

error

o
-

bt
0O 1 2 3 4 5 6 7
30
25
20
154
104
3 | |

T

relative error

T T T T T T T T T T T T T T l T
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
algorithm
Best algorithms: 6,7,8,9,11,19, worst algorithms: 1,2,3,15,18,20,22 (some not shown because they are
out of range. Algorithm 1=5.32%, 2=not enough memory, 3=7.5%, 18=23.6%)

1 1R 2 T2 3 CART

4 C4.5 5 C4.5-auto 6 Voted ID3 (0.6)
7 Voted ID3 (0.8) 8 Bagging ID3 9 Option trees

10 OC1 11 NBTree 12 HOODG

13 FSS Naive Bayes 14 IDTM (Decision table) 15 Naive-Bayes

16 Nearest-neighbor (1) 17 Nearest-neighbor (3) 18 PEBLS

19 C4.5 rules 20 CN2 21 Ripper

22 NN-AM

Figure 9: Error and relative errors for the learning algorithms. T2 (2) needed over
512MB of memory for the letter and shuttle datasets.

14

error

relative error

error

relative error

45

satimage

40
354
30
25+
20
154
10

3
¢ 3 3 8 5 @

3 5 &2 5 P g

~-
©

T T T T T T T T T T T T T T
9 10 11 12 13 14 15 16 17 18 19 20 21 22

4.5
4
3.5
3_
2.5
2_
1.54

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

algorithm

Best algorithms: 6,8,9,17, worst algorithms: 1,20

waveform-40

50
454
40
35
30
25+
204

11

3 ¢ 3

15

~-

T T T T T T T T T T T T T T
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

2.8
2.6
2.4
2.2

2_
1.84
1.6
1.4+
1.24

1 2 3 4 5 6

7

L
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
algorithm

Best algorithms: 6,7,8, worst algorithms: 1,2,20

1R

C4.5

Voted ID3 (0.8)
OC1

FSS Naive Bayes
Nearest-neighbor (1)
C4.5 rules

NN-AM

2
5
8
11
14

17
20

T2 3 CART
C4.5-auto 6 Voted ID3 (0.6)
Bagging ID3 9 Option trees
NBTree 12 HOODG
IDTM (Decision table) 15 Naive-Bayes
Nearest-neighbor (3) 18 PEBLS

CN2 21 Ripper

Figure 10: Error and relative errors for the learning algorithms.

15

solution with MLC++.

4 MLC++ for Software Developers

If you want to write an efficient C++ program, you must first be able to
write an efficient program. .. micro-tuning leads nowhere if the higher-level
algorithms you employ are inherently inefficient. Do you use quadratic
algorithms when linear ones are available?. .. If so, you can hardly be
surprised if your programs are described like second-rate tourist attractions:
worth a look, but only if you’ve got some extra time.

—DMeyers (1996)

MLC++ source code is public domain, including all the sources. MLC++ con-
tains over 60,000 lines of code and 14,000 lines of regression testing code. The
MLC++ utilities are only 2,000 lines of code that use the library itself.

One of the advantages of using M LC++ for software developers is that it provides
high-quality code and encourages high-quality code development. By providing a
large number of general purpose classes as well as a large set of classes specific to
machine learning, MLC++ ensures that coding remains a small part of the devel-
opment process. Mature coding standards and a shallow class hierarchy insure that
new code is robust and helpful to future developers. Although it can take longer
to write fully-tested code using MLC++, ultimately, MLC++ greatly decreases the
time needed to complete a robust product.

MULC++ includes a library of general purpose classes, independent of machine
learning, called MCore. MCore classes include strings, lists, arrays, hash tables,
and input/output streams, as well as some built-in mechanisms for dealing with
C++ initialization order, options, temporary file generation and cleanup, as well
as interrupt handling. MCore classes not only provide a wide range of functions,
they provide solid tests of these functions, reducing the time it takes to build more
complex operations. All general-purpose classes used within the full library are from
MCore, with the exception of graph classes from the LEDA library (Naeher 1996).
Although the classes in MCore were built for use by the MLC++ library, they are
not tied to machine learning and may be used as a general purpose library. MCore
is a separate library which may be linked independently of the whole library.

MULC++ classes are arranged more or less as a library of independent units,
rather than as a tree or forest of mutually-referent set of modules requiring multiple
link and compile stages. The ML and MInd modules follow this philosophy by
providing a series of classes which encapsulate basic concepts in machine learning.
Inheritance is only used where it helps the programmer. By resisting the temptation
to maximize use of C++ objects, we were able to provide a set of basic classes with
clear-cut interfaces for use by anyone developing a machine learning algorithm.

The important concepts provided by the library include Instance lists, Catego-
rizers (classifiers), Inducers, and Discretizers. Instance lists and supporting classes
hold the database on which learning algorithms are run. Categorizers (also known
as classifiers) and Inducers (induction algorithms) represent the algorithms them-
selves: an Inducer is a machine learning algorithm that produces a classifier that, in
turn, assigns a class to each instance. Discretizers replace real-valued attributes in

16

the database with discrete-valued attributes for algorithms which can only use dis-
crete values. MLC++ provides several discretization methods (Dougherty, Kohavi
& Sahami 1995, Kohavi & Sahami 1996).

Programming with MLC++ generally requires little coding. Because MLC++
contains many well-tested modules and utility classes, the bulk of MLC++ program-
ming is determining how to use the existing code base to implement new functional-
ity. Although learning how to use a large code base takes time, we now find that the
code we write is much easier to test and debug because we can leverage the testing
and debugging done on the rest of the library. Additionally, forcing the developer
to break a problem down into MLC++ concepts insures that MLC++ maintains its
consistent design, which in turn insures consistent code quality.

Each class in MLC++ is testable almost independently with little reliance on
other classes. We have built a large suite of regression tests to insure the quality of
each class in the library. The tests will immediately determine if a code change has
created a problem. The goal of these tests is to force bugs to show up as close to
their sources as possible. Likewise, porting the library is greatly simplified by these
tests, which provide a clear indication of any problems with a port. Unfortunately,
many C++ compilers still do not support full ANSI C++ templates that are required
to compile MLC++.

One problem with C++ is the temptation to create complex class hierarchies
simply because it is possible. In hindsight, we learned that such hierarchies hinder
the library’s main goals of usability and robustness. For example, the InstanceList
class used to be eight individual classes, depending on whether or not the list was
ordered, whether or not the list kept statistical information, and whether or not
the instances in the list were labelled. Although these are all important abstract
distinctions between different types of instance lists, making them separate classes
turned out to be less useful and more error prone than having a single “smart”
InstanceList class that, for example, provides statistical information on the fly using
caching schemes.

5 MLC++ Development in Hindsight

Hindsight is always twenty-twenty
—Billy Wilder

Many decisions had to be made during the development of MLC++. We tackled
such issues as which language to use, what libraries, whether users must know how
to code in order to use it, and how much to stress efficiency versus safety.

We decided that MLC++ should be useful to end-users who have neither pro-
grammed before nor want to program now (many lisp packages for machine learning
require writing code just to load the data). We realized that a GUI would be very
useful; however, we concentrated on adding functionality, providing only a simple
but general environment variable-based command-line interface. We also provided
the source code for other people to interface. MLC++ was used to teach machine
learning courses at Stanford and many changes to the library were made based on
student’s feedback.

17

We chose C++ for a number of reasons. First, C++ is a good general-purpose
language; it has many useful features but imposes no style requirements of its own.
Features such as templates allowed us to maintain generality and reusability along
with the safety of strong typing and static checking. Second, the language’s object-
oriented features allowed us to decompose the library into a set of modular objects
which could be tested independently. At the same time, C++’s relative flexibility
allowed us to avoid the object-oriented paradigm when needed. Third, C++ has no
language-imposed barriers to efficiency; functions can be made inline, and objects
and be placed on the stack for faster access. This gave use the ability to optimize
code in critical sections. Finally, C++ is a widely accepted language which is gaining
popularity quickly. Since the project was created at Stanford, it was extremely
useful to use a language which everybody wanted to learn and use.

We also made a decision to use the best compiler we found at the time (Cen-
terLine’s ObjectCenter) and to use all available features. We assumed that GNU’s
g++ compiler would catch up. In 1987 “Mike Tiemann gave a most animated
and interesting presentation of how the GNU C++ compiler he was building would
do just about everything and put all other C++ compiler writers out of business”
(Stroustroup 1994). Sadly, the GNU C++ compiler is still weaker than most commer-
cial grade compilers and (at least as of 1995) cannot handle templates well enough.
Moreover, most PC-based compilers still cannot compile MLC++. We hope that
this will change as 32-bit operating systems mature and compilers improve.

We quickly chose LEDA (Naeher 1996) for graph manipulation and algorithms,
and GNU'’s libg++, which provided some basic data structures. Unfortunately, the
GNU library was found to be deficient in many respects. It hasn’t kept up with the
emerging C++ standards (e.g., constness issues, templates) and we slowly rewrote
all the classes used. Today MLC++ does not use libg++. If we were starting
the project today, we would likely use the C++ Standard Template Library (STL),
since it provides a large set of solid data structures and algorithms, has the static
safety of templates, and is likely to be a widely accepted standard. One current
disadvantage of many class libraries, including MLC++, is that developers must
learn a large code base of standard data structures and algorithms. This greatly
increases the learning curve to use the library. Use of a standard library like STL
might flatten that curve.

Much of what was done in MLC++ was motivated by research interests of the
first author. This resulted in a skewed library with many symbolic algorithms and no
work on neural networks nor any statistical regression algorithms. Neural network
and statistical algorithms were also shunned because many such algorithms already
existed and there seemed to be little need to write yet another one when it would not
contribute to immediate research interests. However, today, with the focus shifting
toward data mining, the library is becoming increasingly more balanced.

6 Related Work

Several large efforts have been made to describe data mining algorithms for knowl-
edge discovery in data. We refer the reader to the URL
http://www.kdnuggets.com/siftware.html

18

for pointers and description. Additionally, an excellent comparison of commercial
data mining tools is available from Two Crows (Brand, Edelstein, Gerritsen, Millen-
son, Schubert, Small & Small 1997), and a slightly outdated report is available from
Intelligent Software Strategies (Hall 1996). Typical features of commercial prod-
ucts include classification (decision trees, neural networks, instance-based methods),
clustering, regression, pattern detection, and associations.

SGI’s MineSet MineSet is Silicon Graphics’ data mining and visualization prod-
uct. From release 1.1 and on, it uses MLC++ as a base for the induction and
classification algorithms. Classification models built are either shown using
the 3D visualization tools or used for prediction. MineSet has a GUI interface
and accesses commercial databases including Oracle, Sybase, and Informix us-
ing a client/server architecture. Besides classification, MineSet also provides
an association algorithm, automatic binning of real-valued data, and a feature
selection algorithm.

ISL’s Clementine Clementine includes a neural network and an interface to C4.5
for decision tree and rule induction. It has a strong dataflow-based GUI and
simple visualizations.

IBM'’s Intelligent Miner IBM’s Intelligent Miner provides a variety of knowl-
edge discovery algorithms for classification, associations, clustering, deviation
detection, and sequential pattern discovery. Some of the algorithms in Intel-
ligent Miner scale to large datasets.

SAS SAS provides a huge variety of statistical and data mining tools, including
neural network, decision trees, discriminant analysis, logistic regression, and
visualization.

Angoss’s KnowledgeSeeker Angoss provides a decision tree induction system
with visualization.

HNC’s Marksman HNC provides neural network technology for classification,
clustering, and visualization. It comes with a PC SNAP board containing 16
parallel processors.

TMC’s Darwin Darwin is a suite of learning tools developed by Thinking Ma-
chines. It isintended for use on large databases and uses parallel processing for
speedup. Its algorithms include Classification and Regression Trees (CART),
Neural networks, Nearest Neighbor, and Genetic Algorithms. Darwin also
includes some 2D visualization.

NeoVista NeoVista Decision Series provides an integrated suite of mining tools
for use with large databases and legacy systems. Discovery methods used
include nerual networks, clustering, genetic algorithms, and association rules.
NeoVista focuses heavily on model deployment in decision support systems
and provides consulting services along with the software.

NeuralWare’s NeuralWorks NeuralWare provide neural-network technology for
classification, clustering, regression, and time-series prediction.

19

DataMind DataMind DataCruncher is a client/server system for mining data from
data warehouses and data marts. DataMind supports proprietary agent net-
work technology for classification.

HyperParallel HyperParallel provides several data mining algorithms including
classification, clustering, and associations. The tools are parallelized and can
analyze very large business problems.

Unica Unica provides PRW, a Pattern Recognition Workbench, which was de-
signed to solve statistical and pattern recognition problems. It is a complete
integrated environment and supports classification, clustering, time series, and
regression.

Modelware Modelware is a commercial datamining tool including classification
using a nearest neighbor algorithm along with a proprietary process modeling
algorithm. Modelware also includes a GUI and basic visualization.

DataEngine DataEngine is an integrated data analysis tool which uses fuzzy logic,
nerual networks, and statistical methods to implement a number of discov-
ery tasks such as classification, clustering, dependency analysis, and function
approximation. It also provides basic data acquisition and visualization.

The Data Mining Suite The Data Mining Suite from Information Discovery is
a set of products encompassing several discovery operations. The product
supports prediction based on rules, patterns, and anomolies in data. Methods
supported are classification, clustering, summarization, deviation detection,
dependency analysis, and geographic pattern discovery.

Partek Partek provides data mining and knowledge discovery software using a
number of tools and techniques. These include classification, clustering, func-
tion approximation, principal components analysis, multi-dimensional scaling,
correspondence analysis, and variable selection. Partek employs statistical
methods along with neural networks and genetic algorithms.

ModelQuest ModelQuest is a set of data mining tools including algorithms for
classification, summarization, deviation detection, dependency analysis, geo-
graphic discovery, fault detection, fraud detection, prediction, and estimation.
The system uses a combined statistical/ neural network approach and includes
substantial automation to free the user from parameter tuning.

XpertRule Analyser XpertRule Analyser is an integrated data mining tool.
Strategies include classification, rule induction, neural networks, and genetic
algorithms.

In addition to the many commercial systems, a number of research tools exist.
Some of these have goals similar to MLC++.

Kepler Kepler is an extensible data mining/machine learning system developed at
GMD. It allows addition of new algorithms through a plug-in approach. Ke-
pler currently provides plug-ins to support decision tree induction, backprop

20

neural networks, pattern detection, clustering, nearest neighbor learning, mul-
tiple adaptive regression splines, and first-order learning tools. Additionally,
Kepler supports database operations such as aggregation and sampling.

WEKA WEKA, or Waikato Environment for Knowledge Analysis, is a software
workbench for application of machine learning. It provides a uniform user
interface as well as a number of different algorithms, including rule induction
(IR, T2, and Induct), Instance based learning (IB1-4, PEBLS, and K*), Re-
gression (M5’), and Relational rules (FOIL). It also provides an interface to
several external algorithms (C4.5, Classweb, and a better rule evaluator).

MLToolbox MLToolbox is a collection of many publicly available algorithms and
re-implementations of others. The algorithms do not share common code and
interface.

TOOLDIAG TOOLDIAG is a collection of methods for statistical pattern recog-
nition, especially classification. While it contains many algorithm, such as
k-nearest neighbor, radial basis functions, parzen windows, feature selection
and extraction, it is limited to continuous attributes with no missing values.

Mobal Mobal is a multistrategy tool which integrates manual knowledge acquisi-
tion techniques with several automatic first-order learning algorithms. The
entire system is rule-based and existing knowledge is stored using a syntax
similar to predicate logic.

Emerald Emerald is a research prototype from George Mason University. Its main
features are five learning programs and a GUI. The lisp-based system is ca-
pable of learning rules which are then translated to English and spoken by
a speech synthesizer. The algorithms include algorithms for learning rules
from examples, learning structural descriptions of objects, conceptually group-
ing objects or events, discovering rules characterizing sequences, and learning
equations based on qualitative and quantitative data.

Sipina-W Sipina-W is a machine learning and knowledge engineering tool package
which implemented CART, ID3, C4.5, Elisee (segmentation), Chi?Aid, and
SIPINA algorithms for classification. Sipina-W runs on real or discrete-valued
data sets and is oriented toward the building and testing of expert systems.
It reads ASCII, dBase, and Lotus format files.

Brute Brute is an inductive learning system for performing classification and ma-
chine learning using several well known algorithms (BruteDL, Greedy3, Kdl,
1R) and variations thereof. It uses a massive search strategy as opposed to
greedy search.

DBMiner DBMiner is a semi-commercial integrated system for finding multiple-
level knowledge in large relational databases. It is an updated version of
an earlier system called DBLearn. The system applies an attribute-oriented
induction method. It also provides interactive methods through a user-friendly
interface.

21

7 Summary

MULC++, a Machine Learning library in C++, has greatly evolved over the last three
years. It now provides developers with a substantial piece of code that is well-
organized into a useful C++ hierarchy. Even though (or maybe because) it was
mostly a research project, we managed to keep the code quality high with many
regression tests.

The library provides end-users with the ability to easily test-drive different in-
duction algorithms on datasets of interest. Accuracy estimation and visualization
of classifiers allow one to pick the best algorithm for the task.

Silicon Graphics new data mining product, MineSet 1.1, has classifiers built on
top of MLC++ with a GUI and interfaces to commercial databases. We hope this
will open machine learning and data mining to a wider audience.

8 Acknowledgments

The MLC++ project started in the summer of 1993 and continued for two years at
Stanford University. Since late 1995 the distribution and support have moved to
Silicon Graphics. Development of MLC++ continues in the analytical data mining
group at SGI, headed by Ronny Kohavi, with team members including Cliff Brunk,
Jim Kelly, and Dan Sommerfield. At Stanford, Nils Nilsson and Yoav Shoham pro-
vided the original support for this project. Wray Buntine, George John, Pat Lang-
ley, Ofer Matan, Karl Pfleger, and Scott Roy contributed to the design of MLC++.
Many students at Stanford have worked on MLC++, including: Robert Allen, Eric
Bauer, Brian Frasca, James Dougherty, Steven IThde, Ronny Kohavi, Alex Kozlov,
Clay Kunz, Jamie Chia-Hsin Li, Richard Long, David Manley, Svetlozar Nestorov,
Mehran Sahami, Dan Sommerfield, Howard Thompson, and Yeogirl Yun. MLC++
was partly funded by ONR grants N00014-94-1-0448, N00014-95-1-0669, and NSF
grant IRI-9116399. We thank Salford systems for giving us access to CART. The
Ripper interface was written by Rick Kufrin from NCSA. The work by Eric Bauer
and Clay Kunz was funded by Silicon Graphics.

References

Aha, D. W. (1992), ‘Tolerating noisy, irrelevant and novel attributes in instance-
based learning algorithms’, International Journal of Man-Machine Studies
36(1), 267-287.

Aha, D. W. (1997), ‘Special Al review issue on lazy learning’, Artificial Intelligence
Review 11(1-5).

Ali, K. M. (1996), Learning Probabilistic Relational Concept Descriptions, PhD
thesis, University of California, Irvine. http://www.ics.uci.edu/"ali.

Auer, P., Holte, R. & Maass, W. (1995), Theory and applications of agnostic PAC-
learning with small decision trees, in A. Prieditis & S. Russell, eds, ‘Machine

22

Learning: Proceedings of the Twelfth International Conference’, Morgan Kauf-
mann.

Brand, E., Edelstein, H., Gerritsen, R., Millenson, J., Schubert, G., Small, G. R.
& Small, R. D. (1997), Data Mining Products and Markets: A Multi-Client
Study, Two Crows Corporation. www.twocrows.com.

Breiman, L. (1994), Heuristics of instability in model selection, Technical Report
Statistics Department, University of California at Berkeley.

Breiman, L. (1996a), Arcing classifiers, Technical report, Statistics Department,
University of California, Berkeley.
http://www.stat.Berkeley.EDU/users/breiman/.

Breiman, L. (1996b), ‘Bagging predictors’, Machine Learning 24, 123-140.

Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. (1984), Classification
and Regression Trees, Wadsworth International Group.

C. Blake, E. K. & Merz, C. (1998), ‘UCI repository of machine learning databases’.
http://www.ics.uci.edu/~mlearn/MLRepository.html.

Clark, P. & Boswell, R. (1991), Rule induction with CN2: Some re-
cent improvements, in Y. Kodratoff, ed., ‘Proceedings of the fifth
European conference (EWSL-91)’, Springer Verlag, pp. 151-163.
http://www.cs.utexas.edu/users/pclark/papers/newcn.ps.

Clark, P. & Niblett, T. (1989), ‘The CN2 induction algorithm’, Machine Learning
3(4), 261-283.

Cohen, W. W. (1995), Fast effective rule induction, in A. Prieditis & S. Russell,
eds, ‘Machine Learning: Proceedings of the Twelfth International Conference’,
Morgan Kaufmann.

Cost, S. & Salzberg, S. (1993), ‘A weighted nearest neighbor algorithm for learning
with symbolic features’, Machine Learning 10(1), 57-78.

Cover, T. M. & Hart, P. E. (1967), ‘Nearest neighbor pattern classification’, IEEE
Transactions on information theory IT-13(1), 21-27.

Dasarathy, B. V. (1990), Nearest Neighbor (NN) Norms: NN Pattern Classification
Techniques, IEEE Computer Society Press, Los Alamitos, California.

Domingos, P. & Pazzani, M. (1997), ‘Beyond independence: Conditions for the
optimality of the simple Bayesian classifier’, Machine Learning 29(2/3), 103
130.

Dougherty, J., Kohavi, R. & Sahami, M. (1995), Supervised and unsupervised dis-
cretization of continuous features, in A. Prieditis & S. Russell, eds, ‘Machine
Learning: Proceedings of the Twelfth International Conference’, Morgan Kauf-
mann, pp. 194-202.

23

Duda, R. & Hart, P. (1973), Pattern Classification and Scene Analysis, Wiley.

Efron, B. & Tibshirani, R. (1995), Cross-validation and the bootstrap: Estimating
the error rate of a prediction rule, Technical Report 477, Stanford University,
Statistics department.

Fayyad, U. M., Piatetsky-Shapiro, G. & Smyth, P. (1996), From data mining to
knowledge discovery: An overview, in ‘Advances in Knowledge Discovery and
Data Mining’, AAAI Press and the MIT Press, chapter 1, pp. 1-34.

Fix, E. & Hodges, J. (1951), Discriminatory analysis—nonparametric discrimina-
tion: Consistency properties, Technical Report 21-49-004, report no. 04, USAF
School of Aviation Medicine, Randolph Field, Tex.

Fix, E. & Hodges, J. (1952), Discriminatory analysis—nonparametric discrimina-
tion: Small sample performance, Technical Report 21-49-004, report no. 11,
USAF School of Aviation Medicine, Randolph Field, Tex.

Friedman, J., Kohavi, R. & Yun, Y. (1996), Lazy decision trees, in ‘Proceedings
of the Thirteenth National Conference on Artificial Intelligence’, AAAT Press
and the MIT Press, pp. 717-724.

Garey, M. R. & Johnson, D. S. (1979), Computers and Intractability: a Guide to
the Theory of NP-completeness, W. H. Freeman and Company, San Francisco,
CA.

Geman, S., Bienenstock, E. & Doursat, R. (1992), ‘Neural networks and the
bias/variance dilemma’, Neural Computation 4, 1-48.

Good, I. J. (1965), The Estimation of Probabilities: An Essay on Modern Bayesian
Methods, M.I.T. Press.

Gordon, L. & Olshen, R. A. (1978), ‘Asymptotically efficient solutions for the clas-
sification problem’, The Annals of Statistics 6(3), 515-533.

Gordon, L. & Olshen, R. A. (1984), ‘Almost sure consistent nonparametric re-
gression from recursive partitioning schemes’, Journal of Multivariate Analysis
15, 147-163.

Hall, C. (1996), Data Mining: Tools and Reviews, Cutter Information Corp. Intel-
ligent Software Strategies.

Hertz, J., Krogh, A. & Palmer, R. G. (1991), Introduction to the Theory of Neural
Computation, Addison Wesley.

Holte, R. C. (1993), ‘Very simple classification rules perform well on most commonly
used datasets’, Machine Learning 11, 63-90.

John, G., Kohavi, R. & Pfleger, K. (1994), Irrelevant features and the subset selec-
tion problem, in ‘Machine Learning: Proceedings of the Eleventh International
Conference’, Morgan Kaufmann, pp. 121-129.

24

Kearns, M. J. & Vazirani, U. V. (1994), An Introduction to Computational Learning
Theory, MIT Press.

Kohavi, R. (1995a), The power of decision tables, in N. Lavrac & S. Wrobel, eds,
‘Proceedings of the European Conference on Machine Learning’, Lecture Notes
in Artificial Intelligence 914, Springer Verlag, Berlin, Heidelberg, New York,
pp. 174-189.
http://robotics.stanford.edu/ ronnyk.

Kohavi, R. (1995b), A study of cross-validation and bootstrap for accuracy esti-
mation and model selection, in C. S. Mellish, ed., ‘Proceedings of the 14th
International Joint Conference on Artificial Intelligence’, Morgan Kaufmann,
pp- 1137-1143.
http://robotics.stanford.edu/ ronnyk.

Kohavi, R. (1995¢), Wrappers for Performance Enhancement and Oblivious Deci-
sion Graphs, PhD thesis, Stanford University, Computer Science department.
STAN-CS-TR-95-1560,
http://robotics.Stanford. EDU/ ronnyk/teza.ps.Z.

Kohavi, R. (1996), Scaling up the accuracy of Naive-Bayes classifiers: a decision-tree
hybrid, in ‘Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining’, pp. 202-207. Available at
http://robotics.stanford.edu/users/ronnyk.

Kohavi, R. & John, G. (1995), Automatic parameter selection by minimizing esti-
mated error, in A. Prieditis & S. Russell, eds, ‘Machine Learning: Proceedings
of the Twelfth International Conference’, Morgan Kaufmann, pp. 304-312.

Kohavi, R. & John, G. H. (1997), ‘Wrappers for feature subset selection’, Artificial
Intelligence 97(1-2), 273-324.
http://robotics.stanford.edu/users/ronnyk.

Kohavi, R., John, G., Long, R., Manley, D. & Pfleger, K. (1994), MLC++: A
machine learning library in C++, in ‘Tools with Artificial Intelligence’, IEEE
Computer Society Press, pp. 740-743.
http://www.sgi.com/Technology/mlc.

Kohavi, R. & Kunz, C. (1997), Option decision trees with majority votes, in
D. Fisher, ed., ‘Machine Learning: Proceedings of the Fourteenth International
Conference’, Morgan Kaufmann Publishers, Inc., pp. 161-169. Available at
http://robotics.stanford.edu/users/ronnyk.

Kohavi, R. & Sahami, M. (1996), Error-based and entropy-based discretization of
continuous features, in ‘Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining’, pp. 114-119.

Kohavi, R. & Sommerfield, D. (1995), Feature subset selection using the wrapper
model: Overfitting and dynamic search space topology, in ‘The First Interna-
tional Conference on Knowledge Discovery and Data Mining’, pp. 192-197.

25

Kohavi, R. & Wolpert, D. H. (1996), Bias plus variance decomposition for zero-one
loss functions, in L. Saitta, ed., ‘Machine Learning: Proceedings of the Thir-
teenth International Conference’, Morgan Kaufmann, pp. 275-283. Available
at http://robotics.stanford.edu/users/ronnyk.

Kononenko, I. (1993), ‘Inductive and Bayesian learning in medical diagnosis’, Ap-
plied Artificial Intelligence 7, 317-337.

Koutsofios, E. & North, S. C. (1994), Drawing graphs with dot.
http://www.research.att.com/sw/tools/graphviz/dotguide.ps.gz.

Langley, P., Iba, W. & Thompson, K. (1992), An analysis of Bayesian classifiers, in
‘Proceedings of the tenth national conference on artificial intelligence’, AAAI
Press and MIT Press, pp. 223-228.

Lavrac, N. & Dzeroski, S. (1994), Inductive logic programming : Techniques and
Applications, E. Horwood, New York.

LeBlank, J., Ward, M. & Wittels, N. (1990), Exploring n-dimensional databases, in
‘Proceedings of Visualization’, pp. 230-237.

Littlestone, N. (1988), ‘Learning quickly when irrelevant attributes abound: A new
linear-threshold algorithm’, Machine Learning 2, 285-318.

Meyers, S. (1996), More Effective C++: 35 New Ways to Improve Your Programs
and Designs, Addison Wesley Pub Co Inc.

Michalski, R. S. (1978), A planar geometric model for representing multidimen-
sional discrete spaces and multiple-valued logic functions, Technical Report
UIUCDCS-R-78-897, University of Illinois at Urbaba-Champaign.

Muggleton, S. (1992), Inductive Logic Programming, Academic Press.

Murphy, P. M. & Pazzani, M. J. (1994), ‘Exploring the decision forest: An empirical
investigation of occam’s razor in decision tree induction’, Journal of Artificial
Intelligence Research 1, 257-275.

Murthy, S. K., Kasif, S. & Salzberg, S. (1994), ‘A system for the induction of oblique
decision trees’, Journal of Artificial Intelligence Research 2, 1-33.

Murthy, S. & Salzberg, S. (1995), Lookahead and pathology in decision tree in-
duction, in C. S. Mellish, ed., ‘Proceedings of the 14th International Joint
Conference on Artificial Intelligence’, Morgan Kaufmann, pp. 1025-1031.

Naeher, S. (1996), LEDA: A Library of Efficient Data Types and Algorithms,
3.3 edn, Max-Planck-Institut fuer Informatik, IM Stadtwald, D-66123 Saar-
bruecken, FRG.
http://www.mpi-sb.mpg.de/LEDA/leda.html.

Parsaye, K. (1996), Rules are much more than decision trees.
http://www.datamining.com/datamine/trees.htm.

26

Perrone, M. (1993), Improving regression estimation: averaging methods for vari-
ance reduction with extensions to general convex measure optimization, PhD
thesis, Brown University, Physics Dept.

Quinlan, J. R. (1986), ‘Induction of decision trees’, Machine Learning 1, 81-106.
Reprinted in Shavlik and Dietterich (eds.) Readings in Machine Learning.

Quinlan, J. R. (1993), C4.5: Programs for Machine Learning, Morgan Kaufmann,
San Mateo, California.

Quinlan, J. R. (1994), Comparing connectionist and symbolic learning methods,
in S. J. Hanson, G. A. Drastal & R. L. Rivest, eds, ‘Computational Learning
Theory and Natural Learning Systems’, Vol. I: Constraints and Prospects, MIT
Press, chapter 15, pp. 445—456.

Quinlan, J. R. (1995), Oversearching and layered search in empirical learning, in
C. S. Mellish, ed., ‘Proceedings of the 14th International Joint Conference on
Artificial Intelligence’, Morgan Kaufmann, pp. 1019-1024.

Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1986), Learning Internal Rep-
resentations by Error Propagation, MIT Press, chapter 8.

Schaffer, C. (1994), A conservation law for generalization performance, in ‘Ma-
chine Learning: Proceedings of the Eleventh International Conference’, Mor-
gan Kaufmann, pp. 259-265.

Stroustroup, B. (1994), The Design and Evolution of C++, Addison-Wesley Pub-
lishing Company.

Taylor, C., Michie, D. & Spiegalhalter, D. (1994), Machine Learning, Neural and
Statistical Classification, Paramount Publishing International.

Thrun et al. (1991), The Monk’s problems: A performance comparison of differ-
ent learning algorithms, Technical Report CMU-CS-91-197, Carnegie Mellon
University.

Tognazzini, B. (1994), ‘Quality, the road less traveled’, Advanced Systems 13.

Valiant, L. G. (1984), ‘A theory of the learnable’, Communications of the ACM
27, 1134-1142.

Weiss, S. M. & Kulikowski, C. A. (1991), Computer Systems that Learn, Morgan
Kaufmann, San Mateo, CA.

Wettschereck, D. (1994), A Study of Distance-Based Machine Learning Algorithms,
PhD thesis, Oregon State University.

Wnek, J. & Michalski, R. S. (1994), ‘Hypothesis-driven constructive induction in
AQ17-HCI : A method and experiments’, Machine Learning 14(2), 139-168.

27

Wnek, J., Sarma, J., Wahab, A. A. & Michalski, R. S. (1990), Comparing learning
paradigms via diagrammatic visualization, in ‘Methodologies for Intelligent
Systems, 5. Proceedings of the Fifth International Symposium’, pp. 428-437.
Also technical report MLI90-2, University of Illinois at Urbaba-Champaign.

Wolpert, D. H. (1992), ‘Stacked generalization’, Neural Networks 5, 241-259.

Wolpert, D. H. (1994), The relationship between PAC, the statistical physics frame-
work, the Bayesian framework, and the VC framework, in D. H. Wolpert, ed.,
‘The Mathematics of Generalization’, Addison Wesley.

28

A Review of Some Theoretical Results

Over the years, many properties of classification algorithms have been proved. For
example, Fix & Hodges (1951) developed the consistency properties of nearest-
neighbor procedures and showed that these procedures have asymptotically opti-
mum properties for large sample sets. Cover & Hart (1967) showed that that the
error of one-nearest-neighbor is asymptotically at most twice the Bayes error (best
possible error), implying that half of all the information in an infinite sample is con-
tained in a single nearest neighbor. Dasarathy (1990) provides an excellent review
of nearest-neighbor algorithms. Gordon & Olshen (1978, 1984) showed sufficient
conditions for decision-tree induction algorithms to be asymptotically Bayes risk
efficient.

While asymptotic consistency results are comforting because they guarantee
that with enough data the learning algorithms will converge to the target concept
one is trying to learn, our world is not so ideal. We are always given finite amounts
of data from which to learn and rarely do we reach asymptopia.’

Soon after the original paper by Fix & Hodges, the authors evaluated the perfor-
mance of nearest-neighbors on small samples (Fix & Hodges 1952); the differences
were very significant. All common decision-tree implementations, such as CART
(Breiman et al. 1984), ID3 (Quinlan 1986), and C4.5 (Quinlan 1993), are not known
to be consistent. For example, none of them make the random splits that Gordon
& Olshen (1978) show is a sufficient condition for consistency (although this is not
known to be a necessary condition).

From a theoretical standpoint, the no-free-lunch theorems and the conservation
law (Wolpert 1994, Schaffer 1994) show that for a finite dataset size and discrete
inputs (or finite precision floating point numbers), no algorithm can outperform any
other on average if all target concepts are equally probable.

Authors have recently claimed some “surprising” results about oversearching.
For example, Murphy & Pazzani (1994) showed that the smallest trees are not
always the best predictors. Quinlan (1995) discusses oversearching and how it can
hurt performance. Murthy & Salzberg (1995) showed how too much lookahead can
also hurt performance. These can be explained with the bias-variance decomposition
of error.

The bias-variance decomposition of error (Geman, Bienenstock & Doursat 1992,
Kohavi & Wolpert 1996, Breiman 1996a) shows how to decompose the error of
learning algorithms into two components: the bias, which measure how closely the
learning algorithm’s average guess (over all possible training sets of the given train-
ing set size) matches the target; and the variance, which measures how much the
learning algorithm’s guess varies (bounces around) for the different training sets
of the given size. While most of our intuition is geared at reducing the bias and
making the algorithm able to fit the targets better, the variance component is some-
times the dominant factor and is now getting more attention from the community
(Breiman 1994).

1Pun on utopia intended.

29

