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Abstract

In supervised classi�cation learning, one attempts

to induce a classi�er that correctly predicts the la-

bel of novel instances. We demonstrate that by

choosing a useful subset of features for the indis-

cernibility relation, an induction algorithm based

on simple decision table can have high prediction

accuracy on arti�cial and real-world datasets. We

show that useful feature subsets are not necessarily

maximal independent sets (relative reducts) with

respect to the label, and that, in practical situa-

tions, using a subset of the relative core features

may lead to superior performance.

1 Introduction

In supervised classi�cation learning, one is given

a training set containing labelled instances (exam-

ples). Each labelled instance contains a list of fea-

ture values (attribute values) and a discrete label

value. The induction task is to build a classi�er

that will correctly predict the label of novel in-

stances. Common classi�ers are decision trees, neu-

ral networks, and nearest-neighbor methods.

Many induction algorithms do not scale up well

in the face of irrelevant features. Aha (1992)

reports that \IB3's storage requirement increases

exponentially with the number of irrelevant at-

tributes." John, Kohavi, and P
eger (1994) show

that C4.5 (Quinlan 1993), a state-of-the-art deci-

sion tree induction algorithm, drastically degrades

in performance when an irrelevant feature and a

relevant but noisy feature are added to a given

dataset.

A rough set (Pawlak 1991) approximates a given

concept from below and from above using an indis-

cernibility relation. Pawlak (1993) points out that

one of the most important and fundamental notions

to the rough sets philosophy is the need to discover

redundancy and dependencies between features.

A subset of features is useful with respect to a

given dataset and an induction algorithm if the pro-

jection of the dataset on the subset of features leads

to accurate predictions by the induced classi�er. In

this paper, we show that by searching the space

of feature subsets, we are able to select a useful

subset for a decision table classi�er (Pawlak 1987;

Hurley 1983), which yields high prediction accuracy

on unseen instances.

To �nd a useful feature subset, we conduct a

best-�rst search in the space of feature subsets, es-

timating the accuracy of the induced classi�er at

each state using the Bootstrap estimation method

(Efron & Tibshirani 1993).

Rough set theory de�nes the unique core of a

dataset to be the set of indispensable features (see

Section 2). Removal of any feature from the core

set changes the positive region with respect to the

label. Our experiments show that it is sometimes

bene�cial to use a subset of features that does not

necessarily contain all the features in the core, and

hence a subset that is not a reduct. This observa-

tion deserves careful attention, as there has been a

large e�ort in the rough set community to e�ciently

�nd the set of reducts (Skowron & Rauszer 1991;

Skowron & Ruaszer 1992; Grzymala-Busse 1992).

The paper is organized as follows. Section 2

brie
y introduces the relevant rough set terminol-

ogy. Section 3 introduces the basic table classi-

�er and the table-majority classi�ers, and shows

their performance on some datasets. Section 4 in-

troduces the Holte-II inducer which is based on

a table-majority classi�er but searches for a good

subset of features. Results are presented in Sec-

tion 5 with a discussion of their relevance to rough

sets in Section 6. Section 7 concludes with a sum-

mary and future work.

2 Rough Set Theory

This section describes the basic concepts in rough

set theory, viewed from a supervised classi�cation

learning perspective. An information system is a

four-tuple S = (U ;Q;V; f), where

U is the �nite universe of objects.

Q is the �nite set of features, or attributes.



V is the set of possible feature values.

f is the information function. Given an object and

a feature, f maps it to a value:

f : U � Q 7! V

Let P be a subset of Q, that is, P is a subset of

features. The indiscernibility relation, denoted by

IND(P), is an equivalence relation de�ned as

IND(P) =

�

hx; yi 2 U � U : f(x; a) = f(y; a)

for every feature a 2 P.

�

If hx; yi 2 IND(P), then x and y are indis-

cernible with respect to the subset P. U=IND(P)

denotes the set of equivalence classes (the partition)

of IND(P). Each element in U=IND(P) is thus a set

of objects that are indiscernible with respect to P.

For any concept X � U and for any subset of

features P, the lower approximation, P, and the

upper approximation P are de�ned as follows:

P(X ) = [fY 2 U=IND(P) : Y � Xg

P(X ) = [fY 2 U=IND(P) : Y\X 6= ;g

The boundary region for P and concept X is de�ned

as follows:

BND

P

(X ) = P � P

If BND

P

(X ) = ; then X is de�nable using P; oth-

erwise X is a rough set with respect to P. Figure 1

depicts a rough set and the terms de�ned above.

The degree of dependency of a set of features P

on a set of features R is denoted by 


R

(P) (0 �




R

(P) � 1) and is de�ned as




R

(P) =

jPOS

R

(P)j

jUj

, where

POS

R

(P) =

[

X2U=IND(P)

RX

POS

R

(P) contains the objects of U which can be

classi�ed as belonging to one of the equivalence

classes of IND(P), using only features from the

set R. If 


R

(P) = 1, then R functionally deter-

mines P.

P is an independent set of features if there does

not exist a strict subset P

0

ofP such that IND(P) =

IND(P

0

). A set R � P is a reduct of P if it is in-

dependent and IND(R) = IND(P). Each reduct

has the property that a feature can not be removed

from it without changing the indiscernibility rela-

tion. Many reducts for a given set of features P

may exist.

The set of features belonging to the intersection

of all reducts of P is called the core of P:

core(P) =

\

R2Reduct(P)

R

A feature a 2 P is indispensable if IND(P) 6=

IND(P n fag). The core of P is the union of all

the indispensable features in P.

The indispensable features, reducts, and core can

be similarly de�ned relative to the output feature,

or label; the same facts hold in this case. For ex-

ample, the relative core is the union of all indis-

pensable features with respect to the label, and

it is the intersection of all relative reducts. The

reader is referred to Pawlak's book on rough sets

(Pawlak 1991, Chapter 3) for the precise de�ni-

tions. Throughout this paper, the terms core and

reduct will refer to the relative core and relative

reduct with respect to the label.

3 Classi�ers and Inducers

A classi�er maps an unlabelled instance to a class

label using some internally stored structure. Given

a test set, we de�ne the (estimated) accuracy of the

classi�er to be the ratio of the number of correctly

classi�ed instances to the number of instances. An

inducer generates a classi�er from a training set.

The (estimated) accuracy of an inducer given a

training set and a test set is the accuracy of the

classi�er induced from the training set, when run

on the test set.

A constant classi�er is probably the simplest

classi�er possible. Its internal structure is one class

label, which it predicts independent of the input

instance. A majority inducer computes the most

frequent class in the training set, and generates the

appropriate constant classi�er. The accuracy of a

majority inducer is usually called the baseline ac-

curacy of the dataset.

A table classi�er has a table of labelled instances

as its internal structure. Given an instance, it

searches for all matching instances in the table. If

no matching instances are found, unknown is re-

turned; otherwise, the majority class of the match-

ing instances is returned (there may be multiple

matching instances with con
icting labels). Un-

known values are assumed to be a possible feature

value. A table inducer simply passes the training

set to the table classi�er for its internal structure.

A table-majority classi�er is similar to a table

classi�er, except that when an instance is not found

in the table, the majority class of the table is re-

turned. A table-majority inducer simply passes the

training set to the table-majority classi�er for its

internal structure.

Table 1 shows some datasets with their corre-

sponding training set and test set sizes (a single test

set was used for each dataset), and the accuracy

estimates for the inducers described above. The

datasets are from the UC Irvine repository (Mur-

phy & Aha 1994), except for parity5+5 which is

an arti�cial dataset where the concept is the parity
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Figure 1: Depiction of a rough set

Dataset Number of Training Test set Majority Table Table-Maj

attributes set size size Accuracy Accuracy Accuracy

Monk 1 6 124 432 50.0% 28.7% 64.4%

Monk 2 6 169 432 67.1% 39.1% 81.9%

Monk 2-local 17 169 432 67.1% 39.1% 81.9%

Monk 3 6 122 432 47.2% 26.9% 60.6%

Parity 5+5 10 100 1024 50.0% 9.8% 54.4%

Tic-Tac Toe 9 638 958 65.3% 66.6% 87.8%

Credit 15 490 200 55.0% 0.0% 55.0%

Breast cancer 9 191 95 73.7% 6.3% 74.7%

Chess 36 2130 1066 53.2% 0.0% 53.2%

Glass 9 142 72 30.6% 0.0% 30.6%

Glass2 9 108 55 58.2% 0.0% 58.2%

Heart-disease 13 202 101 62.4% 0.0% 62.4%

Hepatitis 19 103 52 86.5% 0.0% 86.5%

Horse-colic 22 300 68 60.3% 2.9% 60.3%

Hypothyroid 25 2108 1055 94.8% 2.7% 95.2%

Iris 4 100 50 30.0% 0.0% 30.0%

Labor 16 40 17 64.7% 0.0% 64.7%

Lymphography 18 98 50 60.0% 0.0% 60.0%

Mushroom 22 5416 2708 51.1% 0.0% 51.1%

Sick-euthyroid 25 2108 1055 90.4% 4.1% 90.9%

Soybean 35 31 16 31.1% 0.0% 31.1%

Vote 16 290 145 64.8% 30.3% 80.0%

vote1 15 290 145 64.8% 30.3% 80.0%

Table 1: Datasets and accuracies for the three basic inducers



of �ve bits, with �ve irrelevant bits. Monk 2-local

is a variant of Monk 2 (Thrun etal. 1991) where

each feature value is made into an indicator vari-

able. Vote1 has the \physician-fee-freeze" feature

deleted, something that is commonly done to make

the problem harder. For all datasets that did not

have a test set, we randomly chose one third of the

instances for a test set.

While the performance of the table-majority in-

ducer is considerably above the baseline (majority)

in some cases, it is clear that the table is not helping

much, especially when there are many features or

continuous features (e.g., chess, credit, labor, lym-

phography, soybean).

4 Holte-II: Table-Majority with

Feature Subset Selection

Finding a good subset of features for an inducer

is a hard problem. Some authors in the rough set

community have suggested using the degree of de-

pendency on the label (
) for this selection process

(Ziarko 1991; Modrzejewski 1993), or other mea-

sures such as normalized entropy (Pawlak, Wong,

& Ziarko 1988). In statistics, many measures

have been investigated (Boyce, Farhi, & Weischedel

1974; Miller 1990; Neter, Wasserman, & Kutner

1990), and others have been investigated in the

pattern recognition community (Devijver & Kittler

1982; Ben-Bassat 1982). The main problem with

such measures is that they ignore the utility of the

features for a given inducer. An alternative method

uses a wrapper embedding the induction algorithm

(John, Kohavi, & P
eger 1994). In the wrapper

model, a search for a good feature subset is con-

ducted using the inducer itself as a black box; the

future prediction accuracy is estimated using meth-

ods such as cross validation (Breiman et al. 1984;

Weiss & Kulikowski 1991) or Bootstrap (Efron &

Tibshirani 1993).

The Holte-II inducer

1

is an inducer that pro-

duces a table-majority classi�er based on a subset

of the original set of features. Given an instance,

the classi�er behaves like a table-majority classi�er,

except that only the subset of features is used for

matching.

Given a dataset with m features, there are 2

m

possible subsets of features. We face two problems

when trying to �nd a good subset. The �rst is how

to estimate the accuracy of each subset, and the

second is which subsets to examine. For our ex-

perimental results, we evaluated each subset by us-

ing Efron's :632-bootstrap estimator (Efron & Tib-

shirani 1993). In order to avoid searching the full

space, we conducted a best-�rst search (Ginsberg

1

The name was inspired by Holte's paper (1993),

but the algorithm bears no resemblance to Holte's 1R

algorithm.

1993), stopping after a predetermined number of

non-improving node expansions. Figure 2 shows

the search through the feature subsets in the IRIS

dataset. The number in brackets denotes the order

the nodes are visited. The bootstrap estimate is

given with one standard deviation of the accuracy

after the +=� sign. The estimated real accuracy

(on the unseen test set) is also noted, but not used

during the search, nor at any time during the in-

duction process.

The :632-Bootstrap method creates b bootstrap

samples of n instances each, where b is an external

parameter and n is the number of instances in the

original training set. The instances in each boot-

strap are independently sampled from the original

dataset, thus duplicates will usually appear in the

bootstrap samples. In fact, it is easy to show that

about 0:632n instances from the training set will

end up in each bootstrap sample (hence the name).

Let acc

u

(B

i

) be the accuracy on unseen data, i.e.,

the accuracy of the inducer when trained on the

bootstrap sample B

i

and tested on the unseen in-

stances (about 0:368n); let acc

r

(B

i

) be the resub-

stitution estimate, that is, the accuracy of the in-

ducer when trained and tested on the bootstrap

sample. The :632-bootstrap estimate of the accu-

racy is

d

Acc =

P

b

i=1

0:632 � acc

u

(B

i

) + 0:368 � acc

r

(B

i

)

b

5 Experimental Results

We ran a best-�rst search from the initial node,

representing the empty subset of features, until 10

node expansions did not show any improvement of

more than 0.1%.

2

The number of bootstrap sam-

ples was set to 20; the subset shown is the set of fea-

tures that were chosen by Holte-II, starting with

feature number zero. Table 2 summarizes our re-

sults.

On all datasets that do not have continuous

features, that is, Monk 1-3, parity, tic-tac-toe,

breast-cancer, chess, mushroom, vote, and vote1,

Holte-II has an average accuracy of 93.6%, much

better than C4.5's average accuracy of 82.2%. If we

ignore Monk 1, Monk 2, and parity|datasets that

C4.5 does very badly on|the average accuracy for

Holte-II is 91.2% and 88.5% for C4.5.

Holte's 1R program (Holte 1993) built one-rules,

that is, rules that test a single attribute, and was

shown to perform reasonably well on some com-

monly used datasets. Table 3 compares Holte-II

with 1R on the same datasets used in Holte's paper.

While the test sets were not the same, the small

2

For hypothyroid and sick-euthyroid the stopping

criteria was 3 non-improving expansions due to the

large number of instances.



[1]
Attrs: None

Est: 33.09 +/-4.9
Real: 34

[2]
Attrs: 0

Est: 59.76 +/-4.6
Real: 48

26.66

[3]
Attrs: 1

Est: 48.33 +/-5.5
Real: 46

15.24

[4]
Attrs: 2

Est: 82.13 +/-7
Real: 88

49.04

[5]
Attrs: 3

Est: 91.18 +/-4.2
Real: 94

58.08

[15]
Attrs: 0, 1

Est: 53.9 +/-4.3
Real: 42

-5.86

[9]
Attrs: 0, 2

Est: 57.49 +/-4.2
Real: 40

-24.64

[10]
Attrs: 1, 2

Est: 59.93 +/-3.9
Real: 42

-22.2

[6]
Attrs: 0, 3

Est: 60.2 +/-5.1
Real: 48

-30.97

[7]
Attrs: 1, 3

Est: 67.85 +/-3.9
Real: 56

-23.33

[8]
Attrs: 2, 3

Est: 65.78 +/-6.7
Real: 48

-25.39

[14]
Attrs: 0, 1, 2

Est: 54.63 +/-4
Real: 30

-5.3

[11]
Attrs: 0, 1, 3

Est: 54.96 +/-4
Real: 32

-12.89

[12]
Attrs: 1, 2, 3

Est: 55.1 +/-3.3
Real: 32

-12.75

[13]
Attrs: 0, 2, 3

Est: 54.52 +/-3.9
Real: 30

-11.26

[16]
Attrs: 0, 1, 2, 3

Est: 54.24 +/-3.8
Real: 30

-0.85

Figure 2: Best-�rst search through the space of feature subsets in IRIS

Dataset Maj. Table-Maj C4.5 Holte-II Subset

Acc. Acc. Acc. Acc.

Monk 1 50.0% 64.4% 75.7% 100.0% 0, 1, 4

Monk 2 67.1% 81.9% 65.0% 81.9% 0, 1, 2, 3, 4, 5

Monk 2-local 67.1% 81.9% 70.4% 100.0% 0, 3, 6, 8, 11, 15

Monk 3 47.2% 60.6% 97.2% 97.2% 1, 4

Parity 5+5 50.0% 54.4% 50.0% 100.0% 1, 2, 3, 5, 7

Tic-Tac Toe 65.3% 87.8% 88.2% 92.0% 0, 2, 3, 4, 5, 6, 8

Credit 55.0% 55.0% 80.0% 82.5% 3, 8, 9, 12

Breast-cancer 73.7% 74.7% 74.7% 74.7% 0, 1, 2, 5, 6, 7, 8

Chess 53.2% 53.2% 99.5% 97.7% 0, 5, 9, 13, 14, 20, 27, 31, 32, 34

Glass 30.6% 30.6% 63.9% 37.5% 2, 5

Glass2 58.2% 58.2% 72.7% 60.0% 0, 7

Heart-disease 62.4% 62.4% 74.3% 77.2% 1, 8, 11

Hepatitis 86.5% 86.5% 80.8% 82.7% 1, 2, 5, 7, 11, 18

Horse-colic 60.3% 60.3% 80.9% 67.7% 0, 6, 13, 14, 16, 21

Hypothyroid 94.8% 95.2% 99.2% 96.4% 4, 10, 12, 13, 22

Iris 30.0% 30.0% 94.0% 94.0% 3

Labor 64.7% 64.7% 82.4% 82.4% 6, 10

Lymphography 60.0% 60.0% 76.0% 76.0% 8, 10, 12, 16

Mushroom 31.1% 31.1% 100.0% 100.0% 2, 4, 10, 14, 19

Sick-euthyroid 90.4% 90.9% 97.7% 93.7% 2, 4, 6, 14, 16

Soybean-small 31.1% 31.1% 100.0% 100.0% 20, 21

Vote 64.8% 80.0% 95.2% 94.5% 2, 3, 9, 15

Vote1 64.8% 80.0% 88.3% 91.9% 0, 2, 3, 7, 8, 9

Table 2: Comparison of Holte-II and C4.5



di�erence of 0.3% in the average of the two C4.5

columns|one representing the accuracy on Holte's

samples and the other representing accuracy on our

samples|show that the di�erences are not signi�-

cant.

The Holte-II* column represents an estimate of

the upper bound possible with Holte-II type al-

gorithms. The upper bound is computed by using

the accuracy on the test set as an estimate of per-

formance. Holte's 1R* was similarly trained. Note

that this upper bound is very optimistic in some

cases, but it is only an approximate upper bound,

since we are still conducting a best-�rst search, and

are not guaranteed to �nd the optimal feature sub-

set.

On the real datasets taken from Holte's paper,

C4.5 has a 3.5% higher accuracy. The average

accuracy for Holte-II is 82.7%, and 86.2% for

C4.5. If we ignore the two glass datasets on which

Holte-II does poorly, the di�erence shrinks to

1.3%. Thus even on data with continuous fea-

tures that have not been discretized, Holte-II does

reasonably close to C4.5. Moreover, the upper-

bound given by Holte-II* was about 1% higher

than C4.5. These results compare favorably with

those of Holte, where the \1R" program was 5.7%

lower than C4.5, and 3.1% lower if two out of the

16 databases were ignored.

6 Reducts and Cores

An optimal classi�er must use all features in one

of the reducts, which must include all features in

the core. Classi�ers induced from data, however,

are not optimal as they have no access to the un-

derlying distribution. Induction algorithms gener-

ating such classi�ers may bene�t from the omis-

sion of core features, resulting in feature subsets

that are not reducts. Similarly, such induction al-

gorithms may bene�t from the inclusion of features

that would be super
uous to an optimal classi�er.

Example 1 (Buggy Inducer) Let S be an infor-

mation system where the only reduct (and hence

the core) contains features f2; 3; 4; 5g. To achieve

the highest possible prediction accuracy, an optimal

classi�er must use exactly these features.

Consider an inducer Buggy-ind that induces a

classi�er for future predictions. Due to a bug, if

feature number one is not given, or if the number of

features is greater than three, the inducer produces a

classi�er that labels instances randomly; otherwise,

a more sensible classi�er is produced.

If the dataset containing the reduct features

f2; 3; 4; 5g is given to Buggy-ind, the classi�er pre-

dictions will be random; however, if a subset such

as f1; 2; 3g is given, the classi�er produced might

have an accuracy better than random.

While the example above might sound silly, �nd-

ing minimal structures|a goal clearly stated in

many induction algorithms|is NP-hard (Wong &

Ziarko 1985; Hya�l & Rivest 1976; Blum & Rivest

1992). Induction algorithms usually resort to non-

optimal hill-climbing techniques and may thus de-

grade in performance when given too many fea-

tures. More generally, the biases that algorithms

have may be inappropriate for a given feature sub-

set, while more appropriate for others.

For practical induction algorithms, it may there-

fore be bene�cial to use a feature subset that is

not a reduct, or even one that does not contain

all features in the core. Our experimental results

indicate that this is the case. In some datasets,

the feature subsets chosen (by both Holte-II and

Holte-II*) are not reducts. In tic-tac-toe, for ex-

ample, the best subset creates an inconsistent table,

i.e., it contains four con
icting instances, while the

original training set is consistent. The advantage of

forming an inconsistent table comes from the fact

that the space of possible instances shrinks by a

factor of 9 (each square is an X, an O, or a blank),

while the number of instances shrinks by a smaller

factor. The remaining instances thus form a better

covering of the projected space. Creating a table

without two features lowers the possible accuracy

from 100 to 99:6%, but the denser space more than

o�sets for this loss.

7 Summary and Future Work

Generalization without a bias is impossible (Schaf-

fer 1994). Holte-II is biased to select a feature

subset maximizing the Bootstrap accuracy esti-

mate. Whenever the estimates are good, Holte-II

should choose a feature subset leading to high ac-

curacy. However, when the Bootstrap estimates

are inappropriate (Efron & Tibshirani 1993, Sec-

tion 7.4), such as when the training set is not a

representative of the true distribution, the selected

feature subset might be inappropriate. Our results

show that such a bias is indeed appropriate for the

datasets used in our experiments.

We have shown that a table-majority inducer can

perform well on arti�cial and real-world databases,

if a useful set of features can be found. The

Holte-II inducer outperforms C4.5 on the tested

datasets that had only discrete features. Surpris-

ingly, even on datasets with continuous features,

the di�erence between Holte-II and C4.5 is only

3.5%, and this di�erence shrinks to 1.3% if we ig-

nore the glass datasets that have only continuous

features.

The fact that Holte-II* does very well com-

pared to Holte-IImay indicate that there is room

for improving the accuracy estimator. We have

used 20 bootstrap samples, while the usual rec-

ommended number is 50 to 200. An analysis of



Dataset Holte's samples Our samples

1R 1R* C4.5 C4.5 Holte-II Holte-II*

Acc. Acc. Acc. Acc. Acc. Acc.

Breast cancer 68.7% 72.5% 72.0% 74.7% 74.7% 74.7%

Chess 67.6% 69.2% 99.2% 99.5% 97.7% 97.8%

Glass 53.8% 56.4% 63.2% 63.9% 37.5% 41.7%

Glass2 72.9% 77.0% 74.3% 72.7% 60.0% 63.6%

Heart-disease 73.4% 78.0% 73.6% 74.3% 77.2% 82.2%

Hepatitis 76.3% 85.1% 81.2% 80.8% 82.7% 94.2%

Horse-colic 81.0% 81.2% 83.6% 80.9% 67.7% 88.2%

Hypothyroid 97.2% 97.2% 99.1% 99.2% 96.4% 96.9%

Iris 93.5% 95.9% 93.8% 94.0% 94.0% 94.0%

Labor 71.5% 87.4% 77.2% 82.4% 82.4% 94.1%

Lymphography 70.7% 77.3% 77.5% 76.0% 76.0% 80.0%

Mushroom 98.4% 98.4% 100.0% 100.0% 100.0% 100.0%

Sick-euthyroid 95.0% 95.0% 97.7% 97.7% 93.7% 95.1%

Soybean 81.0% 87.0% 97.5% 100.0% 100.0% 100.0%

Vote 95.2% 95.2% 95.6% 95.2% 94.5% 97.2%

vote1 86.8% 87.9% 89.4% 88.3% 89.0% 92.4%

Table 3: Comparison of 1R, 1R*, C4.5, Holte-II , and Holte-II* on real datasets.

the results shows that the bootstrap estimates do

not correlate well enough with the real accuracies.

Although only the relative magnitudes of the ac-

curacies are important, there are cases where the

estimated ranking of feature subsets are very poor.

One way to improve the estimates without increas-

ing the running time considerably is to dynamically

decide on the number of bootstrap samples needed.

An abstract description of this problem is described

in (Kohavi 1994).

For the arti�cial datasets: Monk 1-3, parity, and

tic-tac-toe, the test sets include the space of all

possible instances, and therefore the test set ac-

curacy is the actual real accuracy. For the real

datasets, our accuracy results are based on a sin-

gle test set, and a more thorough experiment on

multiple test sets is called for. Such an experiment,

however, is important mainly for the comparison

with Holte's results and for estimating the upper

bound of Holte-II's performance. For the purpose

of comparing C4.5 against Holte-II, the same test

set was used, and thus the relative accuracies are

important more than the actual absolute values.

While we have shown that useful feature subsets

are not reducts, we believe that starting the search

from the core features may lead to faster identi�-

cation of useful subsets, thus narrowing the search

considerably. We stress, however, that any attempt

to identify core features from a dataset is an induc-

tion problem by itself.

For most datasets tested here, the real valued

attributes were not very useful (glass is a notable

exception). In many real world datasets it is proba-

bly true that real values are necessary, and the data

must undergo a discretization process (Lenarcik &

Piasta 1992; Fayyad & Irani 1993).
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