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Abstract

We describe the two most commonly used systems for induction of decision

trees for classi�cation: C4.5 and CART. We highlight the methods and di�er-

ent decisions made in each system with respect to splitting criteria, pruning,

noise handling, and other di�erentiating features. We describe how rules can

be derived from decision trees and point to some di�erence in the induction

of regression trees. We conclude with some pointers to advanced techniques,

including ensemble methods, oblique splits, grafting, and coping with large

data.

C5.1.3.1 C4.5

C4.5 belongs to a succession of decision tree learners that trace their origins back

to the work of Hunt and others in the late 1950s and early 1960s (Hunt 1962). Its

immediate predecessors were ID3 (Quinlan 1979), a simple system consisting initially

of about 600 lines of Pascal, and C4 (Quinlan 1987). C4.5 has grown to about 9,000

lines of C that is available on diskette with Quinlan (1993). Although C4.5 has been

superseded by C5.0, a commercial system from RuleQuest Research, this discussion

will focus on C4.5 since its source code is readily available.
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fall � 100 points

previous day = ?sell

hold sell buy

true false

fall steady rise

Figure C5.1.3.1: A simple decision tree

Input and Output

Input to C4.5 consists of a collection of training cases, each having a tuple of values

for a �xed set of attributes (or independent variables) A = fA1; A2; :::; Akg and a

class attribute (or dependent variable). An attribute Aa is described as continuous

or discrete according to whether its values are numeric or nominal. The class attribute

C is discrete and has values C1; C2; :::; Cx.

The goal is to learn from the training cases a function

DOM(A1)�DOM(A2)� :::�DOM(Ak)! DOM(C)

that maps from the attribute values to a predicted class.

The distinguishing characteristic of learning systems is the form in which this function

is expressed. We focus here on decision trees, [link to section B2.4], a recursive

structure that is

� a leaf node labelled with a class value, or

� a test node that has two or more outcomes, each linked to a subtree.

Figure C5.1.3.1 shows a simple example in which the tests appear in ovals, the leaves

in boxes, and the test outcomes are labels on the links.

To classify a case using a decision tree, imagine a marker that is initially at the top

(root) of the tree.
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� If the marker is at a leaf, the label associated with that leaf becomes the pre-

dicted class.

� If the marker is at a test node, the outcome of that test is determined and the

marker moved to the top of the subtree for that outcome.

Divide and Conquer

Decision tree learners use a method known as divide and conquer to construct a

suitable tree from a training set S of cases:

� If all the cases in S belong to the same class (Cj, say), the decision tree is a leaf

labelled with Cj.

� Otherwise, let B be some test with outcomes b1, b2, ..., bt that produces a non-

trivial partition of S, and denote by Si the set of cases in S that has outcome

bi of B. The decision tree is

B

T1 T2 T3 Tt

b1 b2 b3 bt

...

where Ti is the result of growing a decision tree for the cases in Si.

Candidate Tests

C4.5 uses tests of three types, each involving only a single attribute Aa. Decision

regions in the instance space are thus bounded by hyperplanes, each orthogonal to

one of the attribute axes.

� If Aa is a discrete attribute with z values, possible tests are:

{ \Aa = ?" with z outcomes, one for each value of Aa. (This is the default.)
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{ \Aa 2 G?" with 2 � g � z outcomes, where G = fG1; G2; :::; Ggg is a

partition of the values of attribute Aa. Tests of this kind are found by a

greedy search for a partition G that maximizes the value of the splitting

criterion (discussed below).

� If Aa has numeric values, the form of the test is \Aa � �" with outcomes true

and false, where � is a constant threshold. Possible values of � are found by

sorting the distinct values of Aa that appear in S, then identifying one threshold

between each pair of adjacent values. (So, if the cases in S have d distinct values

for Aa, d-1 thresholds are considered.)

Selecting Tests

In the divide and conquer algorithm, any test B that partitions S non-trivially will

lead to a decision tree, but di�erent Bs give di�erent trees. Most learning systems

attempt to keep the tree as small as possible because smaller trees are more easily

understood and, by Occam's Razor arguments, are likely to have higher predictive

accuracy (see, for instance, Quinlan & Rivest (1989)). Since it is infeasible to guar-

antee the minimality of the tree (Hya�l & Rivest 1976), C4.5 relies on greedy search,

selecting the candidate test that maximizes a heuristic splitting criterion.

Two such criteria are used in C4.5, information gain and gain ratio. Let RF (Cj; S)

denote the relative frequency of cases in S that belong to class Cj. The information

content of a message that identi�es the class of a case in S is then

I(S) = �
xX

j=1

RF (Cj; S) log(RF (Cj; S)):

After S is partitioned into subsets S1, S2, ..., St by a test B, the information gained

is then

G(S;B) = I(S)�
tX

i=1

jSij

jSj
I(Si): (C5.1.3.1)

The gain criterion chooses the test B that maximizes G(S;B).

A problem with this criterion is that it favors tests with numerous outcomes { for

example, G(S;B) is maximized by a test in which each Si contains a single case. The

gain ratio criterion sidesteps this problem by also taking into account the potential

information from the partition itself:

P (S;B) = �
tX

i=1

jSij

jSj
log

 
jSij

jSj

!
: (C5.1.3.2)
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Gain ratio then chooses, from among the tests with at least average gain, the test B

that maximizes G(S;B)=P (S;B).

Missing Values

Missing attribute values are a common occurrence in data, either through errors made

when the values were recorded or because they were judged irrelevant to the particular

case. Such lacunae a�ect both the way that a decision tree is constructed and its use

to classify a new case.

When a decision tree is constructed from a set S of training cases, the divide and

conquer algorithm selects a test on which to partition S. Let B be a potential test

based on attribute Aa with outcomes b1, b2, ...,bt. Denote by S0 the subset of cases

in S whose values of Aa are unknown, and hence whose outcome of B cannot be

determined. As before, let Si denote those cases with (known) outcome bi of B. The

information gained by B is reduced because we learn nothing about the cases in S0;

Equation C5.1.3.1 now becomes

G(S;B) =
jS � S0j

jSj
G(S � S0; B):

The split information is increased to re
ect the additional \outcome" of the test

(namely, the fact that it cannot be determined for the cases in S0). Equation C5.1.3.2

is modi�ed to

P (S;B) = �
jS0j

jSj
log

 
jS0j

jSj

!
�

tX
i=1

jSij

jSj
log

 
jSij

jSj

!
:

Both changes have the e�ect of reducing the desirability of tests involving attributes

with a high proportion of missing values.

When a test B has been chosen, C4.5 does not build a separate decision tree for the

cases in S0. Instead, they are notionally fragmented into fractional cases and added

to the subsets corresponding to known outcomes. The cases in S0 are added to each

Si with weight jSij=jS � S0j.

Missing attribute values also complicate the use of the decision tree to classify a case.

Instead of a single class, the initial result of the classi�cation is a class probability

distribution determined as follows: Let CP (T; Y ) denote the result of classifying case

Y with decision tree T .

� If T is a leaf, CP (T; Y ) is the relative frequency of training cases that reach T .
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� If T is a tree whose root is test B, and the outcome of B on case Y is known

(bi, say), then

CP (T; Y ) = CP (Ti; Y )

where, as before, Ti is the decision tree for outcome bi.

� Otherwise, all outcomes of B are explored and combined probabilistically, giving

CP (T; Y ) =
tX

i=1

jSij

jS � S0j
CP (Ti; Y ):

Note that the weight of the subtree Ti depends on the proportion of training

cases that have outcome bi, interpreted as the prior probability of that outcome.

When the class probability distribution resulting from classifying case Y with the

decision tree has been determined, the class with the highest probability is chosen as

the predicted class.

Avoiding Over�tting

The divide and conquer algorithm partitions the data until every leaf contains cases

of a single class, or until further partitioning is impossible because two cases have the

same values for each attribute but belong to di�erent classes. Consequently, if there

are no con
icting cases, the decision tree will correctly classify all training cases. This

so-called over�tting is generally thought to lead to a loss of predictive accuracy in

most applications (Quinlan 1986).

Over�tting can be avoided by a stopping criterion that prevents some sets of training

cases from being subdivided (usually on the basis of a statistical test of the signi�cance

of the best test), or by removing some of the structure of the decision tree after it

has been produced. Most authors agree that the latter is preferable since it allows

potential interactions among attributes to be explored before deciding whether the

result is worth keeping.

C4.5 employs a mechanism of the latter kind. Before discussing it, we introduce the

heuristic on which it is based.

Estimating True Error Rates

Consider some classi�er Z formed from a subset S of training cases, and suppose that

Z misclassi�es M of the cases in S. The true error rate of Z is its accuracy over
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the entire universe from which the training set was sampled. The true error rate is

usually markedly higher than the classi�er's resubstitution error rate on the training

cases (here M=jSj), which might be near zero for an unpruned decision tree.

The true error rate is often estimated by measuring Z's error rate on a collection of

unseen cases that were not used in its construction; this is the best strategy when

a substantial set of unseen cases is available. In many applications, though, data is

scarce and all of it is needed to construct the classi�er. C4.5 estimates the true error

rate of Z using only the values M and jSj from the training set as follows.

If an event occursM times in N trials, the ratioM=N is an estimate of the probability

p of the event. We can go further and derive con�dence limits for p; for a given

con�dence CF , an upper limit pr can be found such that p � pr with probability

1-CF . Following (Diem 1962, page 185), pr satis�es the following equations:

CF =

8<
: (1� pr)

N for M = 0PM
i=0

�
N

i

�
pir(1� pr)

N�i for M > 0

(The same source gives a quickly-computable approximation for pr in the latter case.)

Now, the classi�er Z can be viewed as causing M error events in jSj \trials". Since

Z was constructed to �t the cases in S, and so tends to minimize the apparent error

rate, the upper bound pr is used as a more conservative estimate of the error rate

of Z on unseen cases. In the following, we will use UCF (M;N) to denote the error

bound pr above. C4.5 uses a default CF value of 0.25, but this can be altered to

cause higher or lower levels of pruning.

Pruning Decision Trees

After a decision tree is produced by the divide and conquer algorithm, C4.5 prunes

it in a single bottom-up pass. Let T be a non-leaf decision tree, produced from a

training set S, of the form

B

T �

1 T �

2 T �

3 T �

t

b1 b2 b3 bt

...
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where each T �

i has already been pruned. Further, let T �

f be the subtree corresponding

to the most frequent outcome of B, and let L be a leaf labelled with the most frequent

class in S. Let the number of cases in S misclassi�ed by T , T �

f , and L be ET , ET �

f
,

and EL respectively. C4.5's tree pruning algorithm considers the three corresponding

estimated error rates

� UCF (ET ; jSj),

� UCF (EL; jSj), and

� UCF (ET �

f
; jSj).

Depending on whichever is lower, C4.5

� leaves T unchanged;

� replaces T by the leaf L; or

� replaces T by its subtree T �

f .

This form of pruning is computationally e�cient and gives quite reasonable results

in most applications.

C5.1.3.2 CART

CART, an acronym for Classi�cation And Regression Trees, is described in the book

by Breiman, Friedman, Olshen & Stone (1984). The use of trees in the statistical

community dates back to AID (Automatic Interaction Detection) by Morgan & Son-

quist (1963), and to later work on THAID by Morgan and Messenger in the early

1970s.

CART r
 is also the name of the system currently implementing the methodology

described in the above book. It is sold by Salford Systems.

The basic methodology of divide and conquer described in C4.5 is also used in CART.

The di�erences are in the tree structure, the splitting criteria, the pruning method,

and the way missing values are handled.
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Tree Structure

CART constructs trees that have only binary splits. This restriction simpli�es the

splitting criterion because there need not be a penalty for multi-way splits (Kononenko

1995b). Futhermore, if the label is binary, the binary split restriction allows CART to

optimally partition categorical attributes (minimizing any concave splitting criteria)

to two subsets of values in time that is linear time in the number of attribute values

(Breiman et al. 1984, Theorem 4.5). The restriction has its disadvantages, however.

The tree may be less interpretable with multiple splits occurring on the same attribute

at adjacent levels. There may be no good binary split on an attribute that has a good

multi-way split (Kononenko 1995a), which may lead to inferior trees.

Splitting Criteria

CART uses the Gini diversity index as a splitting criterion. Let RF (Cj; S) denote

the relative frequency of cases in S that belong to class Cj. The Gini index is de�ned

as:

Igini(S) = 1�
xX

j=1

RF (Cj; S)
2 ;

and the information gain due to a split is computed as in Equation C5.1.3.1.

A class probability tree predicts a class distribution for an example instead of a single

class. The common measure of performance for a class probability tree is the mean

squared error. For each class j, let Cj(e) be the indicator variable that is one if the

class for the example e is j and zero otherwise. The mean squared error, or MSE, is

de�ned as:

MSE = Ee

2
4 xX
j=1

(Cj(e)� Pj(e))
2

3
5

where the expectation is over all examples, and Pj(e) represents the probability as-

signed to class j for example e by the probabilistic classi�er.

The interesting observation about the Gini diversity index is that it minimizes the

resubstitution estimate for the mean squared error.

CART also supports the twoing splitting criterion, which can be used for multi-class

problems. At each node, the classes are separated into two superclasses containing

disjoint and mutually exhaustive classes. A splitting criterion for a two-class problem

is used to �nd the attribute and the two superclasses that optimize the two-class

criterion. The approach gives \strategic" splits in the sense that several classes that
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are similar are grouped together.

Pruning

CART uses a pruning technique called minimal cost complexity pruning, which as-

sumes that the bias in the resubstitution error of a tree increases linearly with the

number of leaf nodes. The cost assigned to a subtree is the sum of two terms: the

resubstitution error and the number of leaves times a complexity parameter �. For-

mally,

R� = R(T ) + � � number-of-leaves :

It can be shown that, for every value of �, there exists a unique smallest tree minimiz-

ing R� (Breiman et al. 1984, Proposition 3.7). Note that, although � runs through

a continuum of values, there are at most a �nite number of possible subtrees. There

is thus a sequence of trees minimizing R�, T1 � T2 � � � � � fTtg, created by varying

� from zero to in�nity. The trees are nested: each tree is contained in the previous

one. An e�cient \weakest-link" pruning algorithm can be constructed to compute

Tk+1 from Tk.

When a large dataset is available, selecting the best � to minimize the true error can

be done by setting aside a holdout set (e.g., a third of the data) and constructing

T1 � T2 � � � � � fTtg from the data, excluding the holdout set. The examples in the

holdout set can then be classi�ed using each tree, giving an estimate of the true error

of each tree. The � matching the tree that minimizes the error can then be used as

the pruning parameter to prune the tree built from the whole dataset.

The pruning step described above is relatively fast, but because a holdout set was

used, a second tree is usually built using the whole dataset in order to make e�cient

use of all the data. Building a second tree e�ectively doubles the induction time.

Moreover, if the dataset is small, the error estimates have high variance and precious

data (held out) are not used in building the initial tree. CART therefore uses 10-fold

cross validation (Stone 1974, Kohavi 1995) to improve the error estimates and utilize

more data. The procedure for pruning using 10-fold cross validation is more complex

since multiple trees must be built and pruned. We refer the reader to Breiman et al.

(1984) for details. The time complexity of the pruning step when 10-fold cross-

validation is used is a factor of 10 more expensive than C4.5's pruning, but it does

tend to produce smaller trees (Oates & Jensen 1997).
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Even when cross-validation is used, the pruning parameter is sometimes unstable.

Also, to improve comprehensibility, it is sometimes preferable to choose a smaller tree

that has comparable accuracy to the best tree. CART employs the \1 SE rule," which

chooses the smallest tree whose estimated mean error rate is within one standard error

(estimated standard deviation) of the estimated mean error rate of the best tree.

Missing Values

Unlike C4.5, CART does not penalize the splitting criterion during the tree con-

struction if examples have unknown values for the attribute used in the split. The

criterion uses only those instances for which the value is known. Unlike C4.5, CART

�nds several surrogate splits that can be used instead of the original split. During

classi�cation, the �rst surrogate split based on a known attribute value is used.

The surrogates cannot be chosen based on the original splitting criterion because

the subtree at each node is constructed based on the original split selected. The

surrogate splits are therefore chosen to maximize a measure of predictive association

with the original split. This procedure works well if there are attributes that are

highly correlated with the chosen attribute.

Regression Trees

As its name implies, CART also supports building regression trees. Regression trees

are somewhat simpler than classi�cation trees because the growing and pruning cri-

teria used in CART are the same. The regression tree structure is similar to a classi-

�cation tree, except that each leaf predicts a real number.

The resubstitution estimate is the mean squared error:

R(S) =
1

n

X
i

(yi � h(ti))
2 ;

where yi is the real-valued label for example ti and h(ti) is the (real-valued) prediction.

The splitting criteria is chosen to minimize the resubstitution estimate. Pruning is

done in a manner similar to the cost complexity pruning described above.

In CART, each leaf predicts a constant value; model trees generalize to building a

model at each leaf (Frank, Wang, Inglis, Holmes & Witten 1998).
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C5.1.3.3 Advanced Methods

Decision trees have been extended in many ways. We provide a short list of pointers

to important topics.

1. The induction of Oblique Decision Trees allow tests at the nodes to be lin-

ear combinations of attributes. Murthy, Kasif & Salzberg (1994) describe an

induction system that allows such tests. Breiman et al. (1984) also describes

some mechanisms for supporting such splits in CART. The main advantage of

oblique splits is their ability to create splits that are not axis-orthogonal. The

disadvantage is loss of comprehension.

2. Many di�erent pruning methods have been proposed in the literature. Espos-

ito, Malerba & Semeraro (1995) provide a comparison of pruning and grafting

methods. Kearns & Mansour (1998) provide a theoretically-justi�ed pruning

algorithm. Quinlan & Rivest (1989), Mehta, Rissanen & Agrawal (1995), and

Wallace & Patrick (1993) describe MDL- (minimum description length) and

MML- (minimum message length) based pruning methods.

3. C4.5 also contains a mechanism to re-express decision trees as ordered lists of

if-then rules. Each path from the root of the tree to a leaf gives the conditions

that must be satis�ed if a case is to be classi�ed by that leaf. C4.5 generalizes

this prototype rule by dropping any conditions that are irrelevant to the class,

guided again by the heuristic for estimating true error rates. The set of rules

is reduced further based on the MDL principle described above (see C8.2.1).

There are usually substantially fewer �nal rules than there are leaves on the

tree, and yet the accuracy of the tree and the derived rules is similar. Rules

have the added advantage of being more easily understood by people.

4. Ensemble methods that build multiple trees can dramatically reduce the error,

but usually result in huge structures that are incomprehensible. Breiman (1996)

describes a Bagging (Bootstrap Aggregating) procedure. Schapire (1990) intro-

duced boosting, which was later enhanced in Freund & Schapire (1995). Kohavi

& Kunz (1997) describe option trees, which provide the advantages of voting

methods, yet keep a tree-like structure that can be shown to users. Empirical

comparisons were done in Quinlan (1996) and Bauer & Kohavi (1999).

5. Most implementation of decision trees require loading the data into memory.

Shafer, Agrawal & Mehta (1996) describe the SPRINT algorithm, which can
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scale out of core. Variants and other methods for scaling to larger datasets are

described in Freitas & Lavington (1998). Several commercial systems imple-

menting decision trees also provide parallel implementations.

6. Decision trees choose a split and do not revisit choices. Lookahead methods are

described in Murthy & Salzberg (1995).

7. Utgo� (1997) describes how to update decision trees incrementally as more data

is made available.

8. Most algorithms assume 0-1 costs for mistakes. Descriptions on how to gener-

alize to loss matrices are given in Breiman et al. (1984) and a comparison is

given in Pazzani, Merz, Murphy, Ali, Hume & Brunk (1994). More information

can be found in Turney (1997).

9. Lazy decision trees (Friedman, Kohavi & Yun 1996) conceptually choose the

best tree for a given test instance. In practice, only a path needs to be con-

structed.

10. Oblivious decision trees conduct the same split across a whole level (Kohavi

& Li 1995) and can be converted into a graph or a decision table (Kohavi &

Sommer�eld 1998).
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