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Abstract. Methods for voting classificationalgorithms, such as Bagging and AdaBoost, have been
shown to be very successful in improving the accuracy of certain classifiers for artificial and real-
world datasets. We review these algorithms and describe a large empirical study comparing several
variants in conjunction with a decision tree inducer (three variants) and a Naive-Bayes inducer.
The purpose of the study is to improve our understanding of why and when these algorithms, which
use perturbation, reweighting, and combination techniques, affect classification error. We provide
a bias and variance decompositionof the error to show how differentmethods and variants influence
these two terms. This allowed us to determine that Bagging reduced variance of unstable methods,
while boosting methods (AdaBoost and Arc-x4) reduced both the bias and variance of unstable
methods but increased the variance for Naive-Bayes, which was very stable. We observed that
Arc-x4 behaves differently than AdaBoost if reweighting is used instead of resampling, indicating
a fundamental difference. Voting variants, some of which are introduced in this paper, include:
pruning versus no pruning, use of probabilistic estimates, weight perturbations (Wagging), and
backfitting of data. We found that Bagging improves when probabilistic estimates in conjunction
with no-pruning are used, as well as when the data was backfit. We measure tree sizes and show
an interesting positive correlation between the increase in the average tree size in AdaBoost trials
and its success in reducing the error. We compare the mean-squared error of voting methods to
non-voting methods and show that the voting methods lead to large and significant reductions in
the mean-squared errors. Practical problems that arise in implementing boosting algorithms are
explored, including numerical instabilities and underflows. We use scatterplots that graphically
show how AdaBoost reweights instances, emphasizing not only “hard” areas but also outliers and
noise.
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1. Introduction

Methods for voting classification algorithms, such as Bagging and AdaBoost, have
been shown to be very successful in improving the accuracy of certain classifiers for
artificial and real-world datasets (Breiman 1996b, Freund & Schapire 1996, Quinlan
1996). Voting algorithms can be divided into two types: those that adaptively
change the distribution of the training set based on the performance of previous
classifiers (as in boosting methods) and those that do not (as in Bagging).
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Algorithms that do not adaptively change the distribution include option decision
tree algorithms that construct decision trees with multiple options at some nodes
(Buntine 1992b, Buntine 1992a, Kohavi & Kunz 1997); averaging path sets, fanned
sets, and extended fanned sets as alternatives to pruning (Oliver & Hand 1995);
voting trees using different splitting criteria and human intervention (Kwok &
Carter 1990); and error-correcting output codes (Dietterich & Bakiri 1991, Kong &
Dietterich 1995). Wolpert (1992) discusses “stacking” classifiers into a more com-
plex classifier instead of using the simple uniform weighting scheme of Bagging. Ali
(1996) provides a recent review of related algorithms, and additional recent work
can be found in Chan, Stolfo & Wolpert (1996).

Algorithms that adaptively change the distribution include AdaBoost (Freund
& Schapire 1995) and Arc-x4 (Breiman 1996a). Drucker & Cortes (1996) and
Quinlan (1996) applied boosting to decision tree induction, observing both that
error significantly decreases and that the generalization error does not degrade
as more classifiers are combined. Elkan (1997) applied boosting to a simple Naive-
Bayesian inducer that performs uniform discretization and achieved excellent results
on two real-world datasets and one artificial dataset, but failed to achieve significant
improvements on two other artificial datasets.

We review several voting algorithms, including Bagging, AdaBoost, and Arc-x4,
and describe a large empirical study whose purpose was to improve our under-
standing of why and when these algorithms affect classification error. To ensure
the study was reliable, we used over a dozen datasets, none of which had fewer than
1000 instances and four of which had over 10,000 instances.

The paper is organized as follows. In Section 2, we begin with basic notation and
follow with a description of the base inducers that build classifiers in Section 3.
We use Naive-Bayes and three variants of decision tree inducers: unlimited depth,
one level (decision stump), and discretized one level. In Section 4, we describe
the main voting algorithms used in this study: Bagging, AdaBoost, and Arc-x4.
In Section 5 we describe the bias-variance decomposition of error, a tool that we
use throughout the paper. In Section 6 we describe our design decisions for this
study, which include a well-defined set of desiderata and measurements. We wanted
to make sure our implementations were correct, so we describe a sanity check we
did against previous papers on voting algorithms. In Section 7, we describe our
first major set of experiments with Bagging and several variants. In Section 8,
we begin with a detailed example of how AdaBoost works and discuss numerical
stability problems we encountered. We then describe a set of experiments for the
boosting algorithms AdaBoost and Arc-x4. We raise several issues for future work
in Section 9 and conclude with a summary of our contributions in Section 10.

2. Notation

A labeled instance is a pair 〈x, y〉 where x is an element from space X and y is
an element from a discrete space Y . Let x represent an attribute vector with n
attributes and y the class label associated with x for a given instance. We assume
a probability distribution D over the space of labeled instances.
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A sample S is a set of labeled instances S = {〈x1, y1〉, 〈x2, y2〉, . . . , 〈xm, ym〉}. The
instances in the sample are assumed to be independently and identically distributed
(i.i.d.).

A classifier (or a hypothesis) is a mapping fromX to Y . A deterministic inducer
is a mapping from a sample S, referred to as the training set and containing m
labeled instances, to a classifier.

3. The Base Inducers

We used four base inducers for our experiments; these came from two families of
algorithms: decision trees and Naive-Bayes.

3.1. The Decision Tree Inducers

The basic decision tree inducer we used, called MC4 (MLC++ C4.5), is a Top-
Down Decision Tree (TDDT) induction algorithm implemented inMLC++ (Kohavi,
Sommerfield & Dougherty 1997). The algorithm is similar to C4.5 (Quinlan 1993)
with the exception that unknowns are regarded as a separate value. The algorithm
grows the decision tree following the standard methodology of choosing the best
attribute according to the evaluation criterion (gain-ratio). After the tree is grown,
a pruning phase replaces subtrees with leaves using the same pruning algorithm
that C4.5 uses.

The main reason for choosing this algorithm over C4.5 is our familiarity with
it, our ability to modify it for experiments, and its tight integration with multiple
model mechanisms withinMLC++. MC4 is available off the web in source form as
part ofMLC++ (Kohavi, Sommerfield & Dougherty 1997).

Along with the original algorithm, two variants of MC4 were explored: MC4(1)
and MC4(1)-disc. MC4(1) limits the tree to a single root split; such a shallow tree
is sometimes called a decision stump (Iba & Langley 1992). If the root attribute
is nominal, a multi-way split is created with one branch for unknowns. If the root
attribute is continuous, a three-way split is created: less than a threshold, greater
than a threshold, and unknown. MC4(1)-disc first discretizes all the attributes
using entropy discretization (Kohavi & Sahami 1996, Fayyad & Irani 1993), thus
effectively allowing a root split with multiple thresholds. MC4(1)-disc is very similar
to the 1R classifier of Holte (1993), except that the discretization step is based on
entropy, which compared favorably with his 1R discretization in our previous work
(Kohavi & Sahami 1996).

Both MC4(1) and MC4(1)-disc build very weak classifiers, but MC4(1)-disc is
the more powerful of the two. Specifically for multi-class problems with continuous
attributes, MC4(1) is usually unable to build a good classifier because the tree
consists of a single binary root split with leaves as children.
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3.2. The Naive-Bayes Inducer

The Naive-Bayes Inducer (Good 1965, Duda & Hart 1973, Langley, Iba &
Thompson 1992), sometimes called Simple-Bayes (Domingos & Pazzani 1997),
builds a simple conditional independence classifier. Formally, the probability of a
class label value y for an unlabeled instance x containing n attributes 〈A1, . . . , An〉
is given by

P(y | x)
= P(x | y) · P(y)/P(x) by Bayes rule
∝ P(A1, . . . , An | y) · P(y) P (x) is same for all label values.

=
n∏
j=1

P(Aj | y) ·P(y) by conditional independence assumption.

The above probability is computed for each class and the prediction is made
for the class with the largest posterior probability. The probabilities in the above
formulas must be estimated from the training set.

In our implementation, which is part of MLC++ (Kohavi, Sommerfield &
Dougherty 1997), continuous attributes are discretized using entropy discretiza-
tion (Kohavi & Sahami 1996, Fayyad & Irani 1993). Probabilities are estimated
using frequency counts with an m-estimate Laplace correction (Cestnik 1990) as
described in Kohavi, Becker & Sommerfield (1997).

The Naive-Bayes classifier is relatively simple but very robust to violations of
its independence assumptions. It performs well for many real-world datasets
(Domingos & Pazzani 1997, Kohavi & Sommerfield 1995) and is excellent at han-
dling irrelevant attributes (Langley & Sage 1997).

4. The Voting Algorithms

The different voting algorithms used are described below. Each algorithm takes
an inducer and a training set as input and runs the inducer multiple times by
changing the distribution of training set instances. The generated classifiers are
then combined to create a final classifier that is used to classify the test set.

4.1. The Bagging Algorithm

The Bagging algorithm (Bootstrap aggregating) by Breiman (1996b) votes clas-
sifiers generated by different bootstrap samples (replicates). Figure 1 shows the
algorithm. A Bootstrap sample (Efron & Tibshirani 1993) is generated by uni-
formly sampling m instances from the training set with replacement. T bootstrap
samples B1, B2, . . . , BT are generated and a classifier Ci is built from each boot-
strap sample Bi. A final classifier C∗ is built from C1, C2, . . . , CT whose output is
the class predicted most often by its sub-classifiers, with ties broken arbitrarily.

For a given bootstrap sample, an instance in the training set has probability
1−(1−1/m)m of being selected at least once in the m times instances are randomly
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Input: training set S, Inducer I, integer T (number of bootstrap samples).

1. for i = 1 to T {

2. S′ = bootstrap sample from S (i.i.d. sample with replacement).

3. Ci = I(S′)

4. }

5. C∗(x) = arg max
y∈Y

∑
i:Ci(x)=y

1 (the most often predicted label y)

Output: classifier C∗.

Figure 1. The Bagging Algorithm

selected from the training set. For large m, this is about 1 − 1/e = 63.2%, which
means that each bootstrap sample contains only about 63.2% unique instances
from the training set. This perturbation causes different classifiers to be built if
the inducer is unstable (e.g., neural networks, decision trees) (Breiman 1994) and
the performance can improve if the induced classifiers are good and not correlated;
however, Bagging may slightly degrade the performance of stable algorithms (e.g.,
k-nearest neighbor) because effectively smaller training sets are used for training
each classifier (Breiman 1996b).

4.2. Boosting

Boosting was introduced by Schapire (1990) as a method for boosting the perfor-
mance of a weak learning algorithm. After improvements by Freund (1990), recently
expanded in Freund (1996), AdaBoost (Adaptive Boosting) was introduced by
Freund & Schapire (1995). In our work below, we concentrate on AdaBoost, some-
times called AdaBoost.M1 (e.g., (Freund & Schapire 1996)).

Like Bagging, the AdaBoost algorithm generates a set of classifiers and votes
them. Beyond this, the two algorithms differ substantially. The AdaBoost algo-
rithm, shown in Figure 2, generates the classifiers sequentially, while Bagging can
generate them in parallel. AdaBoost also changes the weights of the training in-
stances provided as input to each inducer based on classifiers that were previously
built. The goal is to force the inducer to minimize expected error over differ-
ent input distributions1. Given an integer T specifying the number of trials, T
weighted training sets S1, S2, . . . , ST are generated in sequence and T classifiers
C1, C2, . . . , CT are built. A final classifier C∗ is formed using a weighted voting
scheme: the weight of each classifier depends on its performance on the training set
used to build it.
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Input: training set S of size m, Inducer I, integer T (number of trials).

1. S′ = S with instance weights assigned to be 1.

2. For i = 1 to T {

3. Ci = I(S′)

4. εi = 1
m

∑
xj∈S′:Ci(xj)6=yj

weight(x) (weighted error on training set).

5. If εi > 1/2, set S′ to a bootstrap sample from S with weight 1 for
every instance and goto step 3 (this step is limited
to 25 times after which we exit the loop).

6. βi = εi/(1− εi)

7. For-each xj ∈ S′, if Ci(xj) = yj then weight(xj) = weight(xj) · βi.

8. Normalize the weights of instances so the total weight of S′ is m.

9. }

10. C∗(x) = arg max
y∈Y

∑
i:Ci(x)=y

log
1

βi

Output: classifier C∗.

Figure 2. The AdaBoost Algorithm (M1)

The update rule in Figure 2, steps 7 and 8, is mathematically equivalent to the
following update rule, the statement of which we believe is more intuitive:

For-each xj, divide weight(xj) by 2εi if Ci(xj) 6= yj and 2(1− εi) otherwise (1)

One can see that the following properties hold for the AdaBoost algorithm:

1. The incorrect instances are weighted by a factor inversely proportional to the
error on the training set, i.e., 1/(2εi). Small training set errors, such as 0.1%,
will cause weights to grow by several orders of magnitude.

2. The proportion of misclassified instances is εi, and these instances get boosted
by a factor of 1/(2εi), thus causing the total weight of the misclassified instances
after updating to be half the original training set weight. Similarly, the correctly
classified instances will have a total weight equal to half the original weight, and
thus no normalization is required.

The AdaBoost algorithm requires a weak learning algorithm whose error is
bounded by a constant strictly less than 1/2. In practice, the inducers we use
provide no such guarantee. The original algorithm aborted when the error bound
was breached, but since this case was fairly frequent for multiclass problem with
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the simple inducers we used (i.e., MC4(1), MC4(1)-disc), we opted to continue
the trials instead. When using nondeterministic inducers (e.g., neural networks),
the common practice is to reset the weights to their initial values. However, since
we are using deterministic inducers, resetting the weights would simply duplicate
trials. Our decision was to generate a Bootstrap sample from the original data S
and continue up to a limit of 25 such samples at a given trial; such a limit was never
reached in our experiments if the first trial succeeded with one of the 25 samples.

Some implementations of AdaBoost use boosting by resampling because the
inducers used were unable to support weighted instances (e.g., Freund & Schapire
(1996)). Our implementations of MC4, MC4(1), MC4(1)-disc, and Naive-Bayes
support weighted instances, so we have implemented boosting by reweighting,
which is a more direct implementation of the theory. Some evidence exists that
reweighting works better in practice (Quinlan 1996).

Recent work by Schapire, Freund, Bartlett & Lee (1997) suggests one explanation
for the success of boosting and for the fact that test set error does not increase when
many classifiers are combined as the theoretical model implies. Specifically, these
successes are linked to the distribution of the “margins” of the training examples
with respect to the generated voting classification rule, where the “margin” of an
example is the difference between the number of correct votes it received and the
maximum number of votes received by any incorrect label. Breiman (1997) claims
that the framework he proposed “gives results which are the opposite of what we
would expect given Schapire et al.’s explanation of why arcing works.”

4.3. Arc-x4

The term Arcing (Adaptively resample and combine) was coined by Breiman
(1996a) to describe the family of algorithms that adaptively resample and combine;
AdaBoost, which he calls arc-fs, is the primary example of an arcing algorithm.
Breiman contrasts arcing with the P&C family (Perturb and Combine), of which
Bagging is the primary example. Breiman (1996a) wrote:

After testing arc-fs I suspected that its success lay not in its specific form
but in its adaptive resampling property, where increasing weight was placed
on those cases more frequently misclassified.

The Arc-x4 algorithm, shown in Figure 3, was described by Breiman as “ad
hoc invention” whose “accuracy is comparable to arc-fs [AdaBoost]” without the
weighting scheme used in the building final AdaBoosted classifier. The main point
is to show that AdaBoosting’s strength is derived from the adaptive reweighting
of instances and not from the final combination. Like AdaBoost, the algorithm
sequentially induces classifiers C1, C2, . . . , CT for a number of trials T , but instances
are weighted using a simple scheme: the weight of an instance is proportional to
the number of mistakes previous classifiers made to the fourth power, plus one. A
final classifier C∗ is built that returns the class predicted by the most classifiers
(ties are broken arbitrarily). Unlike AdaBoost, the classifiers are voted equally.
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Input: training set S of size m, Inducer I, integer T (number of trials).

1. For i = 1 to T {

2. S′ = S with instance weight for x set to (1 + e(x)4) (normalized so total
weight is m), where e(x) is the number of misclassifications
made on x by classifiers C1 to Ci−1.

3. Ci = I(S′)

4. }

5. C∗(x) = arg max
y∈Y

∑
i:Ci(x)=y

1 (the most often predicted label y)

Output: classifier C∗.

Figure 3. The Arc-x4 Algorithm

5. The Bias and Variance Decomposition

The bias plus variance decomposition (Geman, Bienenstock & Doursat 1992) is
a powerful tool from sampling theory statistics for analyzing supervised learning
scenarios that have quadratic loss functions. Given a fixed target and training set
size, the conventional formulation of the decomposition breaks the expected error
into the sum of three non-negative quantities:

Intrinsic “target noise” (σ2) This quantity is a lower bound on the expected
error of any learning algorithm. It is the expected error of the Bayes-optimal
classifier.

Squared “bias” (bias2) This quantity measures how closely the learning algo-
rithm’s average guess (over all possible training sets of the given training set
size) matches the target.

“Variance” (variance) This quantity measures how much the learning algo-
rithm’s guess fluctuates for the different training sets of the given size.

For classification, the quadratic loss function is inappropriate because class labels
are not numeric. Several proposals for decomposing classification error into bias
and variance have been suggested, including Kong & Dietterich (1995), Kohavi &
Wolpert (1996), and Breiman (1996a).

We believe that the decomposition proposed by Kong & Dietterich (1995) is infe-
rior to the others because it allows for negative variance values. Of the remaining
two, we chose to use the decomposition by Kohavi & Wolpert (1996) because its
code was available from previous work and because it mirrors the quadratic decom-
position best. Let YH be the random variable representing the label of an instance
in the hypothesis space and YF be the random variable representing the label of an
instance in the target function. It can be shown that the error can be decomposed
into a sum of three terms as follows:
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Error =
∑
x

P (x)
(
σ2
x + bias2

x + variancex
)

(2)

where

σ2
x ≡

1

2

1−
∑
y∈Y

P (YF = y|x)2


bias2x ≡

1

2

∑
y∈Y

[P (YF = y|x) − P (YH = y|x)]2

variancex ≡
1

2

1−
∑
y∈Y

P (YH = y|x)2

 .

To estimate the bias and variance in practice, we use the two-stage sampling
procedure detailed in Kohavi & Wolpert (1996). First, a test set is split from the
training set. Then, the remaining data, D, is sampled repeatedly to estimate bias
and variance on the test set. The whole process can be repeated multiple times
to improve the estimates. In the experiments conducted herein, we followed the
recommended procedure detailed in Kohavi & Wolpert (1996), makingD twice the
size of the desired training set and sampling from it 10 times. The whole process
was repeated three times to provide for more stable estimates.

In practical experiments on real data, it is impossible to estimate the intrinsic
noise (optimal Bayes error). The actual method detailed in Kohavi & Wolpert
(1996) for estimating the bias and variance generates a bias term that includes the
intrinsic noise.

The experimental procedure for computing the bias and variance gives similar
estimated error to holdout error estimation repeated 30 times. Standard deviations
of the error estimate from each run were computed as the standard deviation of the
three outer runs, assuming they were independent. Although such an assumption
is not strictly correct (Kohavi 1995a, Dietterich 1998), it is quite reasonable given
our circumstances because our training sets are small in size and we only average
three values.

6. Experimental Design

We now describe our desiderata for comparisons, show a sanity check we performed
to verify the correctness of our implementation, and detail what we measured in
each experiment.

6.1. Desiderata for Comparisons

In order to compare the performance of the algorithms, we set a few desiderata for
the comparison:
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Figure 4. Learning curves for selected datasets showing different behaviors of MC4 and Naive-
Bayes. Waveform represents stabilization at about 3,000 instances; satimage represents a cross-
over as MC4 improves while Naive-Bayes does not; letter and segment (left) represent continuous
improvements, but at different rates in letter and similar rates in segment (left); LED24 represents
a case where both algorithms achieve the same error rate with large training sets; segment (right)
shows MC4(1), which exhibited the surprising behavior of degrading as the training set size grew
(see text). Each point represents the mean error rate for 20 runs for the given training set size
as tested on the holdout sample. The error bars show one standard deviation of the estimated
error. Each vertical bar shows the training set size we chose for the rest of the paper following our
desiderata. Note (e.g., in waveform) how small training set sizes have high standard deviations for
the estimates because the training set is small and how large training set sizes have high standard
deviations because the test set is small.
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Table 1. Characteristics of the datasets and training set sizes used. The files are sorted by
increasing dataset size

Data set Dataset Training Attributes Classes
size set size Cont/nominal

Credit (German) 1,000 300 7/13 2
Image Segmentation (segment) 2,310 500 19/0 7
Hypothyroid 3,163 1,000 7/18 2
Sick-euthyroid 3,163 800 7/18 2
DNA 3,186 500 0/60 3
Chess 3,196 500 0/36 2
LED-24 3,200 500 0/24 10
Waveform-40 5,000 1,000 40/0 3
Satellite image (satimage) 6,435 1,500 36/0 7
Mushroom 8,124 1,000 0/22 2
Nursery 12,960 3,000 0/8 5
Letter 20,000 5,000 16/0 26
Adult 48,842 11,000 6/8 2
Shuttle 58,000 5,000 9/0 7

1. The estimated error rate should have a small confidence interval in order to make
a reliable assessment when one algorithm outperforms another on a dataset or
on a set of datasets. This requires that the test set size be large, which led us
to choose only files with at least 1000 instances. Fourteen files satisfying this
requirement were found in the UC Irvine repository (C. Blake & Merz 1998)
and are shown in Table 1.

2. There should be room for improving the error for a given training set size.
Specifically, it may be that if the training set size is large enough, the generated
classifiers perform as well as the Bayes-optimal algorithm, making improvements
impossible. For example, training with two-thirds of the data on the mushroom
dataset (a common practice) usually results in 0% error. To make the problem
challenging, one has to train with fewer instances. To satisfy this desideratum,
we generated learning curves for the chosen files and selected a training set size
at a point where the curve was still sloping down, indicating that the error
was still decreasing. To avoid variability resulting from small training sets,
we avoided points close to zero and points where the standard deviation of
the estimates was not large. Similarly, training on large datasets shrinks the
number of instances available for testing, thus causing the final estimate to be
highly variable. We therefore always left at least half the data for the test set.
Selected learning curves and training set sizes are shown in Figure 4. The actual
training set sizes are shown in Table 1.

In one surprising case, the segment dataset with MC4(1), the error increased as
the training set size grew. While in theory such behavior must happen for every
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induction algorithm (Wolpert 1994, Schaffer 1994), this is the first time we have
seen it in a real dataset. Further investigation revealed that in this problem
all seven classes are equiprobable, i.e., the dataset was stratified. A strong
majority in the training set implies a non-majority in the test set, resulting
in poor performance. A stratified holdout might be more appropriate in such
cases, mimicking the original sampling methodology (Kohavi 1995b). For our
experiments, only relative performance mattered, so we did not specifically
stratify the holdout samples.

3. The voting algorithms should combine relatively few sub-classifiers. Similar in
spirit to the use of the learning curves, it is possible that two voting algorithms
will reach the same asymptotic error rate but that one will reach it using fewer
sub-classifiers. If both are allowed to vote a thousand classifiers as was done
in Schapire et al. (1997), “slower” variants that need more sub-classifiers to
vote may seem just as good. Quinlan (1996) used only 10 replicates, while
Breiman (1996b) used 50 replicates and Freund & Schapire (1996) used 100.
Based on these numbers and graphs of boosting error rates versus the number
of trials/sub-classifiers, we chose to vote 25 sub-classifiers throughout the paper.

This decision on limiting the number of sub-classifiers is also important for
practical applications of voting methods. To be competitive, it is important
that the algorithms run in reasonable time. Based on our experience, we believe
that an order of magnitude difference is reasonable but that two or three orders
of magnitude is unreasonable in many practical applications; for example, a
relatively large run of the base inducer (e.g., MC4) that takes an hour today
will take 4–40 days if the voted version runs 100–1000 times slower because that
many trials are used.

6.2. Sanity Check for Correctness

As mentioned earlier, our implementations of the MC4 and Naive-Bayes inducers
support instance weights within the algorithms themselves. This results in a closer
correspondence to the theory defining voting classifiers. To ensure that our im-
plementation is correct and that the algorithmic changes did not cause significant
divergence from past experiments, we repeated the experiments of Breiman (1996b)
and Quinlan (1996) using our implementation of voting algorithms.

The results showed similar improvements to those described previously. For ex-
ample, Breiman’s results show CART with Bagging improving average error over
nine datasets from 12.76% to 9.69%, a relative gain of 24%, whereas our Bagging of
MC4 improved the average error over the same datasets from 12.91% to 9.91%, a
relative gain of 23%. Likewise, Quinlan showed how boosting C4.5 over 22 datasets
(that we could find for our replication experiment) produced a gain in accuracy of
19%; our experiments with boosting MC4 also show a 19% gain for these datasets.
This confirmed the correctness of our methods.
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6.3. Runs and Measurements

The runs we used to estimate error rates fell into two categories: bias-variance
and repeated holdout. The bias-variance details were given in Section 5 and were
the preferred method throughout this work, since they provided an estimate of the
error for the given holdout size and gave its decomposition into bias and variance.

We ran holdouts, repeated three times with a different seed each time, in two
cases. First, we used holdout when generating error rates for different numbers of
voting trials. In this case the bias-variance decomposition does not vary much across
time, and the time penalty for performing this experiment with the bias-variance
decomposition as well as with a varying number of trials was too high. The second
use was for measuring mean-squared errors. The bias-variance decomposition for
classification does not extend to mean-squared errors, because labels in classification
tasks have no associated probabilities.

The estimated error rates for the two experimental methods differed in some
cases, especially for the smaller datasets. However, the difference in error rates
between the different induction algorithms tested under both methods was very
similar. Thus, while the absolute errors presented in this paper may have large
variance in some cases, the differences in errors are very accurate because all the
algorithms were trained and tested on exactly the same training and test sets.

When we compare algorithms below, we summarize information in two ways.
First, we give the decrease or increase in average (absolute) error averaged over
all our datasets, assuming they represent a reasonable “real-world” distribution
of datasets. Second, we give the average relative error reduction. For two
algorithms A and B with errors εA and εB, the decrease in relative error between
A and B is (εA−εB)/εA. For example, if algorithm B has a 1% error and algorithm
A had a 2% error, the absolute error reduction is only 1%, but the relative error
reduction is 50%. The average relative error is the average (over all our datasets)
of the relative error between the pair of algorithms compared. Relative error has
been used in Breiman (1996b) and in Quinlan (1996), under the names “ratio” and
“average ratio” respectively.

Note that average relative error reduction is different from the relative reduction
in average error; the computation for the latter involves averaging the errors first
and then computing the ratio. The relative reduction in average error can be
computed from the two error averages we supply, so we have not explicitly stated
it in the paper to avoid an overload of numbers.

The computations of error, relative errors, and their averages were done in high
precision by our program. However, for presentation purposes, we show only one
digit after the decimal point, so some numbers may not add up exactly (e.g., the
bias and variance may be off by 0.1% from the error).

7. The Bagging Algorithm and Variants

We begin with a comparison of MC4 and Naive-Bayes with and without Bagging.
We then proceed to variants of Bagging that include pruning versus no pruning
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but there are also examples of bias reduction when pruning is disabled (as in mushroom and
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Figure 6. The average bias and variance over all datasets for several variants of Bagging with
three induction algorithms. MC4 and MC4(1)-disc improve significantlydue to variance reduction;
Naive-Bayes is a stable inducer and improves very little (as expected).

and classifications versus probabilistic estimates (scoring). Figure 5 shows the bias-
variance decomposition for all datasets using MC4 with three versions of Bagging
explained below. Figure 6 shows the average bias and variance over all the datasets
and for MC4, Naive-Bayes, and MC4(1)-disc.

7.1. Bagging: Error, Bias, and Variance

In the decomposition of error into bias and variance, applying Bagging to MC4
caused the average absolute error to decrease from 12.6% to 10.4%, and the average
relative error reduction was 14.5%.

The important observations are:

1. Bagging is uniformly better for all datasets. In no case did it increase the error.

2. Waveform-40, satimage, and letter’s error rate decreased dramatically, with
relative reductions of 31%, 29%, and 40%. For the other datasets, the relative
error reduction was less than 15%.

3. The average tree size (number of nodes) for the trees generated by Bagging
with MC4 was slightly larger than the trees generated by MC4 alone: 240
nodes versus 198 nodes. The average tree size (averaged over the replicates for
a dataset) was larger eight times, of which five averages were larger by more
than 10%. In comparison, only six trees generated by MC4 alone were larger
than Bagging, of which only three were larger by more than 10%. For the adult
dataset, the average tree size from the Bagged MC4 was 1510 nodes compared
to 776 nodes for MC4. This is above and beyond the fact that the Bagged
classifier contains 25 such trees.

We hypothesize that the larger tree sizes might be due to the fact that original
instances are replicated in Bagging samples, thus implying a stronger pattern
and reducing the amount of pruning. This hypothesis and related hypotheses
are tested in Section 7.2.
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4. The bias-variance decomposition shows that error reduction is almost com-
pletely due to variance reduction: the average variance decreased from 5.7% to
3.5% with a matching 29% relative reduction. The average bias reduced from
6.9% to 6.8% with an average relative error reduction of 2%.

The Bagging algorithm with MC4(1) reduced the error from 38.2% to 37.3%
with a small average reduction in relative error of 2%. The bias decreased from
27.6% to 26.9% and the variance decreased from 10.6% to 10.4%. We attribute
the reduction in bias to the slightly stronger classifier that is formed with Bagging.
The low reduction in variance is expected, since shallow trees with a single root
split are relatively stable.

The Bagging algorithm with MC4(1)-disc reduced the error from 33.0% to 31.5%,
an average relative error reduction of 4%. The bias increased from 24.4% to 25.0%
(mostly due to to waveform, where bias increased by 5.6% absolute error) and the
variance decreased from 8.6% to 6.5%. We hypothesize that the bias increase is due
to an inferior discretization when Bagging is used, since the discretization does not
have access to the full training set, but only to a sample containing about 63.2%
unique instances.

The Bagging algorithm with Naive-Bayes reduced the average absolute error from
13.6% to 13.2%, and the average relative error reduction was 3%.

7.2. Pruning

Two effects described in the previous section warrant further investigation: the
larger average size for trees generated by Bagging and the slight reduction in bias
for Bagging. This section deals only with unbounded-depth decision trees built by
MC4 not MC4(1) or MC4(1)-disc.

We hypothesized that larger trees were generated by MC4 when using bootstrap
replicates because the pruning algorithm pruned less, not because larger trees were
initially grown. To verify this hypothesis, we disabled the pruning algorithm and
reran the experiments. The MC4 default—like C4.5—grows the trees until nodes
are pure or until a split cannot be found where two children each contain at least
two instances.

The unpruned trees for MC4 had an average size of 667 and the unpruned trees
for Bagged MC4 trees had an average size of 496—25% smaller. Moreover, the
averaged size for trees generated by MC4 on the bootstrap samples for a given
dataset was always smaller than the corresponding size of the trees generated by
MC4 alone. We postulate that this effect is due to the smaller effective size of
training sets under bagging, which contain only about 63.2% unique instances from
the original training set. Oates & Jensen (1997) have shown that there is a close
correlation between the training set size and the tree complexity for the reduced
error pruning algorithm used in C4.5 and MC4.

The trees generated from the bootstrap samples were initially grown to be smaller
than the corresponding MC4 trees, yet they were larger after pruning was invoked.
The experiment confirms our hypothesis that the structure of the bootstrap repli-
cates inhibits reduced-error pruning. We believe the reason for this inhibition is
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that instances are duplicated in the bootstrap sample, reinforcing patterns that
might otherwise be pruned as noise.

The non-pruned trees generated by Bagging had significantly smaller bias than
their pruned counterparts: 6.6% versus 6.9%, or a 14% average relative error reduc-
tion. This observation strengthens the hypothesis that the reduced bias in Bagging
is due to larger trees, which is expected: pruning increased the bias but decreased
the variance. Indeed, the non-Bagged unpruned trees have a similar bias of 6.6%
(down from 6.9%).

However, while bias is reduced for non-pruned trees (for both Bagging with MC4
and MC4 alone), variance for trees generated by MC4 grew dramatically: from
5.7% to 7.3%, thus increasing the overall error from 12.6% to 14.0%. The variance
for Bagging grows less, from 3.5% to 3.9%, and the overall error remains the same
at 10.4%. The average relative error decreased by 7%, mostly due to a decrease in
the absolute error of mushroom from 0.45% to 0.04%—a 91% decrease (note how
this impressive decrease corresponds to a small change in absolute error).

7.3. Using Probabilistic Estimates

Standard Bagging uses only the predicted classes, i.e., the combined classifier pre-
dicts the class most frequently predicted by the sub-classifiers built from the boot-
strap samples. Both MC4 and Naive-Bayes can make probabilistic predictions,
and we hypothesized that this information would further reduce the error. Our
algorithm for combining probabilistic predictions is straightforward. Every sub-
classifier returns a probability distribution for the classes. The probabilistic bag-
ging algorithm (p-Bagging) uniformly averages the probability for each class (over
all sub-classifiers) and predicts the class with the highest probability.

In the case of decision trees, we hypothesized that unpruned trees would give
more accurate probability distributions in conjunction with voting methods for the
following reason: a node that has a 70%/30% class distribution can have children
that are 100%/0% and 60%/40%, yet the standard pruning algorithms will always
prune the children because the two children predict the same class. However, if
probability estimates are needed, the two children may be much more accurate,
since the child having 100%/0% is identifying a perfect cluster (at least in the
training set). For single trees, the variance penalty incurred by using estimates from
nodes with a small number of instances may be large and pruning can help (Pazzani,
Merz, Murphy, Ali, Hume & Brunk 1994); however, voting methods reduce the
variance by voting multiple classifiers, and the bias introduced by pruning may be
a limiting factor.

To test our hypothesis that probabilistic estimates can help, we reran the bias-
variance experiments using p-Bagging with both Naive-Bayes and MC4 with prun-
ing disabled.

The average error for MC4 decreased from 10.4% to 10.2% and the average relative
error decreased by 2%. This decrease was due to both bias and variance reduction.
The bias reduced from 6.5% to 6.4% with an average relative decrease of 2%. The
variance decreased from 3.9% to 3.8% with an average relative decrease of 4%.
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The average error for MC4(1) decreased significantly from 37.3% to 34.4%, with
an average relative error reduction of 4%. The reduction in bias was from 26.9% to
24.9% and the reduction in variance was from 10.4% to 9.5%

The average error for MC4(1)-disc decreased from 33.0% to 28.9%, an average
relative reduction of 8%. The bias decreased from 25.0% to 23.0%, an average
relative reduction of 3% (compared to an increase in bias for the non-probabilistic
version). The variance decreased from 8.6% to 5.9%, an average relative error
reduction of 17%.

The average error for Naive-Bayes decreased from 14.22% to 14.15% and the av-
erage relative error decreased 0.4%. The bias decreased from 11.45% to 11.43%
with zero relative bias reduction and the variance decreased from 2.77% to 2.73%
with a 2% relative variance reduction. These results for Naive-Bayes are insignifi-
cant. As is expected, the error incurred by Naive-Bayes is mostly due to the bias
term. The probability estimates generated are usually extreme because the condi-
tional independence assumption is not true in many cases, causing a single factor
to affect several attributes whose probabilities are multiplied assuming they are
conditionally independent given the label (Friedman 1997).

To summarize, we have seen error reductions for the family of decision-tree algo-
rithms when probabilistic estimates were used. The error reductions were larger for
the one level decision trees. This reduction was due to a decrease in both bias and
variance. Naive-Bayes was mostly unaffected by the use of probabilistic estimates.

7.4. Mean-Squared Errors

In many practical applications it is important not only to classify correctly, but also
to give a probability distribution on the classes. A common measure of error on such
a task is mean-squared error (MSE), or the squared difference of the probability
for the class and the probability predicted for it. Since the test set assigns a label
without a probability, we measure the MSE as (1 − P(Ci(x)))

2, or one minus the
probability assigned to the correct label. The average MSE is the mean-squared
error averaged over the entire test set. If the classifier assigns a probability of one
to the correct label, then the penalty is zero; otherwise, the penalty is positive and
grows with the square of the distance from one.

A classifier that makes a single prediction is viewed as assigning a probability of
one to the predicted class and zero to the other classes. Under those conditions, the
average MSE is the same as the classification error. Note, however, that our results
are slightly different (less than 0.1% error for averages) because five times holdout
was used for these runs as compared to 3 times 10 holdout for the bias-variance
runs above, which cannot compute the MSE.

To estimate whether p-Bagging is really better at estimating probabilities, we ran
each inducer on each datafile five times using a holdout sample of the same effective
size as was used for the bias-variance experiments. For MC4, the average MSE
decreased from 10.4% for Bagging with no pruning (same as the classification error
above) to 7.5% for p-Bagging with probability estimates—a 21% average relative
reduction. If MC4 itself is run in probability estimate mode using frequency counts,
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its average MSE is 10.7%; if we apply an m-estimate Laplace correction to the leaves
as described in Kohavi, Becker & Sommerfield (1997), the average MSE decreased
to 10.0%, but p-Bagging still significantly outperformed this method, reducing the
average relative MSE by 21%.

For Naive-Bayes, the average MSE went down from 13.1% to 9.8%, an average
relative reduction of 24%. When Naive-Bayes was run in probability estimate mode,
the MSE was 10.5%, and there was no average relative MSE difference.

For MC4(1)-disc, the average MSE went down from 31.1% to 18.4%, a 34% de-
crease in average relative MSE. However, running MC4(1)-disc in probability esti-
mate mode gave an average MSE of 19.5%, so most of the benefit came not from
Bagging but from using probability estimates. Indeed, the children of the root
usually tend to give fairly accurate probability estimates (albeit based on a single
attribute).

From the above results, we can see that applying m-estimate Laplace corrections
during classification in MC4 significantly reduces the average MSE and that p-
Bagging reduces it significantly more. For Naive-Bayes, the main improvement
results from switching to probabilities from classification, but there is a small benefit
to using p-Bagging.

7.5. Wagging and Backfitting Data

An interesting variant of Bagging that we tried is called Wagging (Weight
Aggregation). This method seeks to repeatedly perturb the training set as in
Bagging, but instead of sampling from it, Wagging adds Gaussian noise to each
weight with mean zero and a given standard deviation (e.g., 2). For each trial,
we start with uniformly weighted instances, add noise to the weights, and induce
a classifier. The method has the nice property that one can trade off bias and
variance: by increasing the standard deviation of the noise we introduce, more in-
stances will have their weight decrease to zero and disappear, thus increasing bias
and reducing variance. Experiments showed that with a standard deviation of 2-3,
the method finishes head-to-head with the best variant of Bagging used above, i.e.,
the error of Bagged MC4 without pruning and with scoring was 10.21% and the
errors for Wagging with 2, 2.5, and 3 were 10.19%, 10.16%, and 10.12%. These
differences are not significant. Results for Naive-Bayes were similar.

A more successful variant that we tried for MC4 uses a method called backfitting
described below. Bagging creates classifiers from about 63.2% unique instances in
the training set. To improve the probability estimates at the leaves of the decision
tree, the algorithm does a second “backfit” pass after sub-classifier construction,
feeding the original training set into the decision tree without changing its structure.
The estimates at the leaves are now expected to be more accurate as they are based
on more data.

Indeed, a bias-variance run shows that the error for Bagging MC4 without pruning
and with scoring reduces the error from 10.4% to 10.1%; the average relative error
decreased by 3%. The bias and variance decomposition shows that the bias is about
the same: 6.7% with backfitting and 6.6% without backfitting, but the variance is
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Figure 7. Bagging graphs for selected datasets showing different behaviors of MC4 and the original
Bagging versus the backfit-p-Bagging. The graphs show the test set and training set errors as
the number of bootstrap samples (replicates) increases. Each point shows error performance for
the set of classifiers created by the bagging algorithm so far, averaged of three 25-trial runs.
Satimage represents the largest family where both versions track each other closely and where
most of the improvement happens in the first five to ten trials. Chess represents a case where
backfit-p-Bagging is initially better but flattens out and Bagging matches it in later trials. DNA-
nominal and nursery are examples where backfit-p-Bagging is superior throughout and seems to
keep its advantage. Note how low the training set errors were, implying that the decision trees
are overfitting.

reduced from 3.9% to 3.4% with an average relative variance decrease of 11%. In
fact, the variance for all files either remained the same or was reduced!

Figure 7 shows graphs of how error changes over trials for selected datasets that
represent the different behaviors we have seen for the initial version of Bagging and
the final backfitting version for MC4. The graphs show both test set and training
set error as the number of bootstrap samples increases. In no case did Bagging
significantly outperform backfit-p-Bagging.

7.6. Conclusions on Bagging

We have shown a series of variants for Bagging, each of which improves performance
slightly over its predecessor for the MC4 algorithm. The variants were: disabling
pruning, using average probability estimates (scores), and backfitting. The error
decreased from 10.34% for the original Bagging algorithm to 10.1% for the final
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version (compared to 12.6% for MC4). The average relative decrease in error was
10%, although most of it was due to mushroom, which reduced from 0.45% to 0.04%
(a 91% relative decrease). Even excluding mushroom, the average relative decrease
in error was 4%, which is impressive for an algorithm that performs well initially.

For MC4, the original Bagging algorithm achieves most of its benefit by reducing
variance from 5.7% to 3.5%. Our final version decreased the variance slightly more
(to 3.4%) and decreased the bias from 6.8% to 6.6%.

Bagging also reduces the error for MC4(1), which was somewhat surprising to us
initially, as we did not expect the variance of one-level trees to be large and thought
that Bagging would have no effect. However, the error did decrease from 38.2%
to 34.4%, and analyzing the results showed that this change is due mostly to bias
reduction of 2.6% and a variance reduction of 1.1%. A similar effect was true for
MC4(1)-disc: the error reduced from 33.0% to 28.9%.

While Naive-Bayes has been successful on many datasets (Domingos & Pazzani
1997, Friedman 1997, Langley & Sage 1997, Kohavi 1995b) (although usually cou-
pled with feature selection which we have not included in this study), it starts out
inferior to MC4 in our experiments (13.6% error for Naive-Bayes versus 12.6% er-
ror for MC4) and the difference only grows. The MC4 error decreased to 10.1%,
while Naive-Bayes went down to only 13.2%. Naive-Bayes is an extremely stable
algorithm, and Bagging is mostly a variance reduction technique. Specifically, the
average variance for Naive-Bayes is 2.8%, which Bagging with probability estimates
decreased to 2.5%. The average bias, however, is 10.8%, and Bagging reduces that
to only 10.6%.

The mean-squared errors generated by p-Bagging were significantly smaller than
the non-Bagged variants for MC4, MC4(1), and MC4(1)-disc. We are not aware of
anyone who reported any mean-squared errors results for voting algorithms in the
past. Good probability estimates are crucial for applications when loss matrices
are used (Bernardo & Smith 1993), and the significant differences indicate that
p-Bagging is a very promising approach.

8. Boosting Algorithms: AdaBoost and Arc-x4

We now discuss boosting algorithms. First, we explore practical considerations for
boosting algorithm implementation, specifically numerical instabilities and under-
flows. We then show a detailed example of a boosting run and emphasize under-
flow problems we experienced. Finally, we show results from experiments using
AdaBoost and Arc-x4 and describe our conclusions.

8.1. Numerical Instabilities and a Detailed Boosting Example

Before we detail the results of the experiments, we would like to step through a
detailed example of an AdaBoost run for two reasons: first, to get a better under-
standing of the process, and second, to highlight the important issue of numerical
instabilities and underflows that is rarely discussed yet common in boosting al-
gorithms. We believe that many authors have either faced these problems and
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corrected them or do not even know that they exist, as the following example
shows.

Example: Domingos & Pazzani (1997) reported very poor accuracy of 24.1% (er-
ror of 75.9%) on the Sonar dataset with the Naive-Bayes induction algorithm, which
otherwise performed very well. Since this is a two-class problem, predicting major-
ity would have done much better. Kohavi, Becker & Sommerfield (1997) reported
an accuracy of 74.5% (error of 25.5%) on the same problem with a very similar algo-
rithm. Further investigation of the discrepancy by Domingos and Kohavi revealed
that Domingos’ Naive-Bayes algorithm did not normalize the probabilities after
every attribute. Because there are 60 attributes, the multiplication underflowed,
creating many zero probabilities.

Numerical instabilities are a problem related to underflows. In several cases in
the past, we have observed problems with entropy computations that yield small
negative results (on the order of −10−13 for 64-bit double-precision computations).
The problem is exacerbated when a sample has both small- and large-weight in-
stances (as occurs during boosting). When instances have very small weights, the
total weight of the training set can vary depending on the summation order (e.g.,
shuffling and summing may result in a slightly different sum). From the standpoint
of numerical analysis, sums should be done from the smallest to the largest numbers
to reduce instability, but this imposes severe burdens (in terms of programming and
running-time) on standard computations.

In MLC++, we defined the natural weight of an instance to be one, so that for
a sample with unweighted instances, the total weight of the sample is equal to
the number of instances. The normalization operations required in boosting were
modified accordingly. To mitigate numerical instability problems, instances with
weights of less than 10−6 are automatically removed.

In our initial implementation of boosting, we had several cases where many in-
stances were removed due to underflows as the described below. We explore an
example boosting run both to show the underflow problem and to help the reader
develop a feel for how the boosting process functions.

Example: A training set of size 5,000 was used with the shuttle dataset. The MC4
algorithm already has relatively small test set error (measured on the remaining
53,000 instances) of 0.38%. The following is a description of progress by trials, also
shown in Figure 8.

1. The training set error for the first (uniformly weighted, top-left in Figure 8)
boosting trial is 0.1%, or five misclassified instances. The update rule in Equa-
tion 1 on page 6 shows that these five instances will now be re-weighted from
a weight of one to a weight of 500 (the update factor is 1/(2 · 0.1%)), while the
correctly classified instances will have their weight halved (1/(2(1 − 0.1%)) =
1/1.998) to a weight of about 0.5. As with regular MC4, the test set error for
the first classifier is 0.38%.
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Figure 8. The shuttle dataset projected on the three most discriminatory axes. Color/shading
denotes the class of instances and the cube sizes correspond to the instance weights. Each picture
shows one AdaBoost trial, where progression is from the top left to top right, then middle left,
etc.
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2. On the second trial, the classifier trained on the weighted sample makes a
mistake on a single instance that was not previously misclassified (shown in
top-right figure as red, very close to the previous large red instance). The
training set error is hence 0.5/5000 = 0.01%, and that single instance will
weigh 2500—exactly half of the total weight of the sample! The weight of the
correctly classified instances will be approximately halved, changing the weights
for the four mistaken instances from trial one to around 250 and the weights
for the rest of the instances to about 0.25. The test set error for this classifier
alone is 0.19%

3. On the third trial (middle-left in Figure 8), the classifier makes five mistakes
again, all on instances correctly classified in previous trials. The training set
error is hence about 5 · 0.25/5000 = 0.025%. The weight of the instance in-
correctly classified in trial two will be approximately halved to about 1250 and
the five incorrectly classified instances will now occupy half the weight—exactly
500 each. All the other instances will weigh about 0.125. The test set error for
this classifier alone is 0.21%

4. On the fourth trial (middle-right in Figure 8), the classifier makes 12 mistakes
on the training set. The training set error is 0.03% and the test set error is
0.45%.

5. On the fifth trial (lower-left in Figure 8), the classifier makes one mistake on an
instance with weight 0.063. The training set error is therefore 0.0012%.

In our original implementation, we used the update rule recommended in the
algorithm shown in the AdaBoost algorithm in Figure 2. Because the error is so
small, β is 1.25 ·10−5; multiplying the weights by this β (prior to normalization)
caused them to underflow below the minimum allowed weight of 10−6. Almost
all instances were then removed, causing the sixth trial to have zero training
set error but 60.86% test set error.

In our newer implementation, which we use in the rest of the paper, the update
rule in Equation 1 on page 6 is used, which suffers less from underflow problems.

6. On the sixth trial (lower-right in Figure 8), the classifier makes no mistakes and
has a test set error of 0.08% (compared to 0.38% for the original decision-tree
classifier). The process then stops. Because this classifier has zero training set
error, it gets “infinite voting” power. The final test set error for the AdaBoost
algorithm is 0.08%.

The example above is special because the training set error for a single classifier
was zero for one of the boosting trials. In some sense, this is a very interesting
result because a single decision classifier was built that had a test set error that
was relatively better than the original decision tree by 79%. This is really not an
ensemble but a single classifier!

Using the update rule that avoids the normalization step mainly circumvents the
issue of underflow early in the process, but underflows still happen. If the error is
close to zero, instances that are correctly classified in k trials are reduced by a factor



EMPIRICAL COMPARISON OF BOOSTING, BAGGING, AND VARIANTS 25

of about 2k. For our experiments with 25 trials, weights can be reduced to about
3 · 10−8, which is well below our minimum threshold. For the rest of the paper, the
algorithm used sets instances with weights falling below the minimum weight to
have the minimum weight. Because most runs have significantly larger error than
in the above example (especially after a few boosting trials), the underflow issue is
not severe.

Recent boosting implementations by Freund, Schapire, and Singer maintain the
log of the weights and modify the definition of β so that a small value (0.5 divided
by the number of training examples) is added to the numerator and denominator
(personal communication with Schapire, 1997). It seems that the issue deserves
careful attention and that boosting experiments with many trials (e.g., 1000 as in
Schapire et al. (1997)) require addressing the issue carefully.

8.2. AdaBoost: Error, Bias, and Variance

Figure 9 shows the absolute errors for MC4 and AdaBoosted MC4 and their de-
composition into bias and variance. Figure 10 shows the average bias and variance
over all the datasets for Bagging and boosting methods using MC4, Naive-Bayes,
and MC4(1)-disc.

The average absolute error decreased from 12.6% for MC4 to 9.8% for AdaBoosted
MC4, and the average relative error reduction was 27%. The important observations
are:

1. On average, AdaBoost was better than the most promising bagging algorithm
explored, backfit-p-Bagging (9.8% versus 10.1%).

2. Unlike Bagging, however, boosting was not uniformly better for all datasets:

(A) The error for hypothyroid increased by 0.3% from 1.2% (21% relative),
which is significant at the 95% level because the standard deviation of the
estimate is 0.1%.

(B) The error for sick-euthyroid had a similar increase of 0.2% (9% relative),
which is again significant at the 95% level.

(C) The error for LED-24 increased by 3.1% from 34.1% (9% relative), which is
very significant as the standard deviation of the estimate is 0.5%. It is worth
noting that LED-24 has 10% attribute noise, which may be a contributing
factor to the poor performance of AdaBoost as noted (for class noise) by
Quinlan (1996). We repeated the experiment with the noise level varying
from 1% to 9% (as opposed to the original 10% noise) and the difference
between MC4 and AdaBoosted MC4 increased as the noise level increased.
AdaBoost is always behind with the absolute differences being: .84% for
1% noise, .88% for 2% noise, 1.01% for 3% noise, and 2.9% for 6% noise.

(D) The error for adult increased from 15.0% to to 16.3% (9% relative), again a
very significant increase given that the standard deviation of the estimate is
0.06%. We have found some errors in the adult dataset (U.S. census data)
and postulate that—like LED24—it is noisy.
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Figure 9. The bias and variance decomposition for MC4, backfit-p-Bagging, Arc-x4-resample,
and AdaBoost. The boosting methods (Arc-x4 and AdaBoost) are able to reduce the bias over
Bagging in some cases (e.g., DNA, chess, nursery, letter, shuttle). However, they also increase the
variance (e.g., hypothyroid, sick-euthyroid, LED-24, mushroom, and adult).
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Figure 10. The average bias and variance over all datasets for backfit-p-Bagging, two boosting
variants and three inductions algorithms. Both boosting algorithms outperform backfit-p-Bagging
although the differences are more noticeable with Naive-Bayes and MC4(1)-disc. Somewhat sur-
prisingly, Arc-x4-resample is superior to AdaBoost for Naive-Bayes and MC4(1)-disc.

3. The error for segment, DNA, chess, waveform, satimage, mushroom, nursery,
letter, and shuttle decreased dramatically: each has at least 30% relative re-
duction in error. Letter’s relative error decreased 60% and mushroom’s relative
error decreased 69%.

4. The average tree size (number of nodes) for the AdaBoosted trees was larger
for all files but waveform, satimage, and shuttle. Hypothyroid grew from 10 to
25, sick-euthyroid grew from 13 to 43, led grew from 114 to 179, and adult grew
from 776 to 2513. This is on top of the fact that the Boosted classifier contains
25 trees.

Note the close correlation between the average tree sizes and improved perfor-
mance. For the three datasets that had a decrease in the average number of
nodes for the decision tree, the error decreased dramatically, while for the four
datasets that had an increase in the average number of nodes of the resulting
classifiers, the error increased.

5. The bias and variance decomposition shows that error reduction is due to both
bias and variance reduction. The average bias reduced from 6.9% to 5.7%, an
average relative reduction of 32%, and the average variance reduced from 5.7%
to 4.1%, an average relative reduction of 16%. Contrast this with the initial
version of Bagging reported here, which reduced the bias from 6.9% to 6.8%
and the variance from 5.7% to 3.5%. It is clear that these methods behave very
differently.

We have not used MC4(1) with boosting because too many runs failed to get
less than 50% training set error on the first trial, especially multiclass problems.
MC4(1)-disc failed to get less than 50% errors only on two files: LED-24 and letter.
For those two cases, we used the unboosted versions in the averages for purposes
of comparison.

For MC4(1)-disc, the average absolute error decreased from 33.0% to 27.1%, an
average relative decrease of 31%. This compares favorably with Bagging, which re-
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Figure 11. Trial graphs for selected datasets showing different behaviors of MC4 and AdaBoost
and backfit-p-Bagging. The graphs show the test set and training set errors as the number of
trials (replicates for Bagging) increases. Each point is an average of three 25-trial runs. Nurs-
ery represents cases where AdaBoost outperforms backfit-p-Bagging. LED-24 represents the less
common cases where backfit-p-Bagging outperforms AdaBoost. Waveform is an example where
both algorithms perform equally well. Adult is an example where AdaBoost degrades in perfor-
mance compared to regular MC4. Note that the point corresponding to trial one for AdaBoost is
the performance of the MC4 algorithm alone. Bagging runs are usually worse for the first point
because the training sets are based on effectively smaller samples. For all graphs, the error was
zero or very close to zero after trial five, although only for hypothyroid, mushroom, and shuttle
did the training set error for a single classifier reach zero, causing the boosting process to abort.

duced the error to 28.9%, but it is still far from achieving the performance achieved
by Naive-Bayes and MC4. The bias decreased from 24.4% to 19.2%, a 34% im-
provement. The variance was reduced from 8.6% to 8.0%, but the average relative
improvement could not be computed because the variance for MC4(1)-disc on chess
was 0.0% while non-zero for the AdaBoost version.

For Naive-Bayes, the average absolute error decreased from 13.6% to 12.3%, a
24% decrease in average relative error. This compares favorably with Bagging,
which reduced the error to 13.2%. The bias reduced from 10.8% to 8.7%, an
average relative reduction of 27%, while the variance increased from 2.8% to 3.6%.
The increased variance is likely to be caused by different discretization thresholds,
as real-valued attributes are discretized using an entropy-based method that is
unstable.
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Figure 12. Trial graphs for selected datasets showing different behaviors of Naive-Bayes and
AdaBoost. The graphs show the test set and training set errors as the number of trials increases.
Each point is an average of three runs, each of which is based on 25 trials/replicates. Nursery
represents the classical theoretical scenario where the test set error tracks the training set error
because Naive-Bayes is a simple classifier; this case was fairly rare. Satimage is an example
where the training set error and test set errors decrease and asymptote. DNA represents a most
interesting example, where the training set error went down to zero as the theory predicts, but
the test set error increased. Note that the y axis ranges vary.

Figure 11 shows progress across trials for selected datasets that represent the dif-
ferent behaviors we have seen for AdaBoost and backfit-p-Bagging in conjunction
with the MC4 algorithm. The graphs show the test set and training set errors as the
number of trials (replicates for backfit-p-Bagging) increases. For MC4, the train-
ing set error decreases to approximately zero by trial five for all cases, indicating
severe overfitting, as the test set error does not decrease to zero. Figure 12 and 13
show similar trial graphs for Naive-Bayes and MC4(1)-disc respectively. For these
classifiers, the training set error did not commonly reach zero.

8.3. Arc-x4: Error, Bias, and Variance

Our original implementation of Arc-x4 used instance reweighting. For AdaBoost,
both reweighting and resampling have been used in past papers, and reweighting
was considered superior. Quinlan (1996) wrote that his better results using Ad-
aBoost compared with Freund & Schapire (1996) may be due to his use of reweight-
ing compared with their use of resampling. He wrote that “resampling negates a
major advantage enjoyed by boosting over bagging, viz. that all training instances
are used to produce each constituent classifier.”

Initial experiments showed that our Arc-x4 with reweighting performed signifi-
cantly worse than in Breiman’s experiments, so we tried a resampling version of
Arc-x4, which indeed performed better. The two versions of Arc-x4 will therefore
be called Arc-x4-reweight and Arc-x4-resample below. Similar experiments
with AdaBoost did not change the performance for AdaBoost significantly in either
direction. This indicates that there is a fundamental difference between AdaBoost
and Arc-x4 because the latter performs worse if sampling is not done, while the
former does not.

The average error for MC4 with Arc-x4-resample was 9.81%, almost exactly the
same as AdaBoost, which had an average error rate of 9.79%; the average error
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Figure 13. Trial graphs for selected datasets showing different behaviors of MC4(1)-disc and
AdaBoost. The graphs show the test set and training set errors as the number of trials increases.
Each point is an average of three runs, each of which is based on 25 trials/replicates. Adult
represents a nice run where the training set and test set error track each other and both improve
(the final error rate is one of the best we have seen). Shuttle represents some erratic behavior.
Nursery represents failure to change anything. After a few trials, the training set error is about 49%
and nothing happens because the weights change very little; in fact, at trial 11, β = 0.999999993.
Note that the y axis ranges vary.

for Arc-x4-reweight was 10.86%, significantly worse than both. The important
observations are:

1. Arc-x4-resample is superior to Arc-x4-reweight.

2. The bias and variance decomposition shows that Arc-x4-resample is better than
Arc-x4-reweight because of the higher variance of Arc-x4-reweight. AdaBoost’s
bias was 5.7%, Arc-x4-resample’s bias was 5.8%, and Arc-x4-reweight’s bias
was 5.9%. The variances are where the differences between algorithms showed:
AdaBoost’s variance was 4.1%, Arc-x4-resample’s variance was 4.0%, and Arc-
x4-reweight’s variance was 4.9%.

3. Compared to Bagging, we can see that the variance is higher for AdaBoost and
both versions of Arc-x4, but the bias is lower (the bias for Bagging variants was
between 6.7% and 6.8%).

4. Both versions of Arc-x4 increased the average tree size for all datasets except
waveform-40.

5. The error rates for Arc-x4-resample were higher than MC4 on Hypothyroid,
Sick-euthyroid, LED-24, and adult. These are the exact datasets for which
AdaBoost did worse than MC4. As with AdaBoost, this is likely to be due to
noise.

MC4(1)-disc failed to get less than 50% errors on two files: LED-24 and letter. For
those two cases, we used unboosted versions in the averages for sake of comparison.
The average error for Arc-x4-resample was 24.6% and for Arc-x4-reweight it was
24.8%. This compares very favorably with AdaBoost, which had an error of 27.1%.
The bias and variance decomposition shows that the difference stems from the bias.
The Arc-x4 runs have a bias of 17.4% and 17.7% for resampling and reweighting
respectively; AdaBoost has a bias of 19.2%. AdaBoost also has the highest variance
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(7.9%), while Arc-x4-resample has a variance of 7.2% and Arc-x4-reweight has a
variance of 7.1%.

For Naive-Bayes, the average absolute error for Arc-x4-resample was 12.1% and
the average absolute error for Arc-x4-reweight was 12.3%; AdaBoost had an error
of 12.3% and Naive-Bayes had an error of 13.6%. As for MC4(1)-disc, the bias
for Arc-x4-resample is the lowest: 8.2%, followed with with Arc-x4-reweight and
AdaBoost, which both have an error of 8.7%. For variance, Naive-Bayes itself is
the clear winner with 2.8%, followed by AdaBoost with 3.5%, then Arc-x4-reweight
with 3.6%, and Arc-x4-resample with 3.8%. As with MC4(1)-disc, Arc-x4-resample
slightly outperformed AdaBoost.

To summarize, Arc-x4-resample was superior to Arc-x4-reweight, and also out-
performed AdaBoost for one level decision trees and Naive-Bayes. Both Arc-x4
algorithms increased the variance for Naive-Bayes, but decreased the overall error
due to strong bias reductions.

8.4. Conclusions for Boosting

The AdaBoost and Arc-x4 algorithms have different behavior than Bagging, and
they also differ themselves. Here are the important observations:

1. On average, AdaBoost and Arc-x4-resample are better than Bagging for our
datasets. This confirms previous comparisons (Breiman 1996a, Quinlan 1996).

2. AdaBoost and Arc-x4, however, are not uniformly better than Bagging. There
were several cases where the performance of the boosting algorithms degraded
compared to the original (non-voted) algorithms. For MC4 and AdaBoost, these
“failures” correlate well with the average decision-tree growth size relative to
the original trees. The Arc-x4 variants almost always increased the average tree
size.

3. AdaBoost does not deal well with noise (this was also mentioned in Quinlan
(1996)).

4. AdaBoost and Arc-x4 reduced both bias and variance for the decision tree
methods. However, both algorithms increased the variance for Naive-Bayes
(but still reduced the overall error).

5. For MC4(1)-disc, Breiman’s “ad hoc” algorithm works better than AdaBoost.

6. Arc-x4 and AdaBoost behave differently when sampling is applied. Arc-x4-
resample outperformed Arc-x4-reweight, but for AdaBoost the result was the
same. The fact that Arc-x4 works as well as AdaBoost reinforces the hypothesis
by Breiman (1996a) that the main benefit of AdaBoost can be attributed to
the adaptive reweighting.

7. The boosting theory guarantees that the training set error will go to zero. This
scenario happens with MC4 but not with Naive-Bayes and MC4(1)-disc (see
Figure 12 and 13). In some cases we have observed errors very close to 0.5
after several trials (e.g., the nursery dataset with MC4(1)-disc described above,
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DNA, and satimage). This is expected because boosting concentrates the weight
on hard-to-classify instances, making the problem harder. In those cases the
requirement that the error be bounded away from 0.5 is unsatisfied. In others,
the improvement is so miniscule that many more boosting trials are apparently
needed (by orders of magnitude).

8. Unlike Bagging, where there was a significant difference between the combined
decision tree classifier making probabilistic or non-probabilistic predictions for
calculating the mean-squared error (MSE), AdaBoost was not significantly
different—less than 0.1%. AdaBoost is optimizing classification error and may
be too biased as a probability estimator.

With Bagging, we found that disabling pruning sometimes reduced the errors.
With boosting it increased them. Using probabilistic estimates in the final com-
bination was also slightly worse than using the classifications themselves. This is
probably due to the fact that all the reweighting that is done is based on classifi-
cation errors. Finally, we did try to reweight instances based on the probabilistic
predictions of the classifiers as mentioned in Freund & Schapire (1995), but that
did not work well either.

9. Future Work

Our study highlighted some problems in voting algorithms using error estima-
tion, the bias and variance decomposition, average tree sizes, and graphs showing
progress over trials. While we made several new observations that clarify the be-
havior of the algorithms, there are still some issues that require investigation in
future research.

1. The main problem with boosting seems to be robustness to noise. We attempted
to drop instances with very high weight but the experiments did not show this to
be a successful approach. Should smaller sample sizes be used to force theories
to be simple if tree sizes grow as trials progress? Are there methods to make
boosting algorithms more robust when the dataset is noisy?

2. It is unclear how the tree size is affected in the different variants. AdaBoost
seemed to have an interesting correlation between the change in average tree
size and error reduction, but Arc-x4-resample did not have a similar correlation.
Further research should try to explain the relations.

3. Boosting stops if one of the classifiers achieves zero training set error. That
classifier gets infinite voting power and is effectively the single classifier. Are
there better methods for handling this extreme situation?

4. In the case of the shuttle dataset, a single decision tree was built that was
significantly better than the original MC4 tree. The decision tree had zero error
on the training set and thus became the only voter. Are there more situations
when this is true, i.e., where one of the classifiers that was learned from a sample
with a skewed distribution performs well by itself on the unskewed test set?
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5. Boosting and Bagging both create very complex classifiers, yet they do not
seem to “overfit” the data. Domingos (1997) claims that the multiple trees
do not simply implement a Bayesian approach, but actually shift the learner’s
bias (machine learning bias, not statistical bias) away from the commonly used
simplicity bias. Can this bias be made more explicit?

6. We found that Bagging works well without pruning. Pruning in decision trees is
a method for reducing the variance by introducing bias. Since Bagging reduces
the variance, disabling pruning indirectly reduces the bias. How does the error
rate change as pruning is increased? Specifically, are there cases where pruning
should still happen within Bagging?

7. Wolpert (1992) discusses stacking as a generic method for meta-learning. Bag-
ging and Arc-x4 use uniform weighting, and AdaBoost uses a more complex
weighting scheme. Is it possible that stacking another inducer might help? We
attempted to stack a Naive-Bayes on top of the base classifiers built by Ad-
aBoost and Bagging without success. Can some better method to combine
classifiers be devised?

8. How can boosting be applied to other algorithms, such as k-nearest-neighbors?
On the surface, the standard interpretation of counting a highly weighted in-
stance more would not work, as increasing the weight of an instance helps to
classify its neighbors, not to classify itself.

9. Could probabilistic predictions made by the sub-classifiers be used? Quinlan
(1996) used it as the voting strength, but this ignores the fact that the classifiers
were built using skewed distributions.

10. Voting techniques usually result in incomprehensible classifiers that cannot
easily be shown to users. One solution proposed by Kohavi & Kunz (1997)
attempts to build a structured model that has the same affect as Bagging.
Ridgeway, Madigan & Richardson (1998) convert a boosted Naive-Bayes to
a regular Naive-Bayes, which then allows for visualizations (Becker, Kohavi &
Sommerfield 1997). Are there ways to make boosting comprehensible for general
models? Craven & Shavlik (1993) built a single decision tree that attempts to
make the same classifications as a neural network. Quinlan (1994) notes that
there are parallel problems that require testing all attributes. A single tree for
such problems must be large.

11. In parallel environments, Bagging has a strong advantage because the sub-
classifiers can be built in parallel. Boosting methods, on the other hand, require
the estimated training set error on trial T to generate the distribution for trial
T + 1. This makes coarse-grain parallelization very hard. Can some efficient
parallel implementations be devised?
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10. Conclusions

We provided a brief review of two families of voting algorithms: perturb and com-
bine (e.g., Bagging), and boosting (e.g., AdaBoost, Arc-x4). Our contributions
include:

1. A large-scale comparison of Bagging, Bagging variants, AdaBoost, and Arc-x4
on two families of induction algorithms: decision trees and Naive-Bayes. Many
previous papers have concentrated on a few datasets where the performance
of Bagging and AdaBoost was stellar. We believe that this paper gives a more
realistic view of the performance improvement one can expect. Specifically, with
the best algorithm, AdaBoost, the average relative error reduction was 27% for
MC4, 31% for MC4(1)-disc, and 24% for Naive-Bayes. The boosting algorithms
were generally better than Bagging, but not uniformly better. Furthermore, in
some datasets (e.g., adult) none of the voting algorithms helped, even though
we knew from the learning curve graphs that the Bayes optimal error was lower.

2. A decomposition of the error rates into bias and variance for real datasets. Pre-
vious work that provided this decomposition did so only for artificial datasets.
We believe that our decomposition on real-world problems is more informa-
tive and leads to a better understanding of the tradeoffs involved in real-world
scenarios. Bagging’s error reduction in conjunction with MC4 is mostly due to
variance reduction because MC4 is unstable and has high variance. For MC4(1)
and MC4(1)-disc, Bagging reduced the bias more significantly than the variance.
Bagging had little effect on Naive-Bayes. The boosting methods reduced both
the bias and the variance.

3. An evaluation of several variants of voting algorithms, including no-pruning,
probabilistic variants, and backfitting. These were shown to outperform the
original Bagging algorithm.

4. A mean-squared error evaluation showed that voting techniques are extremely
successful at reducing the loss under this metric. We believe that voting tech-
niques should perform significantly better when loss matrices are used, which
is fairly common in real-world applications.

5. A discussion of numerical instabilities, which require careful thought in imple-
mentation of boosting algorithms.

6. A positive correlation between the increase in the average tree size in AdaBoost
trials and its success in reducing the error.

7. An observation that Arc-x4 does not work as well with reweighting methods;
rather, unlike AdaBoost, the sampling step is crucial.

The error rates we achieved with Bagging and the boosting algorithms were some-
times surprisingly good. Looking at the learning curves, the voting algorithms built
classifiers from small samples that outperformed what looked like the asymptotic
error for the original algorithms. For example, Waveform seemed to have stabilized
around an error of 20% when the training set size was 3,000-4,500 instances, yet
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AdaBoost had a 17.7% error rate with training set sizes of 1,000 instances. For the
Letter domain, the lowest error on the learning curve was about 12% for 18,000
instances, yet AdaBoost had an error rate of 8.1% with a training set size of 5,000.

For learning tasks where comprehensibility is not crucial, voting methods are
extremely useful, and we expect to see them used significantly more than they are
today.
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