INTECH

open science | open minds

ARTICLE

International Journal of Advanced Robotic Systems

Capuchin: A Free-Climbing Robot

Invited Paper

Ruixiang Zhang'" and Jean-Claude Latombe'

1 Computer Science Department, Stanford University, Stanford, CA, USA

* Corresponding author E-mail: rxzhang@gmail.com

Accepted 2 Apr 2013

DOI: 10.5772/56469

© 2013 Zhang et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract This paper describes an integrated quasi-
autonomous four-limbed robot, named Capuchin, which
is equipped with appropriate sensing, planning and
control capabilities to “free-climb” vertical terrain. Unlike
aid climbing that takes advantage of special tools and/or
engineered terrain features, free climbing only relies on
friction at the contacts between the climber and the rigid
terrain. While moving, Capuchin adjusts its body posture
(hence, the position of its centre of mass) and exerts
appropriate forces at the contacts in order to remain in
equilibrium. Vision is used to achieve precise contacts
and force sensing to control contact forces. The robot’s
planner is based on a pre-existing two-stage “stance-
before-motion” approach. Its controller applies a novel
force control strategy that performs force
adjustments only when these are needed. Experiments

ulazyn

demonstrate that Capuchin can reliably climb vertical
terrain with irregular features.

Keywords Climbing Robot, Equilibrium Maintenance,
Force Control

1. Introduction

Compared to wheeled or track robots, legged robots are
potentially more capable of travelling over steep and
highly irregular terrain. Therefore, it is not surprising that
much research has been carried out in recent years to

www.intechopen.com

build quadruped robots [1], humanoid robots [2], and
other multi-limbed robots [3]. Various forms of
locomotion have been achieved, but mostly on flat and
horizontal terrain, or on regular and piecewise flat terrain
(e.g., stairs). Some motion planners have been designed to
allow legged robots to navigate without collision among
obstacles [4], but with no or limited consideration for
equilibrium. Other planners specifically focus on foot
placements [5]. A small amount of research has studied
dynamic locomotion on challenging terrain; Big Dog [1], a
quadruped robot, is an impressive example of this line of
research, but it is not equipped with motion planning
capabilities. Other research has focused on learning
navigation skills for quadruped robots on uneven,
moderately sloped terrain [6]. To our knowledge
however, there has been no major research project aimed
at creating an integrated autonomous multi-limbed robot,
equipped with appropriate sensing, planning and control
capabilities, to “free-climb” vertical irregular terrain. In
this paper, we describe our effort to create such a robot -
Capuchin.

Unlike aid climbing that takes advantage of special
equipment, tools and/or engineered terrain features, free
climbing only relies on friction at the contacts between
the climber and the rigid terrain. So, a human free-
climber moves on a steep rock crag or an artificial
climbing wall using nothing else but his body (mostly his
hands and feet) to make contacts with irregularly

Int J Adv Robotic Sy, 2013, Vol. 10, 194:2013

distributed terrain features, such as protrusions, holes,
ledges and cracks (Figure 1). The climber alternatively
breaks contacts and achieves new ones. Due to the
irregularity of the terrain, each move is unique. While
moving, the climber adjusts his body posture (hence, the
position of his centre of mass) and exerts appropriate
forces at the contacts in order to remain in equilibrium. A
good climber almost always seems in quasi-static
equilibrium; although his motion seems relatively slow, it
is smooth and fluid. This is the result of both deliberate
planning and careful control using visual and tactile
feedback. Vision is needed to detect terrain features and
achieve precise contacts with them; tactile sensing is used
to refine contact locations and exert appropriate forces.
Contacts where the terrain points vertically upward are
often promising to achieve balance, but they often do not
exist, so contacts with other orientations must also be
used. Equilibrium only requires that any force exerted by
the body and gravitational force be balanced by other
exerted forces. Because adopting adequate body postures,
performing precise motion, and applying appropriate
forces involve strategic thinking, free-climbing is often
regarded by human climbers both as a problem-solving
and a physical activity. Mere strength is not enough.

Figure 1. Finger contact with a small rock feature

Creating an autonomous free-climbing robot is obviously
a challenging research project. The motivations for this
project are multi-fold. First, it can lead to making basic
progress in a number of important technical areas of
robotics, such as complex planning, multi-contact control,
equilibrium maintenance, and delicate use of sensor
feedback. In this context, a special motivation is that
“cheating” is almost impossible: any significant
imperfection in the integrated system will cause the robot
to fall frequently. Conversely, if the robot operates
successfully, it means that key issues must have been
addressed satisfactorily. So, research on free-climbing
robots may eventually lead to developing effective
methods that will benefit other multi-limbed robots, even
when such robots navigate on less challenging terrain. In
addition, it may also contribute new techniques for

Int J Adv Robotic Sy, 2013, Vol. 10, 194:2013

specific application areas, such as search-and-rescue in
disaster environments, e.g., in rubble formed by collapsed
buildings after an earthquake, and planetary exploration,
e.g., to survey steep craters and cliffs on the Moon and
Mars.

This paper is organized as follows. Section 2 surveys
some previous work on climbing robots. Section 3
describes the design of Capuchin hardware (kinematics,
actuation, sensors). After formalizing the structure of a
climbing motion and stating equilibrium constraints,
Section 4 gives an overview of the motion planner used
by Capuchin. Section 5 describes in detail the motion
controller, which is based on a novel force control
strategy that we call “lazy” force control. Section 6 gives a
detailed account of one typical experiment performed
with Capuchin. Section 7 suggests directions for future
research.

2. Previous Climbing Robots

Various climbing robots have been created over the past
10-15 years. Most rely on special tools and/or engineered
environments. They are often equipped with end-
effectors, such as pegs, hooks and special grippers, that
match engineered features of the environment, like holes,
handrails, wire fences, bars and poles [7-14]. Another
family of climbing robots, adhesive robots, stick to flat or
smoothly curved surfaces using devices like suction cups
or magnets [15-18]. Consequently, they are limited to
environments consisting of glass, metal or other smooth
surfaces. Bio-inspired robot feet have been developed to
create robots that can climb on building walls, tiles and
other smooth surfaces. Among them, Stickybot [19] uses a
rubber-like material with tiny polymer hairs to mimic
gecko’s feet, while Spinybot [20] has feet equipped with
many tiny claws. None of these robots could free-climb
vertical terrain with both small and large irregular
features. Some robots specifically designed for pipe and
duct inspection [21-23] rely on frictional contacts with
surfaces (as do free-climbers), but take advantage of the
geometric regularity of the cylindrical environment to
perform pre-computed cyclic gaited motion.

To our knowledge, Lemur IIb (Figure 2(a)) represents the
first attempt to build a free-climbing robot. It is a planar
four-limbed climbing robot created by NASA’s Jet
Propulsion Laboratory [24]. It consists of four identical
limbs mounted on a circular chassis with equal spacing
between them. The robot has a total mass of 7 kg. Each
limb has three revolute joints, providing two in-plane
(“shoulder” and “elbow”) and one out-of-plane degrees
of freedom. All joints are highly geared and have the
same drive-trains, capable of a maximum continuous
torque of 5.0Nm and a maximum speed of 45deg/s. Each
limb is equipped with a “finger”, a cylindrical peg
wrapped with high-friction rubber. The limb’s out-of-

www.intechopen.com

plane degree of freedom allows the finger to pass over
features mounted on the planar terrain. These features are
of the same type as those used in climbing gyms. The
robot’s elbow/knee joint can bend in both directions, but
with a mechanical stop at 90deg. This 90deg limit restricts
significantly the reachable workspace of each finger. It
also complicates motion planning and control due to the
non-unique solution of the inverse kinematics of each
limb. These lessons were taken into account in the design
of Capuchin (Section 3).

(b) Tenzing [25]

Figure 2. Two previous free-climbing robots

A planner was developed for Lemur IIb [26, 27]. This
planner, which is based on a “stance-before-motion”
approach, takes a model of the terrain as input, which
lists all the possible points where the robot can make
contact. Capuchin’s planner (Section 4) is an extended
version of this planner [28]. An open-loop position
controller was implemented on Lemur IIb to execute the
trajectories generated by the planner. Although this
controller operates without force or vision feedback,
Lemur IIb was nevertheless able to execute portions of
the trajectories at very slow velocity to reduce positioning
errors and slipping risks. But the resulting system was
not reliable and Lemur IIb fell frequently. Falls were
mainly caused by both positioning errors of the fingers
and application of inadequate contact forces. Designing a

www.intechopen.com

motion controller using vision and force feedback to
perform reliable free-climbing motions has been a key
objective of our work with Capuchin.

Tenzing (Figure 2(b)), another free-climbing robot, was built
at Dartmouth College [25]. Like Lemur IIb, it is a four-limb
planar robot with two revolute joints in each limb. A
hobbyist servo motor is used on each elbow and shoulder
joint. A force sensor is mounted at the endpoint of each limb
to measure the magnitude of the vertical component of the
contact force. The robot is also equipped with a tilt sensor
used to keep its body upright. A camera, not mounted on
the robot and located at some distance away from the
climbing wall, is used to determine the position of the robot
and locate terrain features on the wall. It is reported in [25]
that the robot can climb in an interactive and an automatic
mode. In the interactive mode, a human user enters a
sequence of contacts on a graphic interface. In the automatic
mode, a planner computes a path up the wall. The details of
the planning and control algorithms are not provided in [25].
Tenzing has some obvious limitations that we tried to avoid
in Capuchin. Hobbyist servo motors are inexpensive, but
they have low joint angle precision. In addition, the belt used
to drive each elbow joint increases backlash greatly.
Therefore, precise position control may not be achievable.
Tenzing’s force sensors only measure the vertical
components of the contact forces. As this information is in
general insufficient to maintain the robot in static
equilibrium, Tenzing always keeps its body upright and can
only climb walls equipped with relatively large terrain
features having horizontal contact surfaces pointing upward
(in blue in Figure 2(b)).

The work presented in this paper is a continuation of
previous research done at Stanford by Tim Bretl [26, 27,
29-31], Kris Hauser [28, 32, 33] and Teresa Miller [34, 35].
The design of Capuchin benefitted from the experiments
conducted by Bretl with Lemur IIb. The planner used by
Capuchin was developed by Hauser and is based on the
“stance-before-motion” approach pioneered by Bretl.
Capuchin’s controller benefitted from our analysis of the
limitations of an early controller designed and
implemented by Miller on Capuchin.

3. Design of Capuchin

Robot design is a complicated process that requires
making tradeoffs among many factors, such as functional
capability and complexity, weight and strength of
mechanical parts, weight and power of actuators, and
cost and performance of sensors. Our keep-it-simple
guideline has been to achieve the functions needed for
free-climbing with the simplest possible design.

3.1 Kinematic structure

One of our first important design decisions was that the
end-effector of each limb of the robot would be a small

Ruixiang Zhang and Jean-Claude Latombe: Capuchin: A Free-Climbing Robot

4

rigid cylindrical peg, called a finger. We also considered
simple grippers, but to be useful they should have been
able to exert large squeezing forces, for instance, to pinch
small terrain protrusions. Hence, they would have
considerably increased the weight and complexity of the
robot. They would also have led to more complicated
contact models in both the planning and control software.
Although human climbers sometimes use several fingers
to squeeze terrain features and their fists and feet to
achieve secure jams in narrow cracks, most of their moves
rely on simple contacts.

Figure 3. (a) Structure of Capuchin; (b) Capuchin on a climbing
wall; (c) Finger in contact with feature

Int J Adv Robotic Sy, 2013, Vol. 10, 194:2013

Another early important decision was that, while
climbing, Capuchin should be in quasi-static equilibrium
at all times. This may sound as though it would be a
major restriction, but good human climbers rarely
perform fast dynamic moves, as such moves make it
difficult to keep other contacts fixed and thus increase the
risk of slipping and falling. Moreover, quasi-static motion
is sufficient to ascend a broad diversity of challenging
vertical terrain. Nevertheless, exploiting momentum can
be useful in some circumstances, for example, to reach a
distant contact. Allowing such moves will be an
interesting topic for future research (see Section 7).

With only rigid cylindrical fingers to make contact with
the terrain, the robot needs in general at least three
simultaneous contacts in order to maintain static
equilibrium. Hence, at least four limbs are required to
allow one limb to move to a new contact, while the other
three maintain balance. More limbs would allow more
simultaneous contacts, hence could make it easier to
achieve equilibrium. But this choice would also increase
weight and complexity, as more degrees of freedom
would have to be coordinated to avoid collision among
limbs. This choice could only be beneficial on mildly
challenging terrain with densely distributed useful
contacts. These considerations and our keep-it-simple
guideline led us to design Capuchin as a four-limb robot,
with two links on each limb.

Our initial intention was to create a robot capable of
climbing arbitrarily curved surfaces with protrusions and
pockets. However, we quickly discovered that this goal
was too ambitious for a first attempt at building an
integrated climbing robot. So, as in Lemur IIb and
Tenzing, we decided to restrict Capuchin’s climbing
abilities to planar vertical surfaces equipped with
protruding features (Section 3.2). The resulting robot is
shown in Figures 3(a-b). It is made up of two identical
circular half-bodies connected by a rigid link. Two limbs
are attached to each half-body, and each limb has two
joints providing two in-plane degrees of freedom: one in
the shoulder between the body and the first link of the
limb, the other in the elbow between the first and the
second link of the limb. In the future, this design could be
extended to non-planar terrain by adding a joint in the
link connecting the two half-bodies and a joint in each
shoulder (see Section 7).

3.2 Interaction with terrain

Figure 3(b) shows the robot on a climbing wall (terrain).
This wall is a vertical planar board with artificial terrain
features mounted on it (Figure 3(b-c)). Each feature is a
protruding plastic plate (green) with a distinct curved
contour. It can be mounted anywhere on the board with
any orientation. By selecting and distributing features
differently, climbing terrains of various levels of difficulty

www.intechopen.com

can be created to perform experiments (Section 6). While
climbing, the overall structure of Capuchin, except its
fingertips, stays parallel to the wall at a small distance
from the features. The design of the various parts of the
robot (including actuators and electronic components)
and their relative positioning ensure that the robot’s
centre of mass stays close to the wall. The only possible
contacts between the robot and the climbing wall are
between fingertips and feature contours, as shown in
Figure 3(c). Each fingertip is wrapped with rubber similar
to the one used to cover climbing shoes used by human
climbers in order to increase friction at contact points.
Each finger is actually the shaft of a force sensor in order
to reduce sensing errors (see Section 3.5). Unlike Lemur
IIb, Capuchin cannot pull its fingertips away from the
terrain. Instead, it must move its fingers around the
features to reach a new contact without collision.
Capuchin’s planner takes this constraint into account.

et

4
5,
Ty
ghath
e

faad
o
W %ﬁ
FREEET TR

++ +. _| ~<‘i! k: .V
e SN ET

<
+++++|+++
R S

£
o
i
Tt
¥,

4T i ”
ittty i

A T RS g iry
B R L R A A S O e Iy

+

e

Lt
H

-+
T

iy
#

ARty '
B
R
[e
A

11+

(2 (b)
Figure 4. Reachable workspaces of Capuchin (a) and Lemur IIb (b)

G+
‘aﬁ;u + ot g

i +
sy

+ -
st

(@) (b)

Figure 5. Human climbers folding their knee (a) and elbow (b)
beyond 90 degrees

3.3 Joint angular ranges and reachable workspace

We designed shoulder and elbow joints with angular
ranges aimed at maximizing the reachable workspace of
the fingers. Each shoulder joint has a 225deg range, while
each elbow angle can vary between 10deg and 180deg,
where 180deg corresponds to the perfect alignment of the
two links forming the corresponding limb. Figure 4(a)
depicts the reachable workspace of the fingers for a fixed
position/orientation of the body (in blue for the upper

www.intechopen.com

fingers, in red for the lower ones). In comparison, the
range of each elbow joint in Lemur IIb is [-90, +90]deg,
meaning that each elbow can bend in both directions. The
resulting reachable workspace shown in Figure 4(b) is
much smaller than that of Capuchin, especially above and
below the robot’s body. This limitation prevents Lemur
IIb from achieving some important climbing postures
often used by human climbers, which require folding a
limb almost completely (Figure 5). On the other hand,
Lemur’s ability to bend its elbows both ways is of little
utility, if any, for climbing, while complicating slightly
motion planning and control.

3.4 Actuation

We chose motor-gearhead drives for the actuation of the
joints. This choice requires making tradeoffs between
reduction ratio and backdrivability. We selected the same
combination of a powerful DC brushed motor connected
to a planetary gearhead with a reduction ratio of 190:1 for
all eight joints. This combination is backdrivable, but with
relatively high friction, and provides a maximal torque of
7Nm that is adequate for the total weight of the robot
(7.5kg). Specifically designed limb-motor connectors
minimize backlash in each joint.

Capuchin is equipped with two customized multi-
channel high-speed controller boards that are capable of
position, velocity and current control at 6kHz. Each board
also has ports to read the encoders on the motors and
A/D ports to read sensors with analogue outputs. It can
communicate with a PC through serial port and high-
speed Ethernet. One controller board is mounted on each
of the two half-bodies of the robot (as shown in Figure
3(b)

3.5 Sensors

Vision and touch are critical for climbing. However, the
location of the human eyes is far from optimal for
climbing. Indeed, eyes are too close to the climbing
terrain and, so, interesting potential contact points are
often occluded. But humans have good tactile sensing in
fingertips. By sliding a finger against a visually occluded
region of the terrain, a human climber can perceive the
shape of a feature and use this information to adjust the
position of his finger. Unfortunately, despite recent
progress [36], the technology does not yet exist to equip
the fingers of a climbing robot with a tactile sensor that
would be both sensitive and robust. So, instead, we have
equipped each finger of Capuchin with a camera that
makes it possible to precisely track and adjust the finger’s
position relative to a feature when it makes a new contact.
This camera is mounted on a rod 28cm away from the
fingertip, as shown in Figure 6(a).

Ruixiang Zhang and Jean-Claude Latombe: Capuchin: A Free-Climbing Robot

(b)

Figure 6. (a) Mounting of camera above a finger; (b) Force sensor

Forces exerted at contacts are also important information
that a human climber feels in order to maintain balance
and avoid slipping. So, we equipped each fingertip of
Capuchin with a force sensor. We selected a strain gauge
force sensor (Figure 6(b)) to equip each finger. It is a
durable steel force sensor with a small size and light
weight. One sensor is mounted at the extremity of each
limb of Capuchin and, as mentioned before, the shaft of
the sensor is used as the limb’s finger (Figure 3(c)). The
sensor force components along three
orthogonal directions up to a maximal net force of 50N,
hence providing both the force magnitude and
orientation in a plane parallel to the climbing wall. (The
component of the force perpendicular to the wall is not
currently used by our system.)

measures

3.6 Computer and power supply

All computations for analysing sensor data, motion
planning and motion control are performed on an off-
board connected to the two on-board
controllers and the four cameras. Power is also supplied
through a tether cable. The connecting cables, which are
visible beneath the robot in Figure 3(b), are light enough
to have negligible effect on the robot’s climbing ability.
The string visible above the robot only prevents the robot
crashing to the ground if it falls.

computer

Representation of a configuration: We represent a
configuration g of Capuchin by a list of 11 parameters:
two are the coordinates of the centre point between the
two half-bodies in a Cartesian coordinate frame attached
to the climbing wall, one is an angle defining the
orientation of the robot’s body relative to this frame, and
the other eight parameters are the coordinates of the
fingers in this frame. Since each elbow can only bend in
one direction, these parameters uniquely determine the
shoulder and elbow angles.

4. Motion Planner
4.1 General scenario of free-climbing

To ascend steep rock, a human free-climber typically
starts by looking at the entire terrain, or a large portion of
it, to acquire a low-resolution map of the major terrain
features, such as major ledges, cracks, protrusions and
pockets. Using this approximate map, he plans a coarse

Int J Adv Robotic Sy, 2013, Vol. 10, 194:2013

navigation path that only gives high-level direction, since
detailed information about small features is still lacking.
In general, except for new, yet un-climbed terrain,
published topo-maps are often available and describe
such coarse navigation paths along with terrain features
that serve as landmarks.

To start the ascent, the climber then visually acquires a
detailed map of the terrain features, including tiny ones,
around his current position. He identifies candidate
contacts that can be used to move up, plans a few moves
to reach an intermediate position along the coarse path,
and executes them. While moving, the climber adjusts
both the forces exerted at the contacts and the position of
his centre of mass to remain in equilibrium. As he
progresses, he acquires additional detailed information
about the terrain, plans new moves to proceed further,
etc. Occasionally, he may revise the coarse navigation
path.

So, a general scenario of free-climbing includes the
following steps:

1. Global sensing of the terrain and planning of coarse
navigation path.

2. Local sensing and detection of candidate contacts.

3. Detailed planning of a series of moves to reach an
intermediate goal position along the coarse path.

4. Execution of the moves.

Steps 2, 3 and 4 are repeated until the climber reaches the
final goal. This paper considers only a subset of this
scenario. It focuses on steps 3 and 4 by assuming that a
detailed map of the terrain and the candidate contacts are
given as inputs. In this section we describe methods to
plan moves that allow Capuchin to reach a final set of
contacts from its current configuration on the terrain. In
Section 5 we will describe the methods used to perform
each move.

mf

Figure 7. Capuchin moving its top-right finger from one contact
(red) to another contact (green)

www.intechopen.com

4.2 Climbing moves and stances

As indicated in Section 3, Capuchin can only use its
fingers to achieve contacts with the terrain features.
Consider the situation shown in Figure 7(a) where all of
its four fingers are positioned at contact points on the
terrain. Assume that the short-term goal of the robot is to
move its top-right finger from the contact shown in red to
the contact shown in green. To break the contact in red, it
must first adjust its posture to redistribute the contact
forces applied by the three other fingers, so that the top-
right finger eventually applies a null force at the red
contact. Figures 7(b) illustrates this motion and Figure
7(c) shows the configuration reached where the contact
force at the red contact is null. Such force redistribution
requires a move at a fixed set of four contacts. We call this
set a 4-stance. Once the contact force at the red contact
becomes 0, the robot breaks this contact and moves at a
fixed set of three contacts—a 3-stance—to dock its top-
right finger at the green contact, as illustrated in Figures
7(d). The robot reaches the configuration shown in Figure
7(e). The force exerted at the new contact is initially null.

To continue climbing, Capuchin will then have to break
contact at one of the other three fingers, reach a new
contact position with this finger, etc. So, overall, the entire
climbing motion consists of successive steps, each of which
changes a set of four contacts into a new set of four contacts
differing from the former by one, single contact. Each step
is made of two successive moves, the first at a 4-stance to
bring the contact force exerted by a finger to zero, the
second at a 3-stance to bring this finger to a new contact.

In our current system, we do not allow stances with fewer
than three contacts. Such stances have low utility for
climbing and are rarely feasible.

4.3 Quasi-static equilibrium constraints

As discussed in Section 3.1, we require Capuchin to remain
in quasi-static equilibrium throughout a climbing motion.
This imposes that the robot applies adequate contact forces
at each configuration g attained during the motion. Since the
fingers are relatively small, we assume that each finger-
feature contact occurs at a single point that remains fixed
when the link to which the finger is attached rotates. We
model the contact by the two coordinates of that point, the
direction of the normal to the feature contour at that point,
and a friction coefficient (Figure 8).

normal

contact point--"}

Figure 8. Point contact

www.intechopen.com

The reaction forces at the contacts must then satisfy the
following conditions [27, 28]:

Zfs +mg =0
Z‘m x fi + CM(q) x mg =0
fi € FC; for all i

where (see Figure 9):

- pii=1, .., 4, denote the coordinate vectors of the (three
or four) contact points,

- fii=1,.., 4, are the component vectors of the reaction
forces at the contact points,

— myg is the component vector of the gravitational force,

— CM(g) is the coordinate vector of the centre of mass of
the robot at configuration g,

- FG,i=1, .., 4, designate the Coulomb friction cones at
the contact points.

A

3-stance

4-stance

Figure 9. Notations for equilibrium constraints

The first two conditions simply require that all the forces
and torques exerted on the robot sum up to zero. Under
the Coulomb model of static friction, the set of reaction
forces fi that can be applied on a finger at a given contact
forms a cone, FCi, whose axis points along the normal
vector to the feature at pi. The angle of this cone is =
2xtan™! (1), where u is the coefficient of friction (assumed
for simplification to be the same at all contacts). So, the
third condition requires each reaction force fi to lie within
its corresponding friction cone. In Figure 9, CM(g) is
positioned at the centre of Capuchin’s body. In fact, the
position of CM(q) varies around this position depending
ong.

The existence of a set of reaction forces fi that meet the
equilibrium conditions depends only on the positions and
orientations of the contacts. A stance is not feasible if no
set of reaction forces meets all these conditions. No
feasible climbing motion can possibly include a move at
such a stance. We also remark that if a set of reaction
forces achieves equilibrium for one position of the centre
of mass, the same set of forces also achieves equilibrium
for any other position of the centre of mass along the
same vertical line. The projection of all the valid positions

Ruixiang Zhang and Jean-Claude Latombe: Capuchin: A Free-Climbing Robot

of the centre of mass into a horizontal plane is the
support region. Therefore, the support region is entirely
determined by the locations and orientations of the
contacts. In our work we assume that the climbing wall is
vertical. Hence, the support region degenerates to a
horizontal line segment (possibly, a half-line). For a given
stance o, one can pre-compute this segment. The
existence of reaction forces satisfying the equilibrium
conditions at any configuration g of the robot (at stance o)
can then be tested by simply verifying that CM(q) projects
vertically into this segment [27]. As noted in [27], this
segment may not lie under the contacts.

4.4 Two-stage motion planning

The motion planner of Capuchin is a slight adaptation of
the planner developed in [28], which itself is based on the
so-called stance-before-motion approach
introduced in [27, 30]. The planner is quite general (in the
context of quasi-static multi-limbed robot navigation), but
a few of its components must be adapted to the specific
kinematics of the robot. Since the stance-before-motion
approach has been described before, along with
successive versions of the planners [27, 28, 30, 31, 33, 37],
we only give a high-level presentation of Capuchin’s
planner here.

two-stage,

The inputs to the planner consist of the following
components:

1. A map of the terrain defining the geometry (shapes,
positions and orientations) of the features placed on the

climbing wall,

2. A set of possible contacts located on the contours of the
features,

3. The initial 4-stance and the initial configuration of
Capuchin at this stance, and

4. The goal 4-stance.

In the current implementation, the map of the terrain is
provided by a human user, but it would be relatively easy
to extract it automatically from an image of the climbing
wall. The set of possible contacts is also defined by a
human user. Automatic techniques have been proposed
in [25, 28]. One is to randomly sample many points on the
contours of the features and retain each point as a
possible contact with a probability proportional to a
heuristic measure of its expected utility. For instance,
sampled points with a normal pointing upward would
have greater utility than points with a normal pointing
downward; points located in concave portions of feature
contours would have greater utility than points on
convex portions.

The output from the planner is a sequence alternating 4-

and 3-stances, along with a motion path describing the
move to be performed at each stance (see Section 4.2).

Int J Adv Robotic Sy, 2013, Vol. 10, 194:2013

Such a path is represented by a sequence of waypoints,
where each waypoint is a configuration of the robot. The
planner does not select the robot velocity along a motion
path. It only assumes that dynamic effects are negligible.
It does not select the forces to be applied by the fingers at
the contacts (the motion controller will do this). It only
verifies that a set of forces verifying the static equilibrium
conditions given in Section 4.3 exists.

The stance-before-motion planning approach consists of
first planning a sequence of 4- and 3-stances, such that
any two consecutive 4-stances differ by a single contact,
and then planning a motion path at each stance, such that
the final configuration of each such path is the initial
configuration of the path at the next stance. The sequence
of stances is computed by searching a stance graph,
whereas each motion path at a given stance is computed
using a classical PRM (Probabilistic Road-Map) planner
[38-41].

The stance graph is defined as follows. Each node of this
graph corresponds to a 4-stance defined by a set of four
contact points and an assignment of the four fingers of
Capuchin to these contacts. Since even a relatively small
number of candidate contacts would result in a huge
number of 4-stances, simple computational tests are
performed to quickly eliminate impossible stances. In
particular, all four contacts must be closer apart than the
maximal span of the robot fingers. Two nodes in the
stance graph are connected by an edge if and only if they
differ by a single finger-contact pair. So, two 4-stances
connected by an edge uniquely determine the 3-stance
that separates them. This 3-stance consists of the three
finger-contact pairs that are in both 4-stances.

The stance graph is still usually too large to be pre-
computed. Instead, the search of this graph generates a
tree of stances representing several partial candidate
sequences of adjacent stances. The root of the tree is the
initial 4-stance. At each step of the search, the algorithm
selects a pending 4-stance o from the tree and adds
children to this stance. These children are all the 4-stances
that are adjacent to o in the stance graph. The search
terminates when the goal 4-stance is added to the tree.

However, this algorithm would often generate a sequence
containing non-feasible stances where the equilibrium
conditions cannot be satisfied. As was observed in [27],
the “bottlenecks” in a climbing motion are the transitions
from 4- to 3-stances and from 3- to 4-stances (see Figure
7(c)). At each such transition, the robot is maximally
constrained kinematically, as it must achieve four
contacts simultaneously, whereas it can use only three of
these contacts to achieve equilibrium (the force applied at
the fourth contact being null). Between transitions, either
the robot must only maintain three contacts, hence has
remaining degrees achieve

more of freedom to

www.intechopen.com

equilibrium, or it must maintain four contacts, but can
then use all of them to stay in equilibrium. Experience
also shows that a feasible move often exists between two
feasible transitions. These observations are used in two
ways by the stance planner:

1. The search of the stance graph uses an estimator of the
feasibility of transitions. This estimator is a neural net
trained on a large database of randomly sampled
transitions [32]. Given a transition defined by the spatial
distribution and orientations of the contacts, it returns
the probability that the transition is feasible. The search
algorithm explores in priority the sequences of stances
in which transitions have the highest feasibility
estimates.

2. Prior to inserting a new 4-stance oy’ as a child of a 4-
stance c in the search tree, the algorithm checks that
both the transition between o: and the 3-stance o3
between ox and o4, and the transition between o3 and
ov are actually feasible. It performs these checks by
sampling one conformation in each transition at which
the equilibrium conditions can be satisfied [33]. If no
such conformation can be computed for one of the two
transitions, then o' is not inserted as a child of ou.

Once a sequence of 4-stances between the initial and the
goal stances has been found, the two-stage planner uses a
PRM method to compute the motion path for each
successive move required by the sequence. The PRM
planner takes into account the kinematic constraints to
maintain stance contacts, the equilibrium constraints, the
collision avoidance constraints between the fingers and
features, the self-collision avoidance
constraints between limbs, and the torque limit
constraints at the various joints. If the PRM planner fails
to generate a motion path for some move, the stance
graph is searched again for another sequence of stances.

the terrain

(b)

Figure 10. (a) Planned contact (black) and achieved contact (red);
(b) Amplification of positioning errors

Capuchin’s two-stage planner takes several minutes or
more to compute a complete climbing motion involving
two to three dozen successive moves. Although this time
might be significantly reduced by optimizing the code,

www.intechopen.com

the planner is run once before Capuchin starts climbing
and is not called back while the robot is climbing (see
Section 7). The Capuchin system includes a graphic
interface allowing the user to interact with the planner.
This facility makes it possible to design “interesting”
virtual climbing walls, before physically building them,
by iteratively selecting features and adjusting their
positions and orientations.

5. Motion Control
5.1 Need for sensory-based control

The primary goal of motion control is to make the robot
follow the motion paths computed by the planner. Since
these paths are computed assuming accurate positioning
of the fingers at the selected contact points, precisely
docking fingers against features is a critical precondition
for the robot to reliably execute a planned motion. To
illustrate this point, suppose that a motion path requires
Capuchin to bring one of its fingers to the contact point P
(with normal N) shown in Figure 10(a). Assume further
that, instead, due to some small control and/or prior
positioning errors, this finger ends up at a nearby point P’
(with normal N’). Due to the curved contour of the
feature, the orientations of N and N’ (hence, of the friction
cones) differ significantly. Incorrectly making contact at
P" may make it impossible for the robot to perform the
next move while maintaining equilibrium. Even if this
move is still feasible, finger positioning errors are likely
to grow at each new contact, as is illustrated in Figure
10(b). In this figure the upper-right finger must dock at a
new contact point. However, the lower-right finger had
previously made contact with a feature at a point slightly
off the contact point selected by the planner (error e1).
This error caused a small rotation of the robot around the
lower-left finger, which now leads to a larger position
error ez of the upper-right finger (because the distance L2
is much larger than Li). Capuchin’s motion controller
achieves precise finger docking using vision feedback as
will be described in Section 5.3. Vision-guided finger
docking leads the robot to slightly modify a planned
motion to accommodate small placement errors of the
features in the terrain model given to the planner.

Figure 11. Capuchin on a chimney-like terrain

Ruixiang Zhang and Jean-Claude Latombe: Capuchin: A Free-Climbing Robot

But achieving precise contacts is not enough to safely
perform a planned motion. The controller must also make
sure that the robot continuously applies adequate contact
forces to maintain equilibrium. Consider the example
shown in Figure 11, where the robot has achieved four
contacts, each with a horizontal normal, exactly as had
been planned by the planner. (This “extreme” example is
helpful to understand why adequate contact forces are
critical; but the same requirement arises for almost all
combinations of contacts.) Capuchin will be in static
equilibrium only if the four reaction forces exactly
compensate gravity. However, the maximal vertical
component of each reaction force allowed by the friction
cone is proportional to its horizontal component. So, if
the robot fails to exert sufficient forces at the contacts, the
vertical components of the reaction forces will not be able
to fully compensate gravity, and the robot will fall. On
the other hand, if the robot applies sufficient forces, then
larger forces will cause the orientations of reaction forces
to get closer to the contact normals; hence, reaction forces
will lie deeper inside their friction cones and the
equilibrium will be more robust. But exerting forces that
are too large could result in damaging the robot. In
Section 4.4 we will describe our lazy force control method
to keep reaction forces within their friction cones. The
ability of the controller to adjust contact forces makes it
often possible to successfully continue the execution of a
motion, even when small placement errors of the features
in the terrain model require vision-guided finger docking
to slightly modify a planned motion.

5.2 Owverall control strategy

Capuchin’s control strategy is to follow the planned
motion path as closely as possible, except when
corrections are needed to deal with violations of the
assumptions made by the planner. The control diagram
implementing this strategy is shown in Figure 12(a). Most
of the time the robot is position-controlled, i.e., driven by
the “Posture transition” box whose content is described in
more detail in Figure 12(b). Vision-feedback motion
control (in red) is activated only when a moving finger
gets close to docking against a feature. Force-feedback
motion control (blue) is activated only when a sensed
reaction force leaves a “safe” region in its friction cone.
Vision- and force-feedback motion control will be
described in Sections 5.3 and 5.4, respectively.

The motion path computed by the planner is input into
the motion controller in the form of a sequence of
intermediate configurations of the robot, each
represented by 11 parameters (see end of Section 3): three
of them define the configuration of the robot’s body,
whereas the other eight define the finger positions. This
representation was chosen because it makes it easier to
“plug” the vision-feedback and force-feedback controllers
into the position controller, as both finger docking and

10 IntJ Adv Robotic Sy, 2013, Vol. 10, 194:2013

applying adequate contact forces occasionally require
adjusting the positions of some fingers.

A linear interpolator generates additional trajectory
points between the intermediate configurations given by
the planner. By selecting both the spacing between these
points and the servo rate (up to a maximal rate) at which
they are fed into the controller boards mounted on the
robot, we can approximately tune the velocity of the
robot. We have selected these two parameters empirically
by trial-and-error to obtain motions that are both smooth
and reliable, but nevertheless as fast as possible. In the
current implementation, the frequency of the servo rate is
set to 300Hz and the spacing between two consecutive
trajectory points is such that the fingers and body centre-
point move by no more than 0.1mm, each, and the body
rotates by no more than 0.02deg. Our experiments show
that with this setting Capuchin is reasonably fast, though
slower than human climbers (but it is also much smaller).
Simple inverse kinematics converts the successive
trajectory points into shoulder and elbow joint angles that
are fed into the controller boards.

Vision-feedback motion control

update | Y&5 | checkif | Y& Checkif
trajectory — error >D contactis in
o No field of view
[X
¥ :
Fre¢ finger frajectories —

Body trajectories

Planner | codiact fingers trajectories

Posture
transition

I
[2
Check if forces
satisfy constraints

I,No

Forces
generation

1

Control fingers position
1o achieve desired
forces

Ye:

“

Update
trajectories

Force-feedback motion control

Controller

@)

-1)) Joint command PID joint control
Trajectory | Trajectory point Inverse =
4 PID joint control

—T*| Interpolator Kinematics
| oo
PID joint control

Posture transition

i _ Controller boards |

(b)
Figure 12. (a) Overall motion control diagram; (b) Position control
diagram

5.3 Vision-guided finger docking

As indicated above, vision-feedback control is activated
at the end of each 3-stance move, when the moving finger
gets close to the targeted contact point, more precisely

www.intechopen.com

when this point enters the field of view of the camera
mounted above the finger. The corresponding control
diagram is shown in red in Figure 12(a).

Vision-guided motion control has been extensively
studied in robotics, in particular, to control robot arms
grasping objects [42-46]. Our method for finger docking,
although quite simple, works well in practice. Consider
the situation illustrated in Figure 13, where the moving
finger is supposed to follow the path indicated by the
black dotted line ending at contact point P. Assume that
the green feature and P are within the field of view of the
finger’s camera, so that vision-guided control has been
activated. In the figure fpi and tpi,1 are two successive
points computed by the trajectory interpolator. At each
control cycle, the image given by the camera is analysed
to measure the distance between the finger’s current
position (red point pi at cycle i) and the planned path. If
this distance is less than a threshold (set to 2mm in our
implementation), as is the case for pi, then no correction is
made and the controller targets the next intermediate
point fpi,i. Instead, if the distance exceeds the threshold,
as is the case for the position pi,1 reached at cycle i+1, then
the finger’s path is replaced by a new one (the red dotted
line) connecting the current position of the finger to P.
Trajectory points along this new path are computed and
fed into the “Posture transition” control box. The change
of path affects only the moving finger, hence the joint
angles in the corresponding limb. The other six joint
angles are not affected and follow the values set in the
original path. The change of path is assumed to be small
enough to allow the force-feedback part of the controller
(shown in blue in Figure 12(a)) to maintain the robot in
equilibrium. This is a reasonable assumption since the
weight of a limb is small relative to the robot’s two half-
bodies. Several path adjustments are possible during the
same finger docking operation, but this very rarely
happened in our experiments.

‘a?

.’

@ <2mm
P,

.

<> 2ihm

P;H

Figure 13. Vision-guided finger docking

Vision-guided docking makes it possible to deal with
reasonably small errors in both the positioning of the
robot and the input model of the terrain. However, if the
finger eventually deviates so much from the original path

www.intechopen.com

that P is no longer reachable, e.g., because a joint in the
limb of the moving finger reaches a mechanical stop, or if
errors in the input model are so large that the terrain
feature supporting the targeted contact point does not
enter the field of view of the camera, then the controller
interrupts the motion. In this case, it should call back the
planner to get a new trajectory, however, this option is
not yet implemented in our system.

Since all corrections are made by adjusting joint angles in
one limb, while assuming that the body has a correct
position and orientation, Capuchin may progressively
drift away from the planned path. This drift may
eventually result in situations where it is no longer
possible to maintain equilibrium or to reach the next
contact point. However, no significant drift was observed
during our experiments. This is due in part to the fact that
in each of our experiments the number of successive
moves was rather small (usually less than 20). In the
general scenario outlined in Section 4.1, a climb is divided
into a series of shorter climbs, each similar in length to
those performed in our experiments, between points
selected along a coarse navigation path. The motion for
each short climb is planned and executed relative to a
local coordinate frame, so that no major drift is likely to
happen. However, on a large terrain, the successive drifts
could accumulate and the robot could end up deviating
significantly from the initial coarse navigation path. To
prevent such a deviation, either the robot would have to
periodically localize itself relative to landmarks identified
before starting the ascent of the terrain, or it would have
to be equipped with
localization, such as remote cameras or GPS-like sensors.

sensors providing global

5.4 Lazy force control
5.4.1 Motivation

Force-feedback
equilibrium is much more difficult than vision-guided
finger docking. It is also more critical. Even if Capuchin

control to maintain Capuchin in

positioned its fingers somewhat imperfectly on the
terrain, there could still be a chance that it might remain
in equilibrium by applying adequate contact forces. In
contrast, even with perfectly positioned fingers,
inadequate force control will cause Capuchin to fall. The
diagram of the force-feedback part of Capuchin’s
controller is shown in blue in Figure 12(a).

Since most robots perform tasks by making contacts with
their environments, force control has attracted much
research attention for more than two decades (e.g., see
[47-52], to only cite a few references). Initially, several
basic methods, such as impedance [47] and hybrid
position/force [48] developed to
continuously control forces applied at a single contact.
Later, these methods were adapted or extended to tackle

control were

Ruixiang Zhang and Jean-Claude Latombe: Capuchin: A Free-Climbing Robot

12

problems involving multiple contacts, in particular, to
control dexterous multi-fingered hands [53, 54] and
humanoid robots [55]. One line of research consists of
controlling joint torques to minimize internal forces [56]
while applying contact forces that satisfy specified
constraints on their magnitudes and orientations. This is
the approach taken in [34, 35] to create Capuchin’s first
motion controller. The idea is to compute joint torques
that keep reaction forces as close as possible to the axes of
their friction cones (i.e., the contact normals) and let the
controller target those torques at each cycle. Experiments
demonstrated that such direct torque control could be
realized, but motions were choppy and did not follow the
planned paths well enough.

reasons for this

There are several

performance:

suboptimal

— Capuchin’s joints, although backdrivable, have large
friction due to their relatively large gearing ratio; so,
the relation between contact forces and joint torques
is noisy.

— The on-line computation needed to optimize joint
torques is rather time consuming; so, the servo rate is
not high enough to produce smooth motion.

— To keep the orientations of the reaction forces as
close as possible to the contact normals, the robot
may have to exert forces with exceedingly large
magnitudes.

— Continuous force control results in delicate

adjustments at each control cycle; these frequent

adjustments have negative impact on the reliability

of the motion.

This analysis led us to develop a novel approach, which
we call lazy force control. This approach is based on two
ideas:

1. Contact forces are adjusted only occasionally, when a
reaction force leaves a “safe” region in its friction
cone. So, the controller monitors reaction forces at
every cycle, but makes corrections only when it is
needed (hence the term lazy force control).

2. To achieve desired contact forces, the positions of the
fingers, instead of the joint torques, are controlled
using the data returned by the force sensors.

We first present this approach in more detail. Next, we
will describe how force corrections are made.

5.4.2 Approach

A whole range of contact forces satisfy the equilibrium
constraints, so Capuchin does not have to apply a specific
set of contact forces. Instead, it should only make sure
that none of the reaction forces gets too close to the
boundary of its friction cone.

Int J Adv Robotic Sy, 2013, Vol. 10, 194:2013

We define a safe region in each friction cone, as shown in
striped red in Figure 14. This region is obtained by
slightly rotating inwards the two sides of the friction cone
and by setting an upper limit on the magnitude of the
reaction force than
measurable by Capuchin’s force sensors (50N). The
underlying idea is that if all reaction forces are within
their safe regions at one control cycle, then there are
enough margins for the robot to move safely toward the
next trajectory point at the following control cycle. The
safe region is defined in the same way for all the friction
cones.

smaller the maximum force

Capuchin’s controller reads reaction forces at each cycle
of position control (see Figure 12(a)) and checks them
against their respective safe region. If all measured
reaction forces are within their safe regions, the controller
continues the execution of the planned motion in
position-control mode. If a reaction force is measured
outside its safe region, the execution of the planned
motion is momentarily interrupted and the force
controller is activated to adjust the reaction forces at all
contacts (four for a 4-stance, three for a 3-stance), as
described below. Our experiments show that, thanks in
good part to both the quality of the motion plans
computed by the planner and the accuracy of vision-
guided docking, reaction forces stay in their safe regions
during most Hence, adjustments are not
frequently needed. In our experiments, force corrections
amount to only 5 to 10% of the total motion time.

cycles.

7 f Inew

Safe boundary

Friction cone

Figure 14. Safe region (in striped red) in friction cone

Remark: The measured orientation of a reaction force of
small amplitude is often noisy. Relying on such a
measurement could frequently lead Capuchin to perform
unnecessary adjustments. We deal with this issue as
follows. If a reaction force smaller than 2N is measured
outside the cone of its safe region, this violation is
ignored. If the measured force is between 2N and 20N, its
orientation must be outside the cone of the safe region
over 10 consecutive cycles for the controller to perform an
adjustment. If the force is greater than 20N, an
adjustment is performed as soon as a violation is
observed.

www.intechopen.com

5.4.3 Computation of safe reaction forces

The first step when a reaction force is measured outside
its safe region is to compute a set of contact forces that lie
within their respective safe regions and collectively
satisfy the equilibrium constraints formulated in Section
4.3. One way to do this would be to solve a quadratic
optimization problem aimed at maximizing the sum of
the squares of the distances of the forces from the
boundaries of their safe regions under the static-
equilibrium constraints. However, we have opted for a
simpler random sampling algorithm. This algorithm does
not return optimal forces, but is potentially much faster
and does not lead to making drastic changes in the
contact forces. At a 4-stance, it selects the two reaction
forces—call them fi and f2—that lie the furthest away
from their safe regions. It computes the new values of fi
and f2 by sampling uniformly at random the intersection
of a neighbourhood disk centred at the measured value
and the safe region, as illustrated in Figure 14. (If only
one force, fi, lies outside its safe region, it computes the
new value of fi using this same sampling technique; it
selects f2 to be any of the other four reaction forces and
keeps its value unchanged.) The algorithm then computes
the other two remaining reaction forces from the selected
values of fi and f» so that the first two equilibrium
constraints are satisfied. At a 3-stance, it only selects one
force, f1, that lies outside its safe region, samples a new,
safe value of fi, and computes the other two reaction
forces in the same way as above. In both cases, if the two
forces calculated from the equilibrium conditions lie in
their safe regions, then a new set of safe contact forces has
been obtained successfully. Otherwise, the whole process
is repeated until a set of safe forces is generated. Because
forces are corrected while they are still close to their safe
regions, the number of iterations needed is usually small,
typically much less than 10.

Figure 15. Force adjustment: each finger in contact with the
terrain is “pushed” in the opposite direction (red vector) of the
difference between the computed force fiurgt (green vector) and
the measured force fincsured (blue vector)

www.intechopen.com

5.4.4 Adjusting forces

Capuchin uses position control with force feedback to
achieve the safe contact forces computed as described
above. Each finger in contact with a terrain feature is
“pushed” in the opposite direction of the desired change
in force, as illustrated in Figure 15. Since the contact
forces stay within their friction cones, there is no actual
motion of the fingers. The only important changes are in
the joint torques. Joint angles in the limbs may also
undergo tiny changes due to the deformation of the
rubber covering the fingers and the flexibility of the robot
mechanical structure. In fact, this flexibility makes it
easier to adjust forces smoothly. The correction is
performed at 300Hz. At each cycle, the controller sends a
position command to push each finger by an increment
proportional to the difference between the targeted safe
force and the current reaction force measured by the
sensor. As all contact forces are coupled, changing any
contact force may impact other contact forces and
therefore the equilibrium of the robot. Our experiments
show that the computed set of safe contact forces is
achieved reliably by pushing all fingers simultaneously.
The force correction process is usually achieved in less
than 100 cycles, hence in less than 0.3 seconds.

5.5 Failures to execute a plan

Capuchin may be unable to fully execute a plan. This may
happen under several circumstances, including;:

— A moving finger has reached its final destination, but
the feature against which it should make contact is
still not in the field of view of the finger’s camera.

— A moving finger collides with an unexpected feature
prior to reaching its final destination.

— Some reaction forces are measured outside their safe
regions and Capuchin fails to compute a set of safe
forces.

Under such circumstances, Capuchin should be able to
call back its planner, but as previously mentioned, this
possibility is not currently implemented.

6. Detailed Experimental Run

We have performed numerous experiments with our
system. They show that Capuchin can climb difficult
terrain reliably and reasonably quickly. Both failures to
execute a plan in its entirety and falls were very rare. The
experiments demonstrate that force control is absolutely
needed to perform all climbs, except the simplest ones
when the terrain has many features with favourable
orientations. They also demonstrate that Capuchin can
deal with errors in the input terrain model, as long as the
contacts to be achieved eventually enter the fields of view
of the cameras above the corresponding fingers and
equilibrium remains achievable by adjusting contact

Ruixiang Zhang and Jean-Claude Latombe: Capuchin: A Free-Climbing Robot

14

forces appropriately. In this section, rather than
presenting several experiments, we focus on a typical
experiment which we describe in detail. For additional

experiments, we refer the reader to [57].

Figure 16 shows the terrain used in this experiment and
five snapshots of Capuchin climbing this terrain.
Capuchin was given an accurate terrain model. The main
climbing difficulty arises in snapshot 4 after the top-left
finger (marked 2 in the first snapshot) moved to a new
contact. Capuchin must then move its bottom-right finger
(marked 4) to a new contact. During this 3-stance move,
the contacts where the two top-fingers (fingers 1 and 2)
are located point roughly in the same non-vertical
direction slanted toward the right (see features circled in
red in the first snapshot). These contact orientations make
it difficult to keep the equilibrium constraints satisfied
while the forces exerted by fingers 1, 2 and 3 are re-
distributed in order to achieve a null contact force at
finger 4.

Figure 16. Snapshots of Capuchin climbing with lazy force control

Int J Adv Robotic Sy, 2013, Vol. 10, 194:2013

To compare, we let Capuchin climb the same terrain
without force control (Figure 17). Until the fourth
snapshot, the motion is about the same as in Figure 16,
but Capuchin’s fingers 1, 2 and 3 then apply inadequate
contact forces, which causes the robot to slip and fall.

Figure 17. Snapshots of Capuchin climbing the same terrain as in
Figure 16 without lazy force control

Figure 18 shows the plots of the vertical components of
the reaction forces measured on fingers 1 and 3 over time
Time 1
represents 30sec in duration. The plots in blue correspond
to the successful motion where lazy force control is used.
This motion lasted 66sec (the climbing motion did not
end at snapshot 5 of Figure 17, but continued until fingers
1 and 2 made contact with the top two features). Finger 2
achieved its new contact in snapshot 4 approximately at
time 1. The small intervals marked in red along the time
axis correspond to the control cycles during which force
adjustments were performed. There were nine force
adjustments accounting for 7.8% of the total execution

(horizontal axis) during this experiment.

www.intechopen.com

time. The plots in green correspond to the motion where
force control is not used. In this case, finger 2 reached its
new contact slightly after time 0.8 (24sec). The robot fell
after less than 30sec, when the reaction forces on fingers 2
and 3 violated the orientation constraints. During two
time intervals, only two fingers exerted non-zero contact
forces, which
equilibrium.

is not suitable to reliably maintain

300

g

force: x 0.15N
- [*] [
& =] &

force: x 015N
d
!

150 - B

100~ T

50 - 4

time: x 0.003s * 10°

(b)
Figure 18. Plots of the vertical components of the measured
reaction forces over time, for fingers 1 (plot (a)) and 3 (plot (b))
with lazy force control in blue and without force control in
green. The unit of length on the horizontal (time) axis
corresponds to 30sec.

Figure 19 plots measured reaction forces relative to their
respective friction cones (blue contour) and safe regions
(red contour). Again, the plots in green (left column)
correspond to the case where force control was not used
(called “open-loop” in the figure) and those in blue (right
column) to the case where lazy force control was used. In
the left column the measurements were made from time
0.6 (18sec) until after the fall. In the right column they
were made between times 0.3 (9sec) and 1.2 (36sec).
During that interval three force adjustments were made,
two for orientation violations by the reaction forces and
one for magnitude violation. In the left columns many

www.intechopen.com

measurements are outside the safe regions (some were
made after the robot had started slipping). Instead, in the
right column with lazy force control, most reaction forces
(other than those with small magnitudes) remain inside
their safe regions. Violations were quickly corrected.

as0 -~ _ a0 e N

00 300 T h \\\

250 220 f N\
20 0 \

E T T 0 00 20 300 0 = 20 - 0 100 20 30 L

(a) Finger 1, open-loop (b) Finger 1, lazy control

T g o @0 w0 a0 = =D g 700 0 £ [

(e) Finger 3, open-loop

500

400y - - - ~
$— 0 P -
m// F— \ w O\
-

100

o0 20 -0 0 10 200 w00 = 200 -1 g 700 20 0

(g) Finger 4, open-loop (h) Finger 4, lazy control

Figure 19. Plots of measured reaction forces relative to their
friction cones

120 +

¥
T
110
+ St
) +
100 +
* +
+
%0 e
*
+
50 ++
+y ot
+
70 i’ .
¥
"
+
60 7
R
50
-0 -100 -90 E 70 60

Figure 20. Force measurements before (in blue) and during/after
(in red) an adjustment

Figure 20 shows a series of force measurements before (in
blue) and during/after (in red) an adjustment. The blue
and red straight lines are the edges of the friction cone

Ruixiang Zhang and Jean-Claude Latombe: Capuchin: A Free-Climbing Robot

and the safe region, respectively. In this case, the force
violates the orientation constraint imposed by the safe
region. However, because the amplitude of the force is
less than 20N, the controller waits 10 consecutive
measurements before making an adjustment (see remark
at the end of Section 5.4.b). Several measurements were
made during the adjustment process. Figure 21 plots the
planned trajectory (in green) of the robot’s centre of mass
and its executed trajectory (in blue) during an experiment
similar to the one shown in Figure 16. It shows that drift
remains quite small.

200

180 —,
1601 N\
140+
120

100+

mm

80+ /4
60- .
401 S

201

0 I I
0 20 40 60

mm

Figure 21. Planned (in green) and executed trajectory (in blue) of
the robot’s centre

7. Conclusion and Future Work

In this paper we have described a four-limbed free-
climbing robot, Capuchin. The robot is equipped with
cameras and force sensors that are used by the motion
controller to execute motion plans generated by an
automatic planner. Experiments with the integrated
system have shown that Capuchin can reliably climb
vertical terrain with irregular features. We tried to
achieve the functions needed for free-climbing with the
simplest possible robot design. The planner is based on a
stance-before-motion approach introduced in [25] and
further developed in [28]. The robot’s controller is based
on a novel lazy force control approach that performs force
adjustments only when these are needed.

We believe that Capuchin embodies the main techniques
needed for free-climbing vertical terrain. Still, more
research is needed to create a robot truly capable of free-
climbing outdoor natural rock. In particular:

Extension to 3-D robot. We originally designed Capuchin
as a 3-D robot (see Section 3.1) capable of climbing non-
planar terrain. Design complexity led us to scale down
our initial design to a 2-D version of Capuchin. A
challenging work would now be to extend Capuchin to a

16 IntJ Adv Robotic Sy, 2013, Vol. 10, 194:2013

3-D robot. At least one more degree of freedom would
have to be added at each shoulder joint. Another joint
would have to be inserted between the upper and lower
half-bodies of the robot so that it can twist its body as
human climbers often do. It is not clear yet if this joint
should be actuated or just passive (and spring-loaded).
The camera on each robot finger should be replaced by
stereo cameras or other light 3-D sensors to localize
contact points on 3-D features.

Incremental sensing and planning. A global terrain model,
even a low-resolution one, may not be available in
advance. In order to perform long climbs, the robot
should be able to sense the terrain incrementally and call
the planner periodically to compute additional moves or
to modify some previously planned moves. This would
not only require speeding up the current planner, but the
new planner should also be able to plan “exploratory”
moves aimed at detecting new interesting features and
promising contacts.

Detecting promising contacts. Some contact properties are
very critical to climbing, such as normal direction, friction
and surface roughness. 3-D vision sensors could be used
to detect, localize and characterize promising contacts.
Tactile sensing would also be helpful to model detailed
properties of the terrain such as roughness. Further
research on free-climbing robots should take advantage
of recent progress in developing robust extensible skin-
like tactile surfaces [36].

Dynamic moves. In our work we forced Capuchin to move
slowly enough so that dynamic effects, like momentum,
remain negligible. Although human climbers also climb
relatively slowly, dynamic moves can still be helpful to
reach distant holds or to save time and energy. Allowing
a free-climbing robot to perform dynamic moves is
particularly challenging. It would definitively require a
good dynamic model of the robot, more sensors and a
contact model more elaborate than the point model used
in our work, e.g., a rolling contact model [42, 58].

7. References

[1] M. Raibert, K. Blankespoor, G. Nelson and R. Playter.
BigDog, the rough-terrain quadruped robot. Proc.
17th IFAC World Congress, Seoul, Korea, pages 10822—
10825, July 6-11, 2008.

[2] K. Hirai, M. Hirose, Y. Haikawa and T. Takenaka. The
development of Honda humanoid robot. Proc. IEEE
Int. Conf. Robotics and Automation, Leuven, Belgium,
1998.

[3] B. H. Wilcox, T. Litwin,]J. Biesiadecki, J. Matthews, M.
Heverly, J. Morrison, J. Townsend, N. Ahmed, A.
Sirota and B. Cooper. ATHLETE: a cargo handling
and manipulation robot for the moon.]. of Field
Robotics, 24(5):421-434, Apr 2007.

www.intechopen.com

[4] J. Kuffner, K., S. Kagami, M. Inaba and H. Inoue.
Motion planning for humanoid robots. Proc. Int.
Symp. Robotics Research, Siena, Italy, 2003.

[5] O. Kanoun, J.P. Laumond and E. Yoshida. Planning
foot placement for a humanoid robot: A problem of
inverse kinematics, Int.]. of Robotics Research,
30(4):476-485, 2011.

[6] H. Lee, Y. Shen, C. Yu, G. Singh and A. Y. Ng.
Quadruped obstacle negotiation via
reinforcement learning. Proc. IEEE Int. Conf. Robotics
and Automation, 2006.

[7] M. Abderrahim, C. Balaguer, A. Gimenez,].M. Pastor
and V.M. Padron. ROMA: A climbing robot for
inspection operations. Proc. IEEE Int. Conf. Robotics
and Automation, Detroit, MI, 1999.

[8] H. Amano. A vertically moving robot able to grip
handrails for fire-fighting. Advanced Robotics,
16(6):557-560, 2002.

[9] D. Bevly, S. Dubowsky and C. Mavroidis. A
simplified Cartesian computed torque controller for
highly geared systems and its application to an
experimental climbing robot. ASME |. of Dynamic
Systems, Measurement and Control, 122(1):27-32, 2000.

[10] D. Bevly, S. Farritor and S. Dubowsky. Action
module

robot

planning and its application to an
experimental climbing robot. Proc. IEEE Int. Conf.
Robotics and Automation, San Francisco, CA, vol. 4,
pages 4009-4014, 2000.

[11] S. Hirose, A. Nagabuko and R. Toyama. Machine that
can walk and climb on floors, walls, and ceilings.
Proc. IEEE Int. Conf. Robotics and Automation, Pisa,
Italy, pages 753-758, 1991.

[12] ZM. Ripin, B.S. Tan, A.B. Abdullah and Z. Samad.
Development of a lowcost modular pole climbing
robot. Proc. IEEE TENCON, Vol. 1, pages 196-200,
Kuala Lumpur, Malaysia, 2000.

[13] Y. Xu, H.B. Brown, M. Friendman and T. Kanade.
Control system of the self-mobile space manipulator.
IEEE Tr. on Control Systems Technology, 2(3):207-219,
1994.

[14] M. Yim, S. Homans and K. Roufas. Climbing with
snake-robots. Proc. IFAC Workshop Mobile Robot
Technology, Jejudo, Korea, 2001.

[15] EW. Bach, H. Haferkamp, J. Lindemaier and M.
Rachkov. Underwater climbing robot for contact arc
metal drilling and cutting. Proc. IEEE Int. Conf.
Industrial Electronics, Control and Instrumentation,
Taipei, Taiwan, pages 1560-1565, 1996.

[16] L. Briones, P. Bustamante and M. A. Serna. Wall-
climbing robot for inspection in nuclear power
plants. Proc. IEEE Int. Conf. Robotics and Automation,
San Diego, CA, pages 1409-1414, 1994.

[171IM. Chen and S.H. Yeo. Locomotion of a two-
dimensional walking climbing robot using a closed-
loop mechanism: From gait generation to navigation.
Int.]. of Robotics Research, 22(1):21-40, 2003.

www.intechopen.com

[18] T. Kang, H. Kim, T. Son and H. Choi. Design of
quadruped walking and climbing robot. Proc.
IEEE/RS] Int. Conf. Intelligent Robots and Systems, Las
Vegas, NV, 2003.

[19] S. Kim, M. Spenko, S. Trujilo, B. Yeyneman, V.
Mattoli and M. Cutkosky. Whole body adhesion:
hierarchical, directional and distributed control of
adhesive forces for a climbing robot. Proc. IEEE Int.
Conf. Robotics and Automation, pages 1268-1273, April
2007.

[20] A.T. Asbeck, S. Kim and M.R. Cutkosky. Scaling hard
vertical surfaces with compliant microspine arrays.
Int. J. of Robotics Research, 25(12):1165-1179, 2006.

[21] W. Neubauer. A spider-like robot that climbs
vertically in ducts or pipes. Proc. IEEE/RS] Int. Conf.
Intelligent Robots and Systems, Munich, Germany,
pages 1178-1185, 1994.

[22] T. Robmann and F. Pfeiffer. Control of an eight
legged pipe crawling robot. Proc. Int. Symp.
Experimental Robotics, pages 353-346, 1997.

[23] A. Zagler and F. Pfeiffer. MORITZ a pipe crawler for
tube junctions. [EEE Int. Conf. Robotics and
Automation, Taipei, Taiwan, pages 2954-2959, 2003.

[24] B. Kennedy, A. Okon, H. Aghazarian, et al. Lemur
IIb: a robotic system for steep terrain access.
Industrial Robot: An International]., 33(4):265-269,
Emerald Publishing, 2006.

[25] S.P. Linder, E. Wei, A. Clay. Robotic rock climbing
using computer vision and force feedback. Proc. IEEE
Int. Conf. Robotics and Automation, pages 4685-4690,
2005.

[26] T. Bretl, S. Rock, J.C. Latombe, B. Kennedy and H.
Aghazarian. Free-climbing with a multi-use robot.
Proc. 9" Int. Symp. Experimental Robotics, Singapore,
June 2004.

[27] T. Bretl. Multi-step motion planning: application to free-
climbing robots. Ph.D Diss, Dept. of Aero &
Astronautics, Stanford University, Stanford, CA,
June 2005.

[28] K. Hauser. Motion planning for legged and humanoid
robots. Ph.D. Diss.,, Dept. of Computer Science,
Stanford University, Stanford, CA, September 2008.

[29] T. Bretl, T. Miller, SM. Rock and J.C. Latombe.
Climbing robots in natural terrain. Proc. 7" Int. Symp.
Artificial Intelligence, Robotics and Automation in Space,
Nara, Japan, May 2003.

[30] T. Bretl, S.M. Rock and J.C. Latombe. Motion
planning for a three-limbed climbing robot in vertical
natural terrain. Proc. IEEE Int. Conf. Robotics and
Automation, Taipei, Taiwan, vol. 3, pages 2946-2953,
2003.

[31] T. Bretl. Motion planning of multi-limbed robots
subject to equilibrium constraints: the free-climbing
robot problem. Int.]. of Robotics Research, 25(4):317-
342, 2006.

Ruixiang Zhang and Jean-Claude Latombe: Capuchin: A Free-Climbing Robot

[32] K. Hauser, T. Bretl,].C. Latombe, Learning-Assisted
Multi-Step Planning. Proc. IEEE Intl. Conf. Robotics
and Automation, Barcelona, Spain, 2005

[33] K. Hauser and J.C. Latombe. Multi-modal motion
planning in non-expansive spaces. Int.]. of Robotics
Research, 29(7):897-915, 2010.

[34] T. G. Miller, T. Bretl and S. Rock. Control of a
climbing robot using real-time convex optimization.
Proc. IFAC Symposium Systems,
Heidelberg, Germany, September 2006.

[35] T. G. Miller. Control of a climbing robot using real-time
convex optimization. Ph.D Thesis, Dept. of Aero &
Astronautics, Stanford University, Stanford, CA,
December 2007.

[36] D.J. Lipomi, M. Vosgueritchian, B.C.K. Tee, S. L.
Hellstrom, J.A. Lee, C.H. Fox and Z. Bao. Skin-like
pressure and strain sensors based on transparent
elastic films of carbon nanotubes.
Nanotechnology, 6:788-792, 2011.

[37] K. Hauser, T. Bretl,]J.C. Latombe, K. Harada and B.
Wilcox, Motion planning for legged robots on varied
terrain. Int.]. of Robotics Research, 27(11-12):1325-1349,
2008.

[38] D. Hsu. Randomized single-query motion planning in
expansive spaces. Ph.D. Thesis, Dept. of Computer
Science, Stanford University, Stanford, CA, 2000.

[39] L.E. Kavraki, P. Svestka, J.C. Latombe and M.
Overmars. Probabilistic roadmaps for path planning
in high-dimensional configuration spaces. IEEE Tr.
Robotics and Automation, 12(4):566-580, 1996.

[40] M. Saha. Motion planning with probabilistic roadmaps.
Ph.D. Thesis, Dept. of Mechanical Engineering,
Stanford University, Stanford, CA, 2006.

[41] G. Sanchez. Single-query bi-directional probabilistic
roadmap planner with lazy collision checking. Ph.D.
Thesis, ITESM Campus Cuernavaca, Mexico, 2002.

[42] A. Bicchi and V. Kumar. Robotic grasping and
contact: a review. Proc. IEEE Int. Conf. Robotics and
Automation, San Francisco, CA, vol. 1, pages 348-353,
2000.

[43] K. Hashimoto. A review on vision-based control of
robot manipulators. Advanced Robotics, 17(10):969-
991, 2003.

[44] S. Hutchinson, G.D. Hager and P.I. Corke. A Tutorial
on Visual Servo Control. I[EEE Tr. Robotics and
Automation, 12(5):651-670, 1996.

[45] A. Leeper, K. Hsiao, E. Chu and K. Salisbury. Using
near-field stereo vision for robotic grasping in

Mechatronic

Nature

18 IntJ Adv Robotic Sy, 2013, Vol. 10, 194:2013

cluttered environments. Proc. Int. Symp. Experimental
Robotics, New Delhi, India, Dec. 2010.

[46] A. Saxena,]J. Driemeyer and A.Y. Ng. Robotic
grasping of novel objects using vision. Int. J. of
Robotics Research, 27(2):157-173, 2008.

[47] N. Hogan. Impedance control: an approach to
manipulation. Part I: Theory. Part II: Implementation.
Part III: Applications. ASME]. of Dynamic Systems,
Measurement, and Control, 107:1-24, 1985.

[48] M. Mason. Compliance and force control for
computer controlled manipulators. IEEE Tr. on
Systems, Man and Cybernetics, SMC-11:418-432, 1981.

[49] S. P. Patarinski and R. G. Botev. Robot force control:
a review. Mechatronics, 3(4): 377-398, 1993.

[50] M. Raibert and J].J. Craig. Hybrid position/force
control of manipulators. ASME |. of Dynamic Systems,
Measurement, and Control, 102:126-133, 1981.

[51] J K. Salisbury. Active stiffness control of a
manipulator in Cartesian coordinates. Proc. 19th
1EEE Conf. Decision and Control, 1980.

[52] D. Whitney. Force feedback control of manipulator
fine motions. ASME]. of Dynamic Systems,
Measurement, and Control, 98:91-97, 1977.

[53] Y. Chen, I. Walker and J. Cheatham. A new approach
to force distribution and planning for multi-fingered
grasps of solid objects. Proc. IEEE Conf. Robotics and
Automation, Sacramento, CA, pages 890-896, April
1991.

[54] T. Schlegl, M. Buss, T. Omata and G. Schmidt. Fast
dextrous regrasping with optimal contact forces and
contact sensor-based impedance control. IEEE Int.
Conf. Robotics and Automation, pages 103-108, 2001.

[55] L. Sentis and O. Khatib. Synthesis of whole-body
behaviors through hierarchical control of behavioral
primitives. Int.]. of Humanoid Robotics, 2(4):505-518,
December 2005.

[56] Y. Nakamura. Minimizing object strain energy for
coordination of multiple robotic mechanisms. Proc.
American Control Conf., pages 499-504, 1998.

[57] R. Zhang. Design and implementation of an autonomous
climbing robot. PhD Thesis, Computer Science
Department, Stanford University, March 2012.

[58] Z. L, J. Canny and S. Sastry. On motion planning for
dextrous
formulation. Proc. IEEE Int.
Automation, pages 775-780, 1989.

manipulation, part I: The problem
Conf. Robotics and

www.intechopen.com

