Undergraduate Curriculum Revision

Mehran Sahami
Faculty Lunch – March 11, 2008

Outline
• Brief review of current curriculum
• Structure of new curriculum
• CS Core courses
• Initial set of tracks
• Vote

Current Curriculum: Lower Division

AP credit or strong prior programming experience

Programming
- Programming methodology and abstraction
- Object-oriented systems design

Theory
- Discrete mathematics
- Discrete structures

CS106A → CS106B/X → CS107 → CS108

CS103A → CS103B → CS103X → CS103A

Current Curriculum: Upper Division

• Theory Depth
 – CS154: Automata and Complexity Theory
 – CS161: Design and Analysis of Algorithms
• Systems Depth
 – EE108B: Digital Systems II
 – Two Systems Electives (OS, Compilers, Networking, etc.)
• Applications
 – CS121/221: Artificial Intelligence
 – One Applications Elective (Databases, HCI, Graphics, etc.)
• 2-3 Restricted CS Electives
• Senior Project capstone course

Outline
• Brief review of current curriculum
• Structure of new curriculum
• CS Core courses
• Initial set of tracks
• Vote
Revised Curricular Structure: Core

Theory Core: 3 Courses
- Incorporates portions of current theory sequence
- Eliminates redundancies in cs103 and cs161
- CS-owned probability course with AI applications

Systems Core: 3 Courses
- Incorporates portions of current intro programming sequence
- Incorporates systems concepts in later programming projects
- CS106A considered "funnel" into core (not part of core)

Revised Curricular Structure: Tracks

-~4 Courses
- Students must complete requirements for any one track
- Developing depth in a specialization
- Provide course/theme options within each track
- Provide multi-disciplinary options
- Modularize curriculum

Why Tracks?

- Explicitly shows available options
 - Allows students to focus on areas in which they have the greatest interest, thus increasing appeal of program
- Helps eliminate image of CS as "just programming"
 - Shows diversity of themes in computer science
 - Provides more context for what is possible with CS degree
- Provides organizational infrastructure
 - Easier to evolve major as the field evolves
 - E.g., add/drop/modify tracks (or programs in them)

Some More Food For Thought

- Tracks already exist:
 - Applied Logic
 - Artificial Intelligence
 - Decision Making and Rationality
 - Human-Computer Interaction
 - Learning
 - Natural Language
 - Networking
 - Robotics and Mechatronics
 - Digital Systems
 - Biology
 - Computational Engineering
 - Computer Hardware
 - Computer Software
 - Communications and Signal Processing
 - ...in Symbolic Systems
 - ...and CSE
 - ...and MCS
 - ...and EE

Revised Curricular Structure: Electives

~2-4 Courses
- Restricted electives
- Allow pursuing breadth and/or additional depth
- Track-specific elective options allow for interdisciplinary work

Revised Curricular Structure: Capstone

1 Course
- "Senior project" capstone course
- Developing capstone courses to parallel tracks
- Both application development and research options
Structure Aligns With Broader Context

 - Supports tracks model
 - Revision committee adopted modular structure to support adaptability
- ICER: Integrative Computing Education & Research
 - Change the popular image of computing
 - Encourage curricular experimentation and innovation
 - Make sure introductory students recognize that the field offers many opportunities
 - Strengthen interdisciplinary connections
- Peer institutions
 - Many peer institutions moving in same direction for similar reasons

Increasing the “Footprint” of CS

- Core material everyone sees is streamlined to accommodate

“Footprint” of CS Students See Today

Tracks Allow More Depth...

...in a More Diverse Set of Areas

Total Potential “Footprint” is Larger
Curriculum Revision Process

- Curriculum committee met regularly throughout the Fall to discuss and refine core courses
 - Respective subcommittees formed to define Systems and Theory core
 - Proposals for both Systems and Theory core each revised at least 4 times
- Throughout the Winter, various faculty subcommittees met to define Tracks
 - Proposals for eight initial tracks produced (most with multiple revisions)
- Curriculum committee reviewed and approved proposals
 - Still need full faculty approval
 - That’s one of the reasons we’re all here...

Please Acknowledge Everyone Involved

Curriculum Committee
- Jerry Cain
- Bill Dally
- Vladlen Koltun
- Phil Levis
- John Mitchell
- Andrew Ng
- Nick Parfait
- Eric Roberts
- Mendel Rosenblum
- Mehran Sahami
- Julie Zelenski
- Alex Aiken
- Serafim Batzoglou
- Gill Bejerano
- Ron Fedkiw
- Hector Garcia-Molina
- Leo Guibas
- Pat Hanrahan
- Scott Klemmer
- Daphne Koller
- David Koslow
- Jean-Claude Latombe
- Marc Levoy
- Chris Manning
- Mendel Rosenblum
- Mehran Sahami
- Julie Zelenski
- Nick Parfait
- Eric Roberts
- Alex Aiken
- Serafim Batzoglou
- Gill Bejerano
- Ron Fedkiw
- Hector Garcia-Molina
- Leo Guibas
- Pat Hanrahan
- Scott Klemmer
- Daphne Koller
- David Koslow
- Jean-Claude Latombe
- Marc Levoy
- Chris Manning
- Russ Altman
- Many additional faculty (email/informal meetings)

Shows real dedication to undergraduate education

Outline

- Brief review of current curriculum
- Structure of new curriculum
- CS Core courses
- Initial set of tracks
- Vote

Systems I: Programming Abstractions

- Philosophy: Classic CS2 course: problem solving, basic abstract data types, and recursion
- Basically, our current CS106X/B course
- General Topics
 - Programming methodology (engineering, modularity, documentation)
 - Algorithmic thinking and problem solving
 - Data abstractions
 - Stacks
 - Queues
 - Linked lists
 - Hash tables
 - Binary trees
 - Generics/templates
 - Recursion
 - Procedural recursion
 - Recursive backtracking
 - Searching and sorting
 - Basic algorithm analysis (big O) and comparison

Systems II: Computer Organization and Systems

- Philosophy: From hardware up to the source code
- Heavily modified CS107, with material from CS143 & EE108B
- General Topics
 - Machine architecture
 - Registers, ALU, CPU, RAM, I/O, basic assembly language
 - Caching, pipelining
 - Memory model
 - Pointers, Heap management, garbage collection
 - Low-level polymorphism and runtime type identification
 - Data representation
 - Facility with C programming as part of topical coverage
 - Compilation
 - Function call mechanics and stack frames
 - Semantic analysis
 - Simple (intermediate) code generation
 - Basic concurrency usage
 - Threading
 - Synchronization, locks and semaphores

Systems III: Principles of Computer Systems

- Philosophy: Building larger scale systems using OS and networking abstractions
- Entirely new course (not replacement for CS140 or CS244A)
- General Topics
 - Processes
 - Concurrency mechanics on a single processor
 - Context switching, interrupts and exceptions
 - Forking processes, process mechanics and management
 - Interprocess communication
 - Threading
 - Storage and file management
 - File systems
 - Virtual memory and paging
 - Networking
 - Sockets
 - Blocking vs. non-blocking strategies
 - Transport layer: TCP/IP
 - Network layer: names, routing
 - Understanding of distributed systems
Theory I: Mathematical Foundations of Computing

- Philosophy: Mathematical essentials for CS, with proofs
- New course leveraging CS103/154 (doesn’t replace CS154)
- General Topics
 - Logic and proof techniques (9 lectures)
 - Prop. and predicate logic (with quantification), formal proof methods
 - Applications: Satisfiability, SAT solving (Putnam-Davis)
 - Induction (4 lectures)
 - Formal proofs and applications: program proofs, structural induction
 - Sets, functions, and relations (4 lectures)
 - Theory and applications (error-correcting codes, social networks)
 - Intro to formal languages (1 lecture)
 - DFAs, NFAs, and Regular Expressions (4 lectures)
 - Context-free Grammars (2 lectures)
 - Turing machines (3 lectures)
 - TM, TM program, Undecidability and the Halting problem
 - NP-completeness (3 lectures)
 - P and NP, examples of NP-complete problems and reductions
 - SAT revisited and Cook’s theorem

Theory II: Intro. to Probability for Computer Scientists

- Philosophy: Probability relevant to CS, with applications
- Entirely new course
 - Replaces Stat116, adds CS applications and machine learning
- General Topics
 - Counting and Combinatorics
 - Combinations, Permutations, Pigeonhole principle
 - Relations, partial orders (concepts, definitions, and proofs)
 - Probability theory
 - Random variables and event spaces
 - Conditional probability, independence, conditional independence
 - Distributions: Uniform, Binomial, Multinomial, Normal, Poisson
 - Point estimation, expectation, variance
 - Bayes’ Theorem, Law of large numbers, Central Limit Theorem
 - Hypothesis testing
 - Applications: hashing, PageRank, data analysis, inference
 - Intro. to Machine Learning
 - Hypothesis spaces, learning as search
 - Data fitting, Naive Bayes, Logistic Regression
 - Applications: Email spam filtering, Recommender systems

Theory III: Data Structures and Algorithms

- Philosophy: Analysis of data structures and algorithms
- Streamlined version of CS161 with topics from CS103 added
- General Topics
 - Algorithmic complexity and analysis (4 lectures)
 - Asymptotics: Big Oh, Omega, and Theta notation
 - Recurrence relations
 - Master theorem
 - Randomization, divide and conquer (2 lectures)
 - Introduction to randomized algorithms
 - Quicksort, divide and conquer
 - Heaps and counting sort (1 lecture)
 - Hashing (2 lectures)
 - Tree and graph definitions and properties, BSTs (2 lectures)
 - Greedy Algorithms (including min-cost spanning trees) (2 lectures)
 - Dynamic programming (3 lectures)
 - Graph algorithms, shortest paths, and applications (4 lectures)
 - Blind and heuristic search (A*) in graphs (1 lecture)

Prerequisite Structure

Courses at appropriate level of difficulty to mature students from introductory to depth material in a reasonable manner

Summary of Changes

- CS103 sequence and STAT116 are replaced as Math requirements with Theory I and II
- CS161 incorporated into Theory III (remains CS depth course)
- CS154, CS121/221 (and other application course) not in core
- No change in Math units, 9 net units opened in CS depth
- Systems I considered an Engineering Fundamental
- Systems II and III are CS depth courses
- CS108, EE108B and Systems electives not in core
- 10 net units opened in CS depth
- Existing electives provide 6 additional units of CS depth
- Net result: 25 units opened in CS depth

Outline

- Brief review of current curriculum
- Structure of new curriculum
- CS Core courses
 - Initial set of tracks
 - Vote
Track Structure

- Combination of track requirements and electives satisfies:
 - minimum of 7 courses, and
 - minimum of 25 units
- All tracks have at least 4 (possibly more) required courses
 - Students will generally have room for 2 to 4 elective courses
 - Required senior project is not considered part of track
- Elective courses
 - Set of general CS electives that all students may choose from
 - Additionally, each track specifies track-specific electives that may count as elective courses only by students in that track
 - Track-specific electives allow for additional depth or related interdisciplinary course options

General CS Electives

 *Students may not count both CS121 and CS221, or both CS148 and CS248 toward their major requirements.

 - Very similar to our current set of electives
 - Added courses that are no longer required in major (e.g., CS108, CS121/221)
 - Added some newly proposed undergraduate courses (e.g., CS124, CS142, CS164)

Initial Set of Tracks Areas

- Artificial Intelligence
- Theory
- Systems
- Human-Computer Interaction
- Graphics
- Information
- Bio computation
- Unspecialized
- Individually Designed

AI Track

- **Requirements**
 a) CS221
 b) Any two of: CS223A, CS223B, CS224N, CS226, CS227, CS228, CS229
 c) One additional class from category (b) or from the following:

- **Track electives**

- Courses in categories (b) and (c) above, as well as:

 *Students may not count both Phil51 and CS157 toward major requirements.

Theory Track

- **Requirements**
 a) CS154
 b) Any one of: CS164, CS225, CS229, CS261, CS268, CS361A, CS361B, CS365

- **Track electives**

- Courses in categories (b) and (c) above, as well as:

- CME302, CME305, Phil51*, Phil152

 *Students may not count both Phil51 and CS157 toward major requirements.

Systems Track

- **Requirements**
 a) CS140
 b) One of: CS143 or EE108B
 c) Two additional courses from category (b) or from the following:

- **Track electives**

- Courses in category (c) above, as well as:

- CS240E, CS240K, CS240N, CS240S, CS240U, CS242, CS243, CS244, CS245, EE271, EE282

 *Requires approval of undergraduate advisor.

General CS Electives

 *Students may not count both CS121 and CS221, or both CS148 and CS248 toward their major requirements.

 - Very similar to our current set of electives
 - Added courses that are no longer required in major (e.g., CS108, CS121/221)
 - Added some newly proposed undergraduate courses (e.g., CS124, CS142, CS164)

Initial Set of Tracks Areas

- Artificial Intelligence
- Theory
- Systems
- Human-Computer Interaction
- Graphics
- Information
- Bio computation
- Unspecialized
- Individually Designed

AI Track

- **Requirements**
 a) CS221
 b) Any two of: CS223A, CS223B, CS224N, CS226, CS227, CS228, CS229
 c) One additional class from category (b) or from the following:

- **Track electives**

- Courses in categories (b) and (c) above, as well as:

 *Students may not count both Phil51 and CS157 toward major requirements.

Theory Track

- **Requirements**
 a) CS154
 b) Any one of: CS164, CS225, CS229, CS261, CS268, CS361A, CS361B, CS365

- **Track electives**

- Courses in categories (b) and (c) above, as well as:

- CME302, CME305, Phil51*, Phil152

 *Students may not count both Phil51 and CS157 toward major requirements.

Systems Track

- **Requirements**
 a) CS140
 b) One of: CS143 or EE108B
 c) Two additional courses from category (b) or from the following:

- **Track electives**

- Courses in category (c) above, as well as:

- CS240E, CS240K, CS240N, CS240S, CS240U, CS242, CS243, CS244, CS245, EE271, EE282

 *Requires approval of undergraduate advisor.
HCI Track

- **Requirements**
 a) CS147, CS247 (HCI Foundations)
 b) Any one of: CS148, CS248, CS376, CS377, CS378 (Advanced HCI)
 c) Any one of: CS108, CS140, CS221, CS223B, CS229, CS249A (Buttressing CS)
 d) Any one of: Psych55, Psych252, MS&E184, ME101, ME115 (Designing for People)

- **Track electives**
 - Courses in categories (b), (c), and (d) above, as well as:
 - ArtStudi60, Comm269, CME340, CS447*, CS448B*, Ling180, ME118, MS&E216A, Psych265, Psych211
 *requires approval of undergraduate advisor.

Graphics Track

- **Requirements**
 a) CS248
 (Starting in AY ’09-10, CS148 and CS248 will both be required as a two course sequence)
 b) Any one of: CS205A, CME104, CME108, Math62, Math113
 (Of the choices above, CS205A is strongly recommended as a preferred choice)
 c) Any two of: CS164, CS179, CS205B, CS268, CS348A, CS348B, CS448
 Note: CS164: Computing with Physical Objects (new course by Leo Guibas)
 CS179: Digital Photography (new course by Marc Levoy)

- **Track electives**
 - Courses in category (c) above, as well as:
 - ArtStudi 60, ArtStudi 70, ArtStudi 179, CS48N, CS277, CS326A, CME302, CME306, CME324, EE262, EE264, EE278, EE368, ME101, Psych30, Psych211, STS144

Information Track

- **Requirements**
 a) CS124, CS145
 Note: CS124: From Languages to Information
 (new course by Dan Jurafsky and Chris Manning)
 b) Two courses, which must be from different areas below:
 - Information-based AI Applications
 CS224N, CS224B, CS229
 - Database and Information Systems
 CS140, CS240D, CS245, CS345A, CS345C, CS346, CS347
 - Information Systems in Biology
 CS262, CS270, CS274
 - Information Systems on the Web
 CS276, CS348B, <<Future course on Internet Algorithmics by Rajeev Motwani>>

- **Track electives**
 - Courses in category (b) may also be counted as electives

Biocomputation Track

- **Requirements** (based on BMC Informatics Track)
 - Mathematics: (1 course less than CS)
 - Math 41, Math 42, Theory I, Theory II
 - Science: (1 course less than CS)
 - Phys 41, Chem 31A/B or 31X, Chem 33
 - Bio41, 42, 43 or HumBio2A, 3A, 4A or HumBio Core I, II, III
 - Engineering Fundamentals: (1 course less than CS)
 - CS108B/C, Systems I
 - Elective
 - Additional CS Core: (same as CS)
 - Theory III, Systems II, Systems IV
 - Bioinformatics Track: (6-7 units)
 - Any one of: CS121, CS221, CS228, CS229, CS232B
 - Any one of: CS276, CS277A, CS274, CS275, CS276, CS278, CS279, CS326
 - Biocomputation Electives: (12-13 units; different than general CS electives)
 - Two additional BMC Informatics electives
 - One BMC Cell/Mol elective
 - One BMC Organ elective
 - Total: 94-99 units versus 93 units for Standard CS Track

Unspecialized Track

- **Requirements**
 a) CS154
 b) Any one of: CS140, CS143
 c) One additional class from category (b) or from the following: EE108B, CS144, CS155, CS240D, CS242, CS244
 d) Any one of: CS121 or CS221, CS223A, CS228, CS228, CS229
 e) Any one of: CS145, CS147, CS148 or CS248, CS262

 - This is basically our current curriculum
 - Adapted to fit into new track structure
 - Some additional options for all courses

Individually Designed Track

- **Students may propose Individually Designed Track**
- Must be an intellectually coherent program of study
- Proposal should justify program and why it cannot be satisfied via an existing track

- **Must specify equivalent of track and electives**
- Minimum of 7 courses: at least 4 must be CS courses numbered 100 or above
 - Each course must be taken for a minimum of 3 units
 - Minimum of 25 total units for track + electives

- **Proposal must be approved by undergraduate advisor and Associate Chair**
- Approvals must be obtained at least 2 quarters prior to completion of program

- **Proposal cannot modify any non-track/elective requirements**
 - E.g., SoE requirements (Math, Science, Eng Fundamentals) cannot be modified
 - Must take all CS Core courses
Preliminary Unit Calculations

- Core (30 units)
 - Theory: 3 courses @ 5 units = 15 units
 - Systems: 3 courses @ 5 units = 15 units
- Upper division (28 units)
 - Track: 4-5 courses
 - Electives: 2-4 courses
 - Capstone: 3 units
- Total related units = 58 units (same as now)
 - 10 units are classified as Math
 - 5 units are classified as Engineering Fundamentals
- Total CS depth units = 43 units (same as now)

Curriculum Comparison

<table>
<thead>
<tr>
<th>Current</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming: 3 courses</td>
<td>Systems core: 3 courses</td>
</tr>
<tr>
<td>Theory: (2 + 2 depth): 4 courses</td>
<td>Theory core: 3 courses</td>
</tr>
<tr>
<td>Systems depth: 3 courses</td>
<td>Track (depth): 4-5 courses</td>
</tr>
<tr>
<td>Applications: 2 courses</td>
<td>Electives: 2-4 courses</td>
</tr>
<tr>
<td>Electives: 2 courses</td>
<td>Capstone: 1 course</td>
</tr>
<tr>
<td>Capstone: 1 course</td>
<td>TOTAL: 14-15 courses</td>
</tr>
<tr>
<td>TOTAL: 15 courses</td>
<td>Same number of units in both cases</td>
</tr>
</tbody>
</table>

Outline

- Brief review of current curriculum
- Structure of new curriculum
- CS Core courses
- Initial set of tracks
- Vote

Timeline

- Spring 2006/07: Preliminary agreement on structure.
- Fall 2007/08: Complete definition of core.
- Winter 2007/08: Define initial set of tracks.
 [Vote to adopt new curriculum.]
 Start transition plan for new courses.
- Spring 2007/08: Complete transition plan.
 Publicize new program to students.
- Fall 2008/09: New curriculum requirements in place.
 Begin shift in core course content.
- Winter 2008/09+: Continued development of course contents and new courses.

Thank you for your attention

Questions before voting

Vote! (early and often)
Additional Material

Issues We’ve Considered

- Undergrad program isn’t broken, why fix it?
 - Field has evolved more significantly than curriculum in last 15 years, and will continue to do so
 - Modularity allows for easier evolution of curriculum with the field
 - “Footprint” of CS has potential to be much larger by explicitly providing more options and inter-disciplinary ties

- Students won’t know what to take
 - They don’t need to know right away (common core)
 - Can provide effective advising from faculty and staff

- What if very few students take a particular track?
 - Some MS concentrations are small, but still available
 - Provides useful feedback for future revisions

More Issues We’ve Considered

- Students will take fewer systems courses and potentially have weaker programming skills
 - There is still a substantial amount of programming in curriculum
 - Students will still be well prepared for a broad array of work
 - Not all students want to take high-intensity programming jobs
 - For students who do, the Systems track is likely to be popular
 - Note: Currently, 47% of MS students take Systems specialization

Current Curriculum: Additional SoE Reqs.

- Mathematics
 - Two quarters Calculus (many students receive AP credit)
 - One quarter Probability
 - Two restricted Math electives

- Science
 - Two quarters Physics (Mechanics, Elec. & Magnetism)
 - One restricted Science elective

- Engineering Fundamentals
 - E40: Introductory Electronics
 - One Engineering Fundamental Elective

- Technology in Society (One restricted elective course)