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Abstract

We present a model for constructing regula-
tory networks from gene expression datasets
while accounting for prior biological knowl-
edge in terms of known gene function and
pathway annotations. We will show that
our new approach results in improved per-
formance in terms of three different evalua-
tion metrics compared to an equivalent model
that does not consider such prior biological
knowledge.

1. Introduction

Complex diseases such as cancer involve genetic vari-
ants that are associated with dysfunction of regulatory
factors, effects of which propagate through networks
of molecular interactions and affect a large number
of genes or proteins. Reconstructing such networks
of molecular interactions between potential regulatory
genes and their targets can improve our understanding
of cellular processes that lead to cancer and its pro-
gression. The importance of this problem is reflected
in the large number of papers, published over the last
decade, that have proposed various methods for re-
constructing such networks from high-throughput ge-
nomics datasets (see (Kim et al., 2009) for a review).

Typically, regulatory networks are constructed from
gene expression datasets that measure the expression
levels of tens of thousands of genes in hundreds of
samples. In its simplified form, the task at hand is
to estimate a bipartite network where the weighted
edges represent regulatory interactions between a set
of potential regulators and their inferred targets. The
main challenge is the abundance of spurious correla-
tions between gene expression profiles, exacerbated by
the low signal-to-noise ratio and high-dimensionality
of the high-throughput datasets, which leads to high

false positive rates among the inferred interactions.
Currently, there are two types of approaches for ad-
dressing this issue: (1) dimensionality reduction in
the gene-space, or (2) use of prior biological knowledge
about which regulatory interactions are more plausible
to somehow prone the inferred edges. Though each ap-
proach has its own strengths, combining both of these
approaches can result in improved accuracy and inter-
pretability of the inferred regulatory interactions (e.g.,
(Lee et al., 2009; Novershtern et al., 2011; Lee et al.,
2010)).

Here, building on previous work (Lee et al., 2007;
2009), we propose a model that extends the dimen-
sionality reduction approach by incorporating prior bi-
ological knowledge to construct more accurate and bi-
ologically coherent regulatory networks. In particular,
we adopt the module network approach (Segal et al.,
2003) to dimensionality reduction, by inferring regu-
latory interactions for groups of co-expressed (mod-
ules), and hence possibly co-regulated, genes, simulta-
neously. However, within the same framework, we take
the additional step of using prior biological knowledge,
in the form of pathway and gene set annotations, to in-
fer which regulatory interactions are more likely. The
main challenge here is that a gene can be involved in
tens to hundreds of biological functions or pathways
and it is not a priori known which pathways or gene
set annotations are relevant in a given context (e.g.,
a particular module). Our model offers a principled
and coherent approach for determining the relevance
of prior knowledge in a context-specific manner, and
thus it supports its inferences of regulatory interac-
tions based on correlations in a given dataset and spe-
cific prior annotations.

We evaluate our model, and compare its performance
to a baseline version that doesn’t consider prior knowl-
edge, on a glioblastoma cancer (GBM) dataset from
The Cancer Genome Atlas (TCGA). Our model results
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in improved performance on three different evaluation
metrics: (1) prediction performance in terms of per-
cent explained variance on test data, (2) prediction of
known cancer and GBM genes as regulatory hubs, (3)
coherence of inferred modules in terms of enrichments
of shared up-stream sequence motifs.

2. Methods

In this section, we will first review the module net-
work approach for constructing regulatory networks
from gene expression data. We will then describe our
extension that incorporates prior biological knowledge
when learning such networks.

2.1. Review: Module Networks for
Constructing Regulatory Networks

In its simplified form, constructing a regulatory net-
work involves learning regulatory interactions between
potential regulators and target genes. This problem
can be cast as multiple independent sparse regression
problems. In particular, given a set of r potential reg-
ulators and their expression profiles in n subjects, as
summarized in an n × r matrix X, and the expres-
sion profiles of g genes in n subjects summarized in
the matrix Yn×g, we solve for regulatory interactions
by attempting to predict Y from X (e.g., (Lee et al.,
2009)).

As previously mentioned, the challenges in this setting
are the high-dimensionality of the data (i.e., large g)
and the abundance of spurious correlations between
expression profiles. To help address this issue, the
module network approach makes a biologically intu-
itive assumption that both reduces the dimensionality
of the problem and improves the interpretability of the
learnt networks. In particular, in the module network
approach, target genes are organized into co-regulated
modules that have the same regulatory interactions.
More formally, the learning task can be summarized
as follows:

argmin
W

�

m

�

g∈modulem

||�yg −X �wm||22 + λ
�

m

|�wm| (1)

wherem is the number of modules (note thatm << g),
�yi and �xi are the ith column of X and Y , respectively,
W is a matrix of regression weights with columns �wm

(an r-vector) that represent the interaction weights be-
tween the regulators and all target genes in module m
(referred to as the regulatory program), and |�wm| is
the L1-norm of �wm.

So in the above formulation, target genes are grouped

into modules, and all genes that are a member of the
same module have the same regulatory program (i.e.,
�wm). We can either use a fixed assignment of genes
into module (for example by clustering target genes
based on their expression profiles), or treat module
membership as hidden variables and infer them, along
with �wm’s, in an iterative fashion (as done in (Lee
et al., 2009)). In our experiments, we use the second
approach.

2.2. Transfer Learning and Incorporating
Prior Knowledge

We will use the probabilistic interpretation of the
above model to describe how we incorporate prior bio-
logical knowledge when learning a regulatory network.
In particular, we can represent sparse regression us-
ing a probabilistic formulation by assuming a gaussian
likelihood and a Laplace prior:

p(W,Y,X) ∝
�

m

�

g∈modulem

p(�yg|�wm, X)p(�wm)

=
�

m

�

g∈modulem

N(�yg|X �wm, I)

×
�

r

Lap(wr,m|0, λ−1).

Obtaining the MAP estimates of �wm’s, by directly op-
timizing the logarithm of the above joint likelihood,
results in the same solution as the one obtained by
solving Equation (1).

We will now describe how we use prior biological
knowledge in the context of a given module by using
transfer learning. In particular, we assume that we
have a matrix Fr×f that represents our prior knowl-
edge. Here, we are working with prior knowledge
about biological functions and pathway memberships
(which will refer to as gene annotations), so we have
fr,f = 1 if regulator r has the f th annotation, and
fr,f = 0, otherwise. We obtain such annotations
from the GSEA database (see “Results”). Intuitively,
we would like to assign a prior probability to each
regulator-module interaction based on our prior bio-
logical knowledge. Relying on the probabilistic inter-
pretation of sparse regression, we can achieve our goal
by assigning variable variance parameters λr,m for each
regulatory-module pair. In this way, we set an initial
prior on the likelihood of each interaction. However,
since we often have multiple annotations for each reg-
ulator, we would like to learn how to combine these
annotations to assign such prior probabilities.

Formally, to learn the relevance of this prior knowledge
for each module, we parameterize λr,m as a function of

Fr,: (the rth row of F ): λr,m = h(Fr,:
�bm) where �bm’s
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(vectors of size f × 1) are unknown hyper-parameters,
themselves drawn from a Gaussian distribution that
encourages hyper-parameter sharing across modules,
where h(z) = 1

1+e−z is the sigmoid function. Put to-
gether, we have the following joint likelihood:

p(Y,W,B,X, F )

∝
�

m

�

g∈modulem

p(�yg|�wm, X)p(�wm|�bm)p(�bm)

=
�

m

�

g∈modulem

N(�yg|X �wm, I)

×
�

r

Lap(wr,m|0, λ−1
r,m)

�

r

N(BT
r,:|0, αK−1)

s.t. λr,m =
1

1 + e−Fr,:
�bm

where Br×m is the matrix of hyper-parameters, with
�bm as its mth column, and Br,: denoting its rth row. K
is the precision matrix of the Gaussian distribution (its
derivation is described below), and α is a scalar that
can be set to adjust the extend of hyper-parameter
sharing across modules. optimizing the negative loga-
rithm of the above joint likelihood with respect to W
and B results in the following objective:

argmin
W,B

�

m

�

g∈modulem

||�yg −X �wg||22

+
�

r,m

λr,m|wr,m|+ 2
�

r,m

log(λr,m) (2)

+
�

m

trace(
1

2
αBKBT)

s.t. λr,m =
1

1 + e−Fr,:
�bm

Note that the logarithm term in Equation (2) corre-
sponds to the logarithm of the normalization term for
the Laplace distribution over �wm: since we are opti-
mizing λr,m’s, this term is not a constant anymore (as
in standard sparse regression) and thus must be op-
timized for. Following the terminology used by (Lee
et al., 2009), we call F the matrix of meta-features,
�bm’s are meta-weights, and 1−�λr,m’s are meta-priors.

Although in the above formulation each module has
its own set of meta-priors and meta-weights, we en-
courage parameter sharing across modules by as-
suming a multivariate Gaussian prior on rows of B
(i.e., Br,: ∼ N(0, αK−1)) where the precision ma-
trixKm×m encourages similar modules to have similar
meta-weights. We construct K as a graph Laplacian

where co-expression values between modules indicate
module-module similarities: that is, Ki,j = −ci,j if
ci,j ≥ 0, where ci,j is the correlation coefficient be-
tween mean expression levels of genes in module i and
j, we set Ki,j = 0 if ci,j < 0 and Ki,i = 1, ∀i .

The objective function in Equation (2) is not jointly
convex in W and B, but it is convex in each given a
fixed setting of the other. Therefore, we solve for W
and B by coordinate descent, where we estimate W
and B iteratively.

There are two key differences between what we have
proposed here and the work of (Lee et al., 2009). First,
we allow each module to have its own meta-priors,
but allow sharing of parameters by specifying a mul-
tivariate Gaussian prior on rows of B. Second, by
optimizing the joint likelihood (as opposed to ignoring
the Laplace normalization constant), we have a well-
formed probabilistic model.

3. Results

3.1. Datasets and Pathway/Gene Set
Annotations

We evaluate our model on a glioblastoma cancer
(GBM) dataset consisting of 477 samples and 8000
genes. This dataset was downloaded from the cancer
genome project’s (TCGA) data portal (Level 3 Agi-
lent data). We then filter the genes based on standard
deviation, keeping the top 8000 most variable genes.
We denote genes as regulators if they have a “regu-
latory role” (including transcription regulators, chro-
matin modifiers, and signaling molecules) according to
the Gene Ontology (GO), and treat all other genes as
potential target genes.

We use gene sets and pathway annotations provided
by Broad’s GSEA website (called C2) as prior knowl-
edge. These gene sets were collected from various
sources such as online pathway databases, publications
in PubMed, and knowledge of domain experts. In our
analysis, we only consider gene sets that contain more
than 5 and less than 300 genes.

3.2. Evaluation on GBM dataset

We trained our model, and a baseline version where we
don’t use prior pathway annotations (Equation (1)),
on the GBM data and used BIC to select the pa-
rameter settings for both models. We set the initial
module memberships using affinity propagation clus-
tering (Frey & Dueck, 2007). For our pathway model,
learning consists of (a) estimating the regulatory in-
teractions, �wm’s, for each module m, (b) estimating
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the meta-weights, �bm’s, and the meta-priors λr,m, that
allow for preferential selection of regulatory interac-
tions and (c) re-estimating the module membership
for each target gene using hard EM. For the baseline
model, we (a) estimate regulatory interactions and (b)
re-estimate the module memberships. As we will de-
scribe below, we used three different evaluation met-
rics: (1) prediction performance on test data in terms
of percent explained variance (PEV), (2) prediction of
important GBM or cancer genes as “top” regulators
(e.g., regulatory hubs in the network), (3) concordance
of the final gene modules in terms of sequence motif
enrichment.

First, we evaluated our model based on its test set
prediction. To do so, we trained our model on 2/3
of the data, and predicted the expression levels of all
test genes. We measured the performance in terms
of percent explained variance (defined as PEV(gene
g)=1− MSE

var(�yg)
). As shown in Figure 1, including prior

information drastically improves the prediction per-
formance on the test data compared to the equivalent
baseline version that doesn’t consider such informa-
tion.

Next, we evaluated our model in terms of its prediction
of known GBM or general cancer genes. To do so, we
ranked each regulator based on its weighted interac-
tions with all modules, and then compared our ranked
list of regulators to two different sets: (1) a set of
known somatically mutated GBM genes consisting of
13 genes that were expressed in the GBM dataset, and
(2) a set of all known cancer genes with known somatic
mutation (n = 233). We obtained both of these lists
from The Cancer Gene Census1. We measured the
performance by computing the area under the ROC
curve using either the GBM genes or the general can-
cer genes as the true-positive set. As shown in Figure
2(a), our pathway models results in a significant per-
formance improvement in this evaluation measure.

Finally, we evaluated the inferred module member-
ships by computing the enrichment of genes in a given
module for the same sequence motif (using lists of
genes with the same up-stream motifs from the GSEA
database). As shown in Figure 2(b), the module mem-
berships that are estimated by our pathway model
are more consistent with prior knowledge about co-
regulation.

1
Available from http://www.sanger.ac.uk/genetics/

CGP/Census/.
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Figure 1. Plot shows the cumulative distribution of percent

explained variance (PEV) of target genes (on test data)

when using the pathway model or the baseline model. As

shown, incorporating pathway information results in im-

proved PEV.
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Figure 2. (a) Plot shows the area under the ROC curve

(AUROC) in predicting known cancer genes (bars on the

left) and GBM gene (bars on the right). (b) Plot shows

the number of modules in which members are enriched for

the same up-stream motif.

http://www.sanger.ac.uk/genetics/CGP/Census/
http://www.sanger.ac.uk/genetics/CGP/Census/
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4. Conclusion

We have presented a model for inferring regulatory
networks while accounting for prior biological knowl-
edge. Our model offers a principled and coherent ap-
proach for determining the relevance of prior knowl-
edge in a context-specific manner, and using such in-
formation to infer more informative regulatory inter-
actions. We have shown that, in addition to improved
test set accuracy, using such information leads to more
biologically coherent results.
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