COMPUTATIONAL PREDICTION OF GENE FUNCTION FROM
HIGH-THROUGHPUT DATA SOURCES

Sara Mostafavi

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy
Graduate Department of Computer Science
University of Toronto

Copyright (© 2011 by Sara Mostafavi

Abstract

Computational Prediction of Gene Function from High-throughput Data Sources

Sara Mostafavi
Doctor of Philosophy
Graduate Department of Computer Science
University of Toronto

2011

A large number and variety of genome-wide genomics and proteomics datasets are
now available for model organisms. Each dataset on its own presents a distinct but noisy
view of cellular state. However, collectively, these datasets embody a more comprehensive
view of cell function. This motivates the prediction of function for uncharacterized genes
by combining multiple datasets, in order to exploit the associations between such genes
and genes of known function—all in a query-specific fashion.

Commonly, heterogeneous datasets are represented as networks in order to facilitate
their combination. Here, I show that it is possible to accurately predict gene function in
seconds by combining multiple large-scale networks. This facilitates function prediction
on-demand, allowing users to take advantage of the persistent improvement and prolifer-
ation of genomics and proteomics datasets and continuously make up-to-date predictions
for large genomes such as humans.

Our algorithm, GeneMANIA, uses constrained linear regression to combine multiple
association networks and uses label propagation to make predictions from the combined
network. I introduce extensions that result in improved predictions when the number of
labeled examples for training is limited, or when an ontological structure describing a
hierarchy of gene function categorization scheme is available. Further, motivated by our
empirical observations on predicting node labels for general networks, I propose a new

label propagation algorithm that exploits common properties of real-world networks to

i

increase both the speed and accuracy of our predictions.

11

Contents

Bibliography 1
1 Introduction 1
2 Background 6
2.1 Describing Gene Functions 6
2.2 Describing Genome-Wide Data 8
2.3 Why Represent Genome-Wide Data as Networks? 12
2.4 Constructing Functional Linkage Networks 12
2.5 Network Terminology and Definitions 15
2.6 Predicting Gene Function from a Network 16
2.6.1 Local Neighborhood-Based Approaches 17

2.6.2 Label Propagation Algorithms 19

2.6.3 Other Approaches 24

2.7 Predicting Gene Function from Multiple Networks 27
2.7.1 Weighted Network Combination 29

2.7.2 Probabilistic Functional Linkage Networks 30

2.8 Incorporating Ontology Structure 32
2.8.1 Cascade Classification 33

2.8.2 Reconciliation Methods 35

2.8.3 Structured Output Methods 37

v

2.9

Evaluating Predictions

Predicting Gene Function from Multiple Networks in Seconds

3.1
3.2
3.3

3.4

3.5

Introductiono
Benchmark Networks
GeneMANIA: Fast Prediction of Gene Function from Multiple Networks

3.3.1 Linear Regression for Combining Multiple Networks
3.3.2 Predicting Gene Function from the Combined Network
Results o
3.4.1 Predicting Nucleosome Remodeling Genes
3.4.2 Evaluating GeneMANIA
3.4.3 Predicting Gene Function with Limited Annotation
3.4.4 Example Biological Application

SUMMATY . . . o o v ot e

Incorporating Ontology Structure into Predictions

4.1
4.2

4.3

4.4

Introductiono
Methods
4.2.1 Hierarchical Label Bias
4.2.2 Hierarchical Label Propagation
4.2.3 Down- or Up-Propagation
Results o
4.3.1 Predicting Test Genes
4.3.2 Predicting Novel Genes

SUMMATY . . . o o o o e e

Predicting Binary Node Labels for Very Large Networks

5.1
5.2

Introduction

Benchmark Networks

42
42
43
45
45
51
93
54
95
65
72
73

76
76
78
78
79
83
83
84
88
39

90

5.3 Methods 93
5.3.1 Tterative LPA and Random Walks 93

5.3.2 Weighted Proximal Propagation 98

54 Resultso 102
5.4.1 Predicting Gene Function with WPA 102

5.4.2 Other Applications L. 106

5.5 Summaryo 109

6 Conclusions and Future Work 110
Appendix A 116

vi

List of Tables

2.1
2.2
2.3

5.1

6.1
6.2
6.3
6.4
6.5
6.6

Gene Ontology Evidence Codes 9
Genome-Wide Data and Functional Linkage Networks 13
Examples of Average Precision and AUROC 40

Performance of LPA and WPA on Facebook, Blogs, and Patent networks 106

References for Human Networks 117
References for Small Yeast Networks 117
References for E. coli Networks 118
References for Mouse Networks 118
References for Large Yeast Netowrks 119
References for Fly Networks 120

Vil

List of Figures

2.1

2.2

2.3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

A graphical example of the organization of Gene Ontology 7
A graphical example of scores assigned by label propagation. 21
Example ROC and precision-recall curves 40

Efficiency of the CG algorithm for solving a large sparse system of equations. 52
A graphical example of predicting gene function with GeneMANIA . . . 54

Performance of GeneMANIA on MouseFunc benchmark networks in terms

of AUROC. 56

Performance of GeneMANIA on MouseFunc benchmark networks in terms

of precision at 10% recall. 57
Comparison of GeneMANIA and TSS 60
Comparison of GeneMANIA and the BioPIXIE network and algorithm . 60

Time required by GeneMANIA to predict gene function from multiple

networks 63
Computation time and predictive performance 63
Composition of network weights assigned by GeneMANIA 64

Comparison of several regularization methods in constructing the com-
bined network 65
Performance of networks constructed from each publication in predicting

gene function oL 67

3.12 Mlustration of four different methods for grouping GO categories to use
with SW . . o o 68
3.13 Performance of SW with four different methods for grouping GO categories 69

3.14 Comparison of SW with mean-prior and uniform weighting on the large

yeast benchmark networkso 70
3.15 Performance of SW on human, mouse, fly and E. coli networks 70
3.16 Comparisons of various genome-wide data types 73
4.1 A graphical example of Hierarchical Label Propagation 81

4.2 Cumulative performance of HLBias, HLProp and other methods on the

test set 84
4.3 Average performance of HLBias, HLProp and other methods on the test set 85
4.4 A graphical example of HLBias and HLProp 86
4.5 Cumulative performance of HLBias and HLProp on the novel set in terms

of AUROC« . e 86

4.6 Average performance of HLBias and HLProp on the novel set in terms of

4.7 Average performance of HLBias and HLProp on the novel set in terms of

average Precisiono e 87
5.1 Comparison of LPA with three different normalization methods 94
5.2 Performance of truncated LPA with paths of increasing length 95

5.3 Convergence of random walks on protein- and genetic-interaction networks 98
5.4 TIllustration of WPA compared to LPA on a small hypothetical network . 101

5.5 Comparison of WPA and LPA on protein- and genetic-interaction networks102

5.6 Coefficients assigned by WPA to protein-interaction network 103
5.7 Coefficients assigned by WPA to genetic-interaction network 104
5.8 Coefficient assigned by WPA to Facebook and Blogs networks 107

1X

5.9 Coefficient assigned by WPA to the Patent network

Chapter 1

Introduction

An unrealized goal of computational molecular biology is to determine the functional
roles of all genes (or proteins) in a cell. Even in a well-studied organism like Saccha-
romyces cerevisiae (budding yeast), the precise function® of 15% of the gene complement
(as of April 2010) remains unknown. Initial computational attempts for discerning func-
tion have primarily relied on sequence similarity (homology) to infer the functions of
uncharacterized genes, based on the functions of their homologs. However, this method
on its own has a number of limitations. Sequence similarity is often more informative of
molecular function, rather than higher-level biological roles. Further, evolutionary pro-
cesses like domain shuffling and gene duplication result in homologs that may not have

the same function.

The past decade has seen a large increase in the quantity and variety of publicly avail-
able genomic and proteomic data, aside from sequence information. These genome-wide
data, which encompass gene expression, protein and genetic interaction networks, phy-
logenetic profiles, and domain composition, are available for a large proportion of genes
in a given genome. Each data type captures distinct gene features that provide indirect

information about functional roles of uncharacterized genes. This type of indirect infor-

'We define a precise function as a function that involves 500 or fewer genes.

CHAPTER 1. INTRODUCTION 2

mation can be refined into direct predictions by associating uncharacterized genes with
those with known functions. For instance, genes with similar expression patterns [11], ge-
netic interaction profiles [106, 93], domain composition [36], or phylogenetic profiles [75]
tend to have similar functions. As well, function tends to be shared among genes whose
gene products interact physically [98], or are part of the same complex [102]. Collec-
tively, these observations have led to functional categorization of a number of previously

uncharacterized genes using the so called “guilt-by-association” principle.

However, none of these genome-wide data are comprehensive on their own, and more
accurate predictions can be made by combining multiple data types [48, 97, 74, 95, 56].
A common preliminary step for combining these different data types is to first represent
each as an affinity network (also referred to as functional linkage network or functional
association network or functional interactions). In these networks, nodes represent genes
and the edges represent the strength of evidence for the co-functionality between the
connected genes, as derived from feature similarities according to a given dataset. Most
generally, the problem that we address in this thesis can be stated as follows: given
multiple networks, each constructed from a genomics or proteomics dataset, and a list of
positive genes (those known to be involved in a given function), predict other genes that
are likely to be positives. In machine learning, this problem can be formulated as binary
classification in a transductive setting where both training data (positive genes) and test

data (uncharacterized genes) are available at training time.

Previous approaches to inferring gene functions from affinity networks fall under two
categories: those that make few assumptions and attempt to solve a challenging optimiza-
tion problem [48, 97] and those that simplify the task by making several limiting assump-
tions [63, 64, 102] like independence between the different networks or only consider direct
network neighbors to transfer function between genes. In practice, new experimentally-
derived function assignments and genome-wide datasets are being generated at a rapid

rate. To take advantage of these frequently updated data, it is important to design algo-

CHAPTER 1. INTRODUCTION 3

rithms that can be implemented on “prediction servers”, allowing users to define positive
gene lists and use arbitrary combinations of networks to make “on-demand” function
predictions, as opposed to static databases that attempt to pre-compute a large num-
ber of pre-defined queries. This motivates a design that scales to hundreds of networks
with tens of thousands of genes (nodes). However, the minimal-assumption approach is
not scalable for on-demand predictions, and the simplified approach may be too restric-
tive and is often not robust enough to be used with arbitrary numbers and varieties of

networks.

Therefore, the focus of this thesis is on developing fast yet accurate algorithms for
predicting gene function from multiple networks. We study three related tasks: 1) how
to efficiently combine multiple networks for a given prediction task while accounting
for redundant or irrelevant datasets, 2) how to make predictions from the combined
network, and 3) how to incorporate auxiliary information about gene functions, such as
the hierarchical organization of gene function categories, when making predictions. We
hypothesize that by formulating well-posed convex optimization tasks, we can develop
efficient algorithms that nonetheless make only appropriate assumptions. In particular,
we propose methods that take advantage of the strengths of both of the above approaches;

as we will show, doing so results in both improved performance and efficiency.

More concretely, we introduce a linear regression approach for combining multiple
networks on a query-specific basis and use a version of the label propagation algorithm
[109, 107] to predict gene function from a combined network. This work is encapsulated
in the GeneMANIA framework. Further, we propose extensions to this framework to
improve network integration when only a small amount of labeled data is available, and
to incorporate information about the hierarchical organization of function categories.
Finally, we propose an alternative to label propagation algorithm that results in faster
and more accurate predictions. Applying these methods to several model organisms,

we show that we can simultaneously equal or exceed the accuracy and efficiency of the

CHAPTER 1. INTRODUCTION 4

existing methods. The work in this thesis encompasses the following publications:

e Mostafavi et al. 2008. GeneMANIA: A real-time multiple functional associa-

tion network integration algorithm for predicting gene function. Genome Biology.

(Suppl. 9):S2.

Mostafavi and Morris. 2009. Incorporating the structure of gene ontology hierarchy
when predicting gene function. Proceedings of the Conference on Uncertainty in

Artificial Intelligence (UAI). Montreal, QC.

Mostafavi and Morris. 2010. Fast integration of heterogeneous data sources for

predicting gene function with limited annotation. Bioinformatics. 26:1759-1765.

Costanzo, Baryshnikova, et al. 2010. The genetic landscape of a cell. Science.

327:425-431.

Mostafavi, Goldenberg, and Morris. 2010. Predicting node characteristics from

molecular networks. Methods in Molecular Biology: Network Biology. (In review).

Mostafavi, Goldenberg, and Morris. 2010. Three degrees of propagation. (Under

preparation).

Thesis Outline

The content of this thesis is organized as follows:

e Chapter 2: Background. In this chapter, we provide background on types of gene

function, varieties of genome-wide datasets and functional linkage networks, and
existing approaches to the three tasks that we consider in this thesis: predicting
gene function from a single network, predicting gene function from multiple net-

works, and incorporating ontology structure when making predictions. As well, we

CHAPTER 1. INTRODUCTION 5

describe standard evaluation metrics for assessing the performance of gene function

prediction.

e Chapter 3: Predicting Gene Function from Multiple Networks in Seconds. In this
chapter, we present the GeneMANIA framework, which consists of a constrained
linear regression algorithm for combining multiple networks, and a label propaga-
tion algorithm for predicting gene function from the combined network. We present
experimental results on combining a large collection of networks in several example

organisms and show that GeneMANIA outperforms previous approaches.

e Chapter 4: Incorporating Ontology Structure into Predictions. In this chapter,
we investigate the task of incorporating hierarchical ontology structure into predic-
tions. We propose two new methods for incorporating ontology information based
on label propagation. Experiments show that our methods greatly improve the

performance of gene function prediction.

e Chapter 5: Predicting Binary Node Labels in Very Large Networks. In this chap-
ter, we generalize our framework for inference of node labels from functional linkage
networks and consider the general problem of predicting binary node labels from an
arbitrary network. Motivated by our empirical results for iterative label propaga-
tion, we propose a new approach, weighted proxzimal propagation (WPA), that ex-
ploits empirical properties of real-world networks to make faster and more accurate
predictions. Experimental results on several network types show the advantages of

the proposed approach.

e Chapter 6: Conclusions and Future Work. In this chapter, we discuss future work

and summarize the contributions of this thesis.

Chapter 2

Background

In this chapter we provide background on the three principal tasks that we consider
in this thesis: predicting gene function from a single network, predicting gene function
from multiple networks, and incorporating ontology structure when making predictions.
Before doing so, we define the precise problem setting and relevant terminology. First,
we describe how gene functions are defined and discuss current practices in associating
genes with functions. Then we describe genomics and proteomics datasets that are com-
monly used in the context of guilt-by-association to infer the functions of uncharacterized
genes. Next, we describe how to represent these heterogeneous genomics and proteomics
data sources using networks, and describe relevant network definitions and terminology.
Finally, after describing the existing work on these three aspects of gene function predic-
tion, we describe standard evaluation metrics for evaluating the performance of a function

prediction method.

2.1 Describing Gene Functions

To predict gene function, we use as training data a list of genes currently known to have
a function of interest. We now describe how gene functions are defined and organized.

There are several online databases, such as Gene Ontology (GO) [18], Kyoto Ency-

CHAPTER 2. BACKGROUND 7

Gene
Ontology

Biological Cellular Molecular |
Process Component Function

Response

to Stimulus
Macromolecule
Intercellular Complex
Part Catalytic
Response to Activit
Endogenous Response Y
Stimulus to Stress
Deaminase
Response to Activity ()

? DNA Damage
Stimulus O Cytoplasm

(O DNA Repair

Figure 2.1: A graphical example of the organization of Gene Ontology (GO). This figure
shows the three hierarchies defined by GO (Biological Process, Cellular Components, and
Molecular Function) as well as example functions in each hierarchy.

clopedia of Genes and Genomes (KEGG) [43], and Enzyme Commission (EC) [4], that
both define a controlled vocabulary for describing gene function and provide known lists
of genes associated with each function. GO is one of the most widely used ontologies; it is
organism-independent, and as of 2010 it defines tens of thousands of functions (referred
to as GO terms). Gene Ontology defines three hierarchies of GO terms: Biological Pro-
cesses (BP), Cellular Components (CC), and Molecular Functions (MF). Each hierarchy
organizes GO terms into a directed acyclic graph where the leaves represent most specific
functions and nodes near the root represent the broadest types of function (see Figure
2.1). Further, annotations (defined as the assignment of a gene to a GO term) satisfy
the “true path” rule: genes annotated to a given category are also assigned to all of its

ancestors.

In GO, each annotation is associated with an evidence code. Broadly, there are five
types of evidence codes: annotations based on experimental evidence, reviewed com-

putational analysis, unreviewed computational analysis, author statement, and curator

CHAPTER 2. BACKGROUND 8

statement (see Table 2.1). The unreviewed computational evidence code (called Inferred
from Electronic Annotation (IEA)), is by far the most prevalent type of function an-
notation; for instance, as of October 2010, 50% of GO function annotations in human
are based on IEA evidence alone. When training a classifier, it is standard practice to
discard annotations based on such evidence [76]. This is because such annotations are
themselves computational predictions that have not been reviewed by a curator or pub-
lished elsewhere, and their inclusion results in an over-estimate of performance [82, 76].
In our experiments, we follow the same practice and discard IEA annotations. On the
other hand, only a small fraction of function annotations are derived from computational
methods that combine multiple data sources (RCA evidence code); for instance, 0.01%
of annotation of human genes have an RCA evidence code. This further motivates the
need for scalable computational approaches for making predictions from multiple high-

throughput data sources.

2.2 Describing Genome-Wide Data

We now consider the types of genome-wide data that are used to predict gene function.
Traditionally, protein sequence data has served as one of the most widely used sources
for predicting shared functionality. In recent years, other commonly available data types
include gene expression, protein and genetic interaction networks, protein localization,
and domain composition data. Much of this data is available from online databases such
as BioGRID [91], Gene Expression Omnibus (GEO) [24], Pfam [28], and BioMart [87].

Below, we briefly review these common data types (see Table 2.2 for a summary).

Protein Sequence: Protein sequences are strings of variable lengths constructed from
amino acid molecules. There are twenty standard amino acids that constitute most
proteins in nature. Similarity between protein sequences indicate their evolutionary re-

lationship, and sequence similarity is informative of shared molecular function.

CHAPTER 2. BACKGROUND 9

Table 2.1: List of Gene Ontology evidence codes. Each evidence code is categorized into
one of five broader categories: Experimental Evidence, Computational Analysis, Author
Statement, Curator Statement, and Automatically Assigned. The first four categories
(Experimental Evidence, Computational Analysis, Author Statement, and Curator State-
ment) are reviewed by GO annotators whereas the Automatically Assigned category is
unreviewed by the annotators.

Experimental Evidence Codes

EXP: Inferred from Experiment

IDA: Inferred from Direct Assay

IPI: Inferred from Physical Interaction
IMP: Inferred from Mutant Phenotype
IGI: Inferred from Genetic Interaction
[EP: Inferred from Expression Pattern

Reviewed Computational Analysis Evidence Codes
ISS: Inferred from Sequence or Structural Similarity
ISO: Inferred from Sequence Orthology

ISA: Inferred from Sequence Alignment

ISM: Inferred from Sequence Model

IGC: Inferred from Genomic Context

RCA: Inferred from Reviewed Computational Analysis

Author Statement Evidence Codes
TAS: Traceable Author Statement
NAS: Non-traceable Author Statement

Curator Statement Evidence Codes
IC: Inferred by Curator
ND: No biological Data available

Automatically Assigned Evidence Codes
IEA: Inferred from Electronic Annotation

CHAPTER 2. BACKGROUND 10

Protein Domains and Motifs: Proteins sequences can be decomposed into functional
subunits known as domains. Each domain can be independently folded. For example,
zinc finger domain is a common domain in DNA-binding proteins such as transcription
factors. Motifs are shorter sequences that are found in multiple proteins. For instance,
there are known motifs that encode signaling peptides (e.g. available from SignalP [27]).
Other examples include motifs that encode cellular localization, such as those that are
predictive of cytoplasmic, nuclear, secreted, or transmembrane proteins. In general,
proteins that are comprised of similar domains or motifs may have similar functions [42].
Domain (or sequence motif) data is often represented in an n x d matrix where n is the
number of genes and d is the number of distinct domains. The (4, 7)™ entry in the matrix
represents the presence or absence of the j' domain (or motif) in protein i. Note in this

thesis, we only consider protein domains and not motifs because the former are easier to

define and are readily available in online databases.

Gene Expression: Gene expression studies measure the expression levels (which can
be thought of as activity levels) of all genes (i.e. the gene complement) in a given organism
under varying conditions. The output of these studies can be organized in a matrix G,,«q
where n is the number of genes and d is the number of conditions: the entry g;; is the
expression level of gene ¢ in condition j. Comparison of gene expression levels under
two different conditions reveals indirect information about functional roles of genes: for
instance, comparisons of gene expression levels in healthy and diseased cells can be used
to hypothesize which genes are involved in the given disease. Gene expression datasets
are available for a large number of organisms and study conditions. GEO [24] is one of
the largest repositories of publicly available gene expression datasets—as of 2010, more

than 7,000 gene expression datasets are available for download.

Protein Interaction Networks: Large-scale protein interaction networks are ob-

tained from high-throughput methods that can investigate the presence of physical in-

CHAPTER 2. BACKGROUND 11

teractions between a large fraction of all protein pairs in a given genome. The output
of these studies can be represented by an n x n matrix A where the (4, 7)™ element,
a;j, represents the presence or absence of a physical interaction between proteins 7 and
J. Some studies also report a confidence score or negative logarithm of p-value that is
associated with each interaction. Physical interactions between proteins are crucial for
most cellular functions. For instance, protein complexes are formed from the interaction
of several proteins to carry out specific functions. Co-complex networks are similar to
protein interaction networks with the difference that all proteins that are subunits of
a protein complex are inferred to have a physical interaction. The BioGRID database
[91] is one of the largest repositories of protein interaction data—as of 2010, it contains

251,366 unique interactions reported by over 10,000 publications.

Genetic Interaction Networks: Genetic interaction studies investigate the effect of
a double mutation of a pair of genes compared to single mutations of each. For instance,
synthetic lethality (which is a type of negative genetic interaction) refers to a scenario
where the double mutation results in cell death whereas each single mutation result in a
viable cell. Genetic interaction data is available for most of the genes in Saccharomyces
cerevisiae [19]. This data can be represented using an n x n matrix where the (i, 7)™
entry represents the presence or absence of a genetic interaction (or the corresponding

confidence score) between genes ¢ and j.

Protein Localization: Protein localization data reveals the cellular location of pro-
teins in a cell. The location of the protein in a cell provides specific clues about its
functional role: for example, proteins that are involved in transcription need to be in the
nucleus at some point in time. Localization data is represented by an n x d matrix where
n is the number of genes and d is the number of subcellular compartments; each entry in

this matrix represents the presence or absence of a protein in a given compartment.

CHAPTER 2. BACKGROUND 12

2.3 Why Represent Genome-Wide Data as Networks?

The methods that we present in this thesis rely on representing genomics and proteomics
datasets as networks. There are several reasons for doing so. First, networks allow
for a common representation of the heterogeneous data sources, allowing their eventual
integration. Second, predicting gene function with guilt-by-association essentially relies
on similarities between genes—edges in functional linkage networks naturally capture
strength of similarity between gene pairs. The dimensionality of a functional linkage
network is fixed, where the number of nodes in each network equals the number of genes
in a given genome, whereas, the dimensionality of a feature-based representation depends
on the number of features measured in a given dataset. As well, many graph-theoretic

and machine learning methods are readily adaptable to such networks.

2.4 Constructing Functional Linkage Networks

To predict gene function, we assume that we are provided with networks whose nodes
correspond to genes and whose edges represent the strength of the evidence for co-
functionality between the connected genes. Such networks are referred to as functional
linkage networks (FLNs) or functional association networks. Here we detail the means by
which genomics and proteomics datasets, such as those summarized in the previous sec-
tion, can be represented as networks. Table 2.2 summarizes various types of genome-wide
datasets and the corresponding functional linkage networks.

We broadly classify networks into those that are derived from interaction-based data,
and those that are derived from profile-based data. The former, which include protein
and genetic interactions, are naturally represented as networks. For profile-based datas,
such as gene expression and protein localization, the edges in the corresponding networks
are typically constructed from pairwise similarity scores. In this thesis, we do not use

sequence data, however, below we also describe how sequence data can be converted to

CHAPTER 2. BACKGROUND

13

Table 2.2: Common genomics and proteomics datasets and the corresponding functional
linkage networks that are used for predicting gene function.

Network

Experimental Method

Description

Co-complex
Network

Protein-Interaction
Network

Genetic-Interaction
Network

Co-localization
Network

Co-expression
Network

Transcriptional
Regulatory
Network

Co-inheritance
Network

Co-purification
(e.g.[47])

Two-hybrid (e.g.[31])

SGA(e.g.[93]),
dSLAM (e.g.[72])

GFP fusion (e.g.[40])
Microarray (e.g.[84]),
SAGE[100]

ChIP-on-Chip
(e.g.[51])

An interaction is inferred between members of sub-
units in a purified protein complex.

A direct interaction between two proteins is inferred
based on activation of a reporter gene.

An interaction between a pair of genes is inferred
when their double mutation results in a phenotype
that is unexpected based on the single mutations of
each of the genes alone.

An interaction is inferred from co-localization of two
proteins in the same compartment in the cell.

An interaction is inferred if two genes are co-
expressed over the same conditions.

An interaction is inferred between a gene and its reg-
ulator based on the binding of a protein to genomic
DNA of the corresponding target.

An interaction is inferred based on the similarity of
phylogenetic profiles of a gene pair. The phylogenetic
profile represents the presence/absence of a gene’s
homologues in other organisms.

CHAPTER 2. BACKGROUND 14

FLNs.

The Pearson Correlation Coefficient (PCC) is one of the most commonly used sim-
ilarity metrics for constructing FLNs from profile-based data. In particular, given two
d-vectors x and y representing the profiles of two genes, the PCC is given as:

sy) — Tt =R —) o

V@ =) S -)2 - y)?

where X and y are the means of vectors x and y, respectively. In other words, the PCC
is the dot product between standardized versions of x and y that have mean zero and

standard deviation one.

Networks constructed using PCC (or other similarity metrics) tend to be dense with
many non-zero, yet insignificant, edges. Since only a small fraction of gene pairs are
expected to have non-zero functional interaction, it is standard practice to sparsify func-
tional linkage networks that are derived from profile-based data [105]. A common spar-
sification method is to only consider the top k interactions for each gene and set the
rest to zero. Under experimentation, we have adopted PCC for constructing FLN, and
we sparsify the constructed networks using & = 100 top neighbors. In practice, such
network sparsification does not degrade the performance in predicting gene function [60].
The results that appear in future sections are based on this construction (see Appendix

A for details).

The methods that we describe in this thesis can also be used on networks derived
from sequence similarities. A simple way to construct a network based on sequence sim-
ilarities is to use pairwise sequence alignment scores (or the corresponding negative log
of p-values) computed by the “BLAST” algorithm [3]. There are several other similarity
metrics for assessing pairwise sequence similarities, most of which consider the number
of shared substring of varying lengths (referred to as “k-mers”) (e.g. [52]). More sophis-

ticated approaches, such as the “mismatch kernel” also allow for m mismatches when

CHAPTER 2. BACKGROUND 15

considering substrings of length larger than m ([53]).

2.5 Network Terminology and Definitions

In this section, we briefly review basic network terminology and definitions used in this

thesis.

Representation Network data is represented using a graph G = (V, E) where V' is the
vertex (node) set, n = |V| denotes the number of vertices (nodes), and F is the edge set.
Its common to represent G using a weighted matrix W where the (i, j)™ element w;; > 0
if there is an edge between node ¢ and j. The value of w;; is the edge weight (strength of
the connection) between i and j. Here we assume we have symmetric WT = W weighted
networks. An adjacency matriz A is a binarized version of W where the edge set is {0, 1}:

that is, a;; = 1 whenever w;; > 0, otherwise a;; = 0 .

Node Degree The degree of node 7 refers to the number of neighbors of node ¢ in
W YT Twi; > 0] =377 a;; where [is the indicator function. Weighted node degree
takes into account the edge weights: » " | w;;. We denote node degree by k; and weighted

node degree by d;.

Walks and Paths A walk is defined as a sequence of nodes where each node is adjacent
to (directly connected to) the node that precedes it and the node that follows it in the
sequence. A walk that contain more than one copy of a node has a loop. The length of a
walk is the number of nodes in the sequence. A path is a walk where no node is repeated

(i.e. a walk with no loops).

Diameter The diameter of a network is the greatest (i.e. maximum) shortest path

length (i.e. distance) between any pair of nodes.

CHAPTER 2. BACKGROUND 16

Connectedness A network is connected if there is a path between any pair of nodes.
A connected component is a maximally-sized sub-network of W where there is a path

between any pair of nodes that are in the sub-network.

Clustering Coefficient The clustering coefficient of a node ¢ is the proportion of
neighbors of ¢ that share an edge. If the node degree of 7 is k;, then there are in total
k;(k; — 1)/2 possible connections between neighbors of i. The clustering coefficient is
given by (32, jniwr @) /ki(ki — 1) where i ~ j denotes that there is an edge between i

and j in A.

2.6 Predicting Gene Function from a Network

Having defined a variety of useful data types, and a standard representation in terms of
functional linkage networks, we can now investigate the task of predicting gene function
from networks. In this section, we focus on existing methods for predicting gene function
from a single network. In the next section, we describe methods for combining multiple
networks into a single network, which can then be used to predict gene function.

Given a network W,., over all genes in a genome, and a vector of labels y =
{—1,0, 1}" where positive genes (those known to be involved in a function of interest) are
represented by +1, negatives are represented by -1, and unlabeled genes are represented
by 0, the goal is to predict which of the unlabeled genes are likely to be positives. In gene
function prediction, where negative examples are rarely available, one standard approach
is to assume that all non-positive, non-test genes (or unlabeled genes), are negatives.

The output of the methods that we will describe is a vector of discriminant scores £, 1
where f; represents the likelihood that node i is positive. If the discriminant scores are
continuous, then we can classify genes by setting a threshold. The overall problem has
other interesting instantiations such as predicting disease genes [2], protein-protein inter-

actions [80], subcellular localization [70], and homologous proteins [104] from network-

CHAPTER 2. BACKGROUND 17

based data.

Previous approaches for predicting gene function from a single network can be broadly
categorized as those that only consider a small neighborhood around the positive genes
and those that consider the global network topology. For instance, in the majority-
vote approach, the function of an unlabeled gene is predicted based on the function of
its direct network neighbors, whereas the family of label propagation algorithms (LPA)
assign continuous scores (predicted labels) to all nodes in the network that represent the
frequency that random walks of varying length that start from a given nodes end at a
positive node. Despite this, the complexity of LPA scales with the number of edges in the
network and thus LPA is computationally feasible for very large networks—empirically,
less than 0.1% of total possible edges are typically observed in real-world networks. As
well, many studies have shown that LPA often outperforms other standard classifiers in
a variety of problems [60, 109, 107, 104, 65]. Below, we review local neighborhood-based
methods, several formulations of LPA, and other global based methods that have been

used to predict gene function from a network.

2.6.1 Local Neighborhood-Based Approaches

Majority-vote, one of the first approaches for inference of gene function, is based on the
seminal work of Marcotte and colleagues [56]. In this approach, the function of a gene is
predicted based on the function of the majority of its direct neighbors. Several studies
have extended this approach to include second-degree neighbors [63, 15] or consider a
small neighborhood around genes [38, 108].

As a first attempt, we can calculate the discriminant score for an unlabeled gene i,
denoted by f;, as the weighted sum of the labels of its direct neighbors: f; = Z;L=1 Wi Y;-
However, we can obtain better performance by first normalizing the matrix W using the

weighted node degrees. Doing so results in the expression f; = dii Z;‘:l w;;y; where d; is

the weighted degree of node i: d; =) ; Wij. After normalizing W, the score vector can

CHAPTER 2. BACKGROUND 18

be computed in matrix form as f = D71y where D is a diagonal matrix with diagonal

elements d; (i.e. D = diag(d)).

The matrix P = D~'W is known as the Markov transition matriz (or a singly stochas-
tic matriz). Since all row sums of P equal 1, they are often interpreted as a probability
distribution over random walks starting from a given node: for example, p;; represents
the probability of a random walk from node i to node j and we have) ipij = 1. In-
terpreting P as the Markov transition matrix facilitates the extension of direct neighbor
approach to include indirect neighbors. Furthermore, the random walk interpretation
allows us to better understand local neighborhood-based methods and their relationship

with label propagation.

One can easily extend the above formulation to include indirect neighbors. In par-
ticular, we can obtain the probability of a random walk of length two between all
nodes in the network by computing P?. The (i,7)™ entry of P? is given by [P?];; =
> p1 Pikprj and represents the probability of a random walk of length two from node
i to node j. In this way, we can include P? when calculating the node scores as:
fi = Y20 pigy; + 3274 [P?lijy;. Similarly, this approach can be extended to include
other nodes at a distance of length = (usually r < 4) by noting that [P"];; represents
the probability of a random walk from ¢ to j in r steps. We note that previous ap-
proaches have shown that increasing r beyond two often results in degradation of the

prediction performance (e.g. [15, 63]). We will elaborate on this point when presenting

label propagation.

In the context of the above representation, several existing direct and indirect neighbor-
based methods define node scores as f; = Z?Zl PijY; +E?:1[]52]ijyj where P? is obtained
by an ad-hoc modification of P2, For example, in the BioPIXIE [63] and other similar
approaches [41, 64, 37], the second summation include walks that only go through the
top m genes with highest direct neighbor scores. Another variation was presented by

Chua and colleagues [15] that modified the entries in [P?];; to up-weight an edge between

CHAPTER 2. BACKGROUND 19

1 and 7 if there is both a direct connection and a path of length two between them.

2.6.2 Label Propagation Algorithms

In the last section, we described local neighborhood-based approaches that assign dis-
criminant scores by merely considering direct and second-order neighbors. In this section,
we describe the label propagation algorithm (LPA), a principled generalization of the lo-
cal neighborhood-based approaches that consider walks of all lengths between nodes.
LPA can be derived using an iterative formulation, as the solution to a specific convex
optimization problem, or as the maximum a posteriori (MAP) estimation in Gaussian

Markov Random Fields. Below, we will describe these three formulations of LPA.

Iterative Formulation

Intuitively, label propagation can be understood in terms of the “diffusion” of labels
through the edges of the network. In its iterative formulation, labeled nodes propagate
their initial labels to their neighbors and then on to neighbors of neighbors, and so on.
This process can be defined using the following recursion. At iteration r + 1, the score of
node 7 is computed using a weighted average of the score of its neighbors at the previous

iteration, and its initial label:
LI == Ny + A wy £ (2:2)
j=1

where 0 < A < 1 is the model parameter and fi(o) = y; [107]. Under the condition that

the eigenvalues of W are all in the range [—1, 1] (we denote this condition by p(W) < 1)!

!The condition for the convergence is that p(AW) < 1 but since 0 < A < 1 it is only required that
p(W) < 1.

CHAPTER 2. BACKGROUND 20

the sequence f(") converges to:

f=(1-X)> (W)y. (2.3)

r=0

Note that [W"];; > 0 if there is a walk of length r between nodes ¢ and j. Thus, in
label propagation, discriminant scores can be interpreted as a weighted sum of walks of
all lengths between the nodes. Since 0 < A < 1, the weight assigned to each walk, A",
decreases with increasing distance. Intuitively, LPA assigns a high discriminant score f;
to any node which is connected to the positively labeled nodes with many short walks.
As an example, Figure 2.2 shows the scores assigned by label propagation in a modular
network where nodes are organized into clusters. In this example, there are two positive
nodes; one is a hub that connects multiple clusters and the other is a member of a single
cluster. As shown, LPA assigns high scores to nodes in the top left cluster as they are

connected to a positive node with walks of length both one and two.

Normalizing W ensures that p(IW) < 1; this condition also ensures the convergence of
the infinite sum above (Equation (2.3)). In particular, there are two standard matrix nor-
malization methods: 1) symmetric normalization S = D~Y2W D=2 and 2) asymmetric
normalization P = D™'W (recall that D = diag(d) is the diagonal row sum matrix).
These two normalizations result in two slightly different versions of label propagation.

Plugging in S into (2.3), we obtain:
f=(1-X)) (AS)y (2.4)
r=0

We can see that there are two major differences between LPA and the local-neighborhood
method: in local-neighborhood the infinite sum is truncated at » = 2 and no explicit

parameter is defined to model the effect of increasing walk lengths on the scores.

Given that p(1W) < 1, we can use the following Taylor expansion ([—A)~t =" A"

CHAPTER 2. BACKGROUND 21

(a) Initial Labels (b) First Iteration

Q-@ o) O-@ o)
Q O—/Fo @ oo
O O
O—¢g o~y © Oo—¢g og©

@ O

O-0 0 Q-0 00O o Q-0

O—)1y OO0 Oy oo

o0 O oE=¢ O
(c) Second lteration (d) Final Scores

O-@ o) C-@ o)
O O @) @) O e
O @)

Oo—0p oo © Oo—¢ o030

O o O J) o o ®) §
o5=0) o5=0)

Figure 2.2: A graphical example of label propagation using two positive nodes on a
modular network. Colors indicate the scores: red depicts high and white depicts low.
(a) The initial labels of nodes; two positive nodes are depicted in red, and unlabeled
nodes are white. (b) The scores assigned after the first recursion in Equation (2.2):
f) = AWy + (1 — N)y. (c) The scores assigned after the second recursion: f =
AMVED 4 (1= N)y. (d) The final discriminant scores given by the exact solution to label
propagation. Note that in the second recursion £® all nodes reachable with a walk of
length two are assigned a non-zero value, however, for those nodes not in the top left
cluster this score is very small (and thus the node colors are a very faint pink).

CHAPTER 2. BACKGROUND 22

[77], to compute the exact solution to LPA:
f=(1-N{I -9 y. (2.5)

Alternatively, when using P we get f = (1 — \)(I — AP)~'y. Matrix inversion has
a computational complexity of O(n?®). However, as we will show in Chapter 3, we can
solve for f by using the conjugate gradient algorithm, which scales with the number of
non-zero entries in the matrix S (or P).

Nabieva and colleagues [65] also proposed a variation of label propagation called
FunctionalFlow. Their approach does not explicitly set a decay parameter A\ or down-
weight the influence of hubs by normalization: these criterion are implicitly enforced by
always propagating to shortest-distance neighbors first and subtracting out-flow from in-
flow. Unlike LPA, FunctionalFlow does not have a closed-form solution and the number

of iterations is set by the user.

Convex Optimization Formulation

LPA can also be formulated as a convex optimization problem [107, 109]. LPA’s objective
function minimizes the squared loss between the discriminant scores f and the label vector

y while ensuring that f is smooth on the Laplacian L:
f* = argmin (f —y) (f —y) + MTLf (2.6)
£

where L = (D — W) and D is the diagonal matrix of row sums of W. By noting that
(f—y) (f—y) =3.(fi — v:)? and fTLf = > i Wii(fi — f;)?, we can see that the first
term in the LPA’s objective function encourages the discriminant scores of labeled genes
to be similar to their initial labels and the second term encourages discriminant scores of
neighboring nodes to be similar to each other. Instead of L we can also use the normalized

Laplacian: L = D-Y2LD~1/2 = [— § [107] which often performs better in practice (as

CHAPTER 2. BACKGROUND 23

we will show in Chapter 5). Using L, differentiating (2.6) with respect to f and setting

the derivative to zero we obtain:
f*=1-\N)I-NS) 'y (2.7)

where \' = 1%\ Using L (instead of L) results in £* = (I + AD — A\W) " ly.
One advantage of characterizing LPA in terms of a convex optimization problem con-
sisting of a loss function (squared error) and a regularizer (smoothness on the Laplacian)

facilitates the design of its extensions. For instance, in Chapter 4 we will show how to

extend this formulation to include ontology structure.

Gaussian Markov Random Field

LPA can also be written as the solution to MAP estimation in Gaussian Markov Random
Fields [83]. In this formulation, the nodes in the graph represent the hidden random
variables f;’s and have a joint Gaussian prior: £ ~ N (0, (AL)™!) (where N(0, A) denotes
the Gaussian distribution with zero mean and covariance A). Given an observation value
y; for each node i, the goal is to find a setting of the random variables f that maximizes
the probability of the observations. In particular, in this context, we can find f by solving

the following problem:

£ = argmax p(y[f)p(f) (2.8)
= argmax N(y|f,)N(f|0,(\L)™")
£
= argmax N((I + L)'y, (I +AL)™Y)
£

= (I+AL)7 'y

where the last equality is derived by noting that the expected value of the Gaussian

distribution is also its mode. This representation suggests that the label bias y; can be

CHAPTER 2. BACKGROUND 24

viewed as a noisy estimate of the soft label f;. Consequently, y; can be used to represent
our prior belief about the label of node 7: we will use this interpretation in Chapter 3 and
4 to set the initial labels of the unlabeled genes. Further, this representation allows us to
understand the role of M = (I+AL)~! in terms of the posterior covariance matrix; the it?
diagonal element of M, denoted by my;, represents the posterior uncertainty (variance)

in the estimate f;.

2.6.3 Other Approaches

In this section, we describe two other existing approaches for predicting gene function
from a network: Discrete Markov Random Fields (DMRFs) and Support Vector Ma-
chines (SVMs). SVMs, among the most widely used supervised approaches to prediction
problems, can be easily applied in this setting by converting functional linkage networks
to kernels. As we will show, the formulations of these two methods are similar to that
of LPA. However, to date, these two approaches have not performed as well as LPA or

certain local neighborhood-based methods in predicting gene function [65, 89, 55, 76, 61].

Discrete Markov Random Fields

Discrete Markov Random Fields are another class of methods that have previously been
used to predict binary gene function from a network [44, 23, 99, 65]. In its simplest form,
the binary node states s = {—1,1}", which are used to classify genes, are computed as

the MAP estimate in an Ising model:
s = — argminZwijsisj cs={-1,1}" (2.9)
iy

where the states of the positive and negative genes are constrained to be 1 and -1, respec-
tively. In this way, the above objective function penalizes inconsistent state assignments

to neighboring genes. For the binary case, Equation (2.9) can be solved efficiently using

CHAPTER 2. BACKGROUND 25

the graph cut algorithm (as done in [65]). LPA can be seen as a relaxation of Equation
(2.9) where s = [—1,1]". In practice, by assigning continuous discriminant scores, LPA
performs better than models based on discrete Markov random fields that restrict the

node labels to be binary [65, 89, 61].

Support Vector Machines

A functional linkage network can be easily represented as a kernel matrix and used as
input to a Support Vector Machine (SVM) (for example, as done in [11, 74]). Below,
we first describe the primal SVM formulation and then derive the corresponding dual.
Although the primal formulation assumes that each training example is represented by a
feature vector x;, the dual formulation directly operates on a similarity (affinity) network

K (the kernel matrix) with k;; representing the similarity of examples ¢ and j.

An SVM constructs a separating hyperplane in high-dimensions that separates the
positive and negative examples. The separating hyperplane is chosen as the one that has
the largest distance (margin) to the positive and negative examples. In particular, we

can solve for the normal v to this hyperplane by optimizing the following problem:

1
argmin §||VT||§ Cy(vixg b)) > 1, i ={1,...,n} (2.10)
v,b

)

where v is the vector orthogonal to the separating hyperplane (the normal to the hyper-
plane), b is a scalar representing its intercept, and x; is the feature vector for example i.
The value of y;(vTx;+b) is the margin of the example 7. Once we obtain v, we can classify
test examples j by computing f; = v'x; + b. Equation (2.10) requires that all positive
examples fall on one side of the hyperplane and all negative examples on the other side
(as required by the constraint: y;(v'x; +b) > 1). In the soft-margin formulation, each
training example ¢ is allowed to fall on the “wrong” side of the hyperplane subject to a

penalty, measured by &;. In this case, we can solve for the normal vector that defines the

CHAPTER 2. BACKGROUND 26

separating hyperplane as follows:

argmm —HVT||2 + C’Zfl >0, y(vix; +b)>1-&, i={1,..,n} (2.11)

7)

where C' is the regularization parameter that trades off error against margin. Note that
the feature vectors, x;’s, can be very high-dimensional; however, the dual of the above
objective function allows us to only consider the dot product between feature vectors. In

particular, the Lagrange function of (2.11) is given by:

L(v,b,f,a,n)——HvHQ—i—CZQ—l—Zal1—51 yi(x;v + b)) ngz (2.12)

where n > 0 and a > 0 are the dual variables. Differentiating the Lagrange function
with respect to b, v, &, setting the derivatives to zero, and substituting the appropriate

variables into (2.11), we obtain the dual optimization problem:
1 ~
argmin §aTKa —a'l :a'ly=0,0<a<C (2.13)

where 1 is a vector of ones, l;ij = y;ki;y; (or equivalently K = diag(y)Kdiag(y)) and
kij = x;'x;. The kernel matrix K represents pairwise similarities (e.g. dot products) be-
tween the n examples. In the dual form, we can use any matrix K with k;; = ®(x;)" ®(x;)
for some high-dimensional feature map ®. The problem (2.13) is a quadratic optimiza-
tion problem and can be solved efficiently using, for example, the the SMO algorithm
[79]. See [85] for a review of SVMs and their solution methods. Once we obtain a, we

can compute the discriminant scores for a test example j as follows:

= aikiy;. (2.14)
j

A functional linkage network can be used as a kernel in the SVM formulation as long

CHAPTER 2. BACKGROUND 27

it is positive semi-definite. A network constructed by a dot product to measure pairwise
similarities is symmetric and positive semi-definite and thus is a kernel. Otherwise, the
diffusion kernel introduced by Kondor and Lafferty [46] can be used to convert any
symmetric affinity matrix into a kernel. In particular, the diffusion kernel of an affinity
matrix W is defined by:

el = lim (I+%L>nzl+ﬁL+ —L*+ 55 Sl (2.15)

n—00 2'

where [is a parameter and L is the Laplacian of W (i.e. L = D —W). The construction
of the diffusion kernel is based on the fact that the exponential of a symmetric matrix (i.e.
el for a matrix L) is always positive semi-definite. Note that multiplying the diffusion
kernel with the label vector y results in a vector similar to the one we obtain as the
solution to the label propagation algorithm (see Equation (2.3)), the difference being the
factorial terms in Equation (2.15). However, in the SVM formulation we pre-multiply
each y; with a;. In practice, a tends to be a sparse vector with many zero entries? and
so in the SVM formulation only a select few labeled examples “propagate” their initial
labels. We note that LPA and local neighborhood-based method often result in better
accuracy than SVM in predicting gene function [55, 97, 76]. One explanation for this
observation is that, in this setting, we often only have a few positive examples, which is

in practice insufficient for training SVMs with good generalization performance.

2.7 Predicting Gene Function from Multiple Net-
works

In the previous section, we have focused on methods that use a single functional linkage

network to classify genes. In this section, we consider existing methods for combining d

2By construction, a; > 0 only if 3;(v'x; +b) = 1 — &. In the separable case (i.e. when & = 0, Vi),
a; > 0 only for the support example (those with y;(vTx; +b) = 1).

CHAPTER 2. BACKGROUND 28

functional linkage networks {W7, ..., Wy}, each constructed from a different genome-wide

dataset, when predicting gene function.

As a first attempt, we can construct a combined network by averaging the edges in
the d networks (uniform weights) [74], W* = 2%~ W, and use the combined network
with any of the methods presented in the previous section to obtain the discriminant
scores f. Surprisingly, the performance of this simple approach is often competitive with
that of the more sophisticated approaches described below [54]. However, this method
cannot detect noisy networks or account for redundancy, and in such scenarios results in
degradation of accuracy [54, 60]. Further, different networks may be more suited for pre-
dicting different functions; for instance, shared domain networks are more informative of
molecular functions and not so informative of biological processes. However, this uniform

weights formulation assumes that all networks are equally predictive of all functions.

In this section, we describe two categories of approaches that attempt to use knowl-
edge about gene functions when constructing a combined network. Approaches in the
first category, weighted network combination, solve a challenging optimization task to
optimize a weighted combination of networks for a given prediction task. Approaches in
the second category construct a probabilistic functional linkage network where the edges
in the networks are directly interpreted as probability of co-functionality of the connected
nodes and are used as input to a local neighborhood-based method to predict gene func-
tion. The former approaches result in the state-of-the-art performance, however, their
solution requires long computation times even for small genomes (e.g. eight hours for
predicting gene function from five yeast networks [48]). The latter approaches are limited
by the assumptions that they apply in order to construct a combined network and to

make predictions from the combined network.

CHAPTER 2. BACKGROUND 29

2.7.1 Weighted Network Combination

In this approach, the combined network is constructed as a weighted sum of the individual
networks W* = " aqW; where each network weight a4 reflects the usefulness of a
network for a given prediction task. The state-of-the-art methods assign the network
weights by optimizing the network combination for classification with SVM [48] or label

propagation [97].

For example, Lanckriet and colleagues [48] constructs multiple kernels from various
genomics data sources, and jointly optimizes the kernel weights and the performance of
an SVM classifier that uses the combined kernel as input. To ensure that the combined
kernel remains positive semidefinite, they constrain the network weights to be positive,
a > 0. Further, by requiring that), g = 1 the combined network must be constructed
as a convex combination of the d networks. This approach is referred to as Multiple
Kernel Learning (MKL). Although MKL has been shown to result in good predictive
performance, computing the solution using the semi-definite programming (SDP) ap-
proach of [48] can take hours for small genomes (e.g. yeast). An active area of research
in MKL is to improve the efficiency of the seminal work of [48, 79]. More recent studies
[90, 81] have proposed more efficient approaches where the MKL solution is computed by
alternating between optimizing the kernel weights and training the SVM classifier that
uses the corresponding combined kernel. However, these approaches still require solving

for the solution of a SVM multiple times.

Alternatively, the T'SS algorithm [97] solves a joint optimization problem for determin-

ing the network weights and discriminant scores using the label propagation algorithm:

argmin (f—y) (f—y)+ M, (2.16)
f,a,y
s.t. Z Qq = 1
d

g 2 0) adfT(Ld)f < v Vd

CHAPTER 2. BACKGROUND 30

where f is the vector of discriminant scores, y is the initial label vector, A is a model
parameter and Ly, is the Laplacian for the corresponding network W,;. When there is only
one network, then (2.16) is equivalent to the solution of the convex optimization formu-
lation of LPA (Equation (2.6)); the TSS algorithm extends (2.6) to combine multiple
networks. We can obtain the solution to (2.16) iteratively where each iteration requires
solving a system of linear equations. As reported by the authors [97], in practice, the
TSS algorithm often chooses a very sparse network combination, resulting in sub-optimal
performance compared to an unweighted sum of the networks: note that), g = 1is an
¢1-norm constraint (since o > 0), which is known to result in a sparse solution. To help
address this problem, the authors proposed to use a regularization where each network
weight ay is constrained to be at least ¢y: ag > ¢o. Note that adding such regularization
is only applicable if none of the networks are noisy or irrelevant; otherwise adding a noisy

network can degrade the performance of label propagation.

2.7.2 Probabilistic Functional Linkage Networks

Another approach for combining multiple networks is to first construct edge weights
between genes in individual networks, to represent the probability of co-functionality
according to the positive labels. Once such probabilities are computed, they can be easily
integrated to construct the combined network. The way in which individual probabilities
are calculated, and combined, differentiates the various approaches described in this
section. Generally, once the combined network is constructed, the approaches described
below use a local neighborhood-based method (see Section 2.6.1) to predict gene function
from the combined network (e.g. [95, 63, 64, 101, 41]).

Troyanskaya and colleagues [95] used a simple Bayes network with fixed structure and
conditionally probability tables (CPT) to infer the posterior probability of functional
linkage (co-functionality) given multiple networks p(R;; = 1|{W1, ..., Wy), where R;; =

{0, 1} is a random variable that represents functional linkage between two genes i and j.

CHAPTER 2. BACKGROUND 31

In the simple case of conditional independence between all networks (Naive Bayes) (e.g.

as in [64]), this posterior is proportional to

p(Rij = W, ..., W) Hp(wg.l)][x’ij =1) (2.17)
d

(d)

where w;;” is the observed weight (link) between 7 and j in network d. In [95], most of

the networks were assumed to be conditionally independent given the functional linkage
between the genes (R;;’s); however, a few dependencies were introduced between related
networks (e.g. yeast-two-hybrid and affinity precipitation). The CPTs were determined

by surveying a panel of experts in yeast molecular biology.

Similarly, in the STRING [101] system the posterior probability of functional linkage,

given the observed networks, is given by a Noisy OR model:

p(Ryj =1Wy, ... Wy) =1-J](1 v (2.18)

ij
d

(d)

where v;;” represents the observed evidence for functional linkage between the two genes

5}1) values are derived from the edges (links) in dataset d. In
()

ij

in dataset d. In turn, v

particular, each vg.i)

in network d: vf;l) = fa(w

is computed using a non-linear function of the observed value w

gi), ;). The parameters of this function, 0, are fitted to each
network by using as positives a large number of known functionally related genes. Note

that the Noisy OR function on its own assumes that none of the networks are noisy.

The above two approaches derive their model parameter based on a large collection
of co-annotations; these approaches result in a fixed probabilistic functional linkage net-
work that are used for predicting any given function category. Myers and Troyanskaya
[64] presented a similar model to that of [95] except that they used Naive Bayes (2.17)
and derived the CPTs from co-annotations in a given category of interest: in their ap-

proach, p(wﬁ”Rij) is set to the frequency of observing the edge weight w;; among the

CHAPTER 2. BACKGROUND 32

co-annotated genes in network d. Note that applying this approach requires discretizing
the edge weights.

The Naive Bayes model assumes that all the networks are independent of each other
given the functional linkages and as such does not account for redundancy between
the networks. This assumption may be problematic for combining large numbers of
high-throughput datasets as a large collection of them will likely be co-expression net-
works, and are likely to be redundant with each other. More recently, Huttenhower
and colleagues [41] proposed a simple heuristic for modifying the Naive Bayes model
to account for redundancy. In particular, in Equation (2.17), p(w%|Rij) was replaced
by Z7'(2p(w| Rij) + 2Y¢) where Z is the normalization constant and Uy is a proposed
measure of network redundancy based on the amount of shared information with other
networks. In this way, they proposed to exponentially decrease the weight of a network
based on its estimated redundancy. However, this approach is not able to directly ac-
count for the redundancy of a given edge and only considers the overall distribution of
edge weights.

In summary, the approaches presented above have several shortcomings that make
them less suitable for on-demand prediction of gene function from the resulting combined
network; most of the above methods either assume there are no noisy or irrelevant net-
works (e.g. Noisy OR function) or that the networks are conditionally independent given
the functional linkages between the genes in the training set. One consequence of these
assumptions is that the resulting combined network is often very dense and may contain

many false-positive edges.

2.8 Incorporating Ontology Structure

In the previous section, we provided a literature survey of methods for performing binary

classification using one or many networks. In this section, we describe another relevant

CHAPTER 2. BACKGROUND 33

task: incorporating the hierarchical structure of classification schemes (e.g. the Gene
Ontology DAG) when making predictions. This type of auxiliary information can often
improve the accuracy of binary classifiers. In fact, a previous study has shown that
the mere knowledge of existing annotations of a given gene is predictive of its future
annotations based on the co-annotation patterns observed in GO [45]. To date, most
classification algorithms for predicting gene function that make use of the classification
hierarchy have been built on top of binary classification schemes; efforts in this area can
be divided into cascaded classification approaches and reconciliation schemes that modify
the predictions of independently trained classifiers. Other approaches include standard
structured output classification algorithms that extend SVM; however, these methods
are difficult to employ to this classification problem due to its size (tens of thousands of

genes and thousands of GO categories). Below, we summarize this related work.

2.8.1 Cascade Classification

In the cascade classification scheme, one binary classifier for each category is trained to
predict whether annotation in the child category is warranted given annotation in the
parent category (or categories). To train an internal node or leaf category classifier, only
the genes that are annotated to the corresponding parent category are used as negative
examples. This is because the cascade classifiers estimate the posterior probability of
annotation in a category, given the annotation in the parent category and data (as
explained below). Once trained, these classifiers can be used in a cascade from roots of the
hierarchy down to the most specific annotation(s) warranted. One obvious disadvantage
of this approach is that it limits the number of negative examples available to train each
classifier to those that are annotated to the parent category. Below, we will describe two

cascade classification approaches that build upon logistic regression.

CHAPTER 2. BACKGROUND 34
Cascade Logistic Regression

Obozinski and colleagues [69] used cascade logistic regression to predict gene functions
according to GO annotations. In logistic regression, the goal is to estimate p(y;|x;) where

y; and x; represent the observed value of the binary label and the feature vector for the

i*h example. In the case of binary labels y; = {0, 1}, the logistic regression model is:

exp(b+ v'x;)
;= 1lx;) = 2.19
i = 1) = oo (2.19)

where v and b are the parameters that are fit using Maximum Likelihood Estimation

(MLE) [9]. Assuming that there are ¢ categories (here, gene functions) and y; =
T

WY 99, and that ' and 3™ represent the observed value of the label for ex-

ample ¢ in the category a and its parent category m,, in cascade logistic regression we

have:

p(yilxi) = HP(y§a)|yf”“),Xi) (2.20)
a=1

with p(y® = 1|y\™

§) = 0,x;) = 0. Fitting a logistic regression to each category is similar

to fitting an independent logistic regression except that only genes annotated to the
category of interest and its corresponding parent category are used as training data. In
case of multiple parents, the negative set can be taken to be the genes annotated to one
or both parents. At classification time, the final probabilities are estimated using (2.20)
so the probability of classification in category a is equal to the product of probabilities

assigned from the root to category a.

Tree Hierarchy Logistic Regression

The cascade logistic regression method defined above solves for a parameter vector for

each category (class) in the hierarchy. In contrast, Shababa and Neal [86] proposed Corr-

CHAPTER 2. BACKGROUND 35

MNL, a multinomial logit regression method that enforces similarity between parameter
vectors v, for nearby classes in the hierarchy. Their approach is designed specifically
for tree hierarchies where there are no cycles (i.e. each node has exactly one parent).
Multinomial logit generalizes logistic regression by allowing more than two outcomes.
Given a tree over the classes where there is an edge between every 3® and y(™), Corr-
MNL learns a feature vector ¢, -, for each edge in the hierarchy: the regression coefficient
for each class a is given by the sum of the coefficients ¢, , on the path from the root
node to a. For instance for a chain a — b — ¢ over three classes a, b, ¢, the value of v,
is @y + Gep. As it is currently defined Corr-MNL is only applicable to trees and not
suitable for DAG hierarchies such as GO.

2.8.2 Reconciliation Methods

One disadvantage of training binary classifiers for each gene function (category) individu-
ally is that, in such a setting, there are no guarantees on the consistency of the obtained
classifications: for instance, an example (gene) can be classified into a child category
and not the corresponding parent categories. Reconciliation methods first independently
train binary classifiers for each category and then reconcile their predictions so that the
true path rule is enforced. In particular, given the prediction of ¢ independent classifiers

(a)

05“) for a = {1, ..., ¢} where o, is the prediction of classifier a for gene 7, a reconciliation

method estimates the posterior probability of annotation in category a, given the anno-
(1) en’

tation in all other categories p(y\”|o;) where o; = [0{") ... 0{”] . Below, we describe two

different reconciliation methods.

Bayesian Network Reconciliation

Barutcuoglu and colleagues [8] reconciled predictions of independently trained binary

SVMs by using a Bayesian network. In particular, posterior probabilities were determined

CHAPTER 2. BACKGROUND 36

by using inference in a Bayesian network that modeled the structure of the GO hierarchy:

poily)p(y:) (2.21)

p(yilo:) = 7

where Z is the normalization constant. By modeling the GO hierarchy using a Bayesian
network, where the edges point down from the root to the nodes representing more
specific functions, and assuming that the observed ogc)’s are conditionally independent
(c)

given y,

1 Y

the above expression can be simplified:

plosly:) = Hp (o} |y) (2.22)

Hp @]y, (2.23)

In their work, p(o{”[y*) was set by fitting two Gaussian distributions to the 0{”’s, one
for the positive and one for the negative examples. Although GO is a DAG, the authors
in [8] were able to use exact inference to find the most likely assignments of the hidden
variables y given the observed o by restricting their training data to a small number of

GO categories. The authors in [69] extended this model by using variational inference to

apply Bayesian network reconciliation for all GO categories.

Isotonic Regression

Obozinski and colleagues [69] compared several other reconciliation methods to the Bayes
network model. Of these, the Isotonic Regression (IR) method performed much better
then the others. Given a set of independent predictions for a gene i in ¢ categories o;,

IR [7] solves the following problem:

argmin Z (a) A (2.24)

yfl)a »yEC) a

s.t. yz(ma) > @) Y(a,m,) € GO hierarchy

(2

CHAPTER 2. BACKGROUND 37

where \,’s are the parameters. In particular, IR finds the most likely consistent scores
y; for all ¢ categories. The IR problem can be solved approximately using an algorithm
proposed by Burdako and colleagues [12] called the general PAV algorithm (GPAV).
Obozinski and colleagues [69] found that IR results in significantly better performance
compared to several other reconciliation and cascade classification methods. However,
they also concluded that in practice, most reconciliation methods often result in a degra-
dation of accuracy of binary classifiers. For instance, they found that the solution to IR
was better than those obtained by independent binary logistic regression classifiers in

only a few of their evaluation categories.

2.8.3 Structured Output Methods

A third approach for incorporating ontological information is to enforce a subclass hi-
erarchy upon the output of a prediction method. Structured output methods are a
generalization of SVM for classifying instances to a structured output domain where the
label vectors, y; €), belong to some output space) such as a classification hierarchy [5].
In particular, structured output methods represent the primal SVM problem in a feature
space described by a joint feature map of inputs and outputs ®(x;,y;), where y; = {0, 1}°
is a binary c-vector and ¢ is the number of gene functions. For example, a simple joint
feature map is the Kronecker product of the input and output features ®(x;,y;) = x;Qy;.
The labeled data are classified by evaluating v'®(x;,y;) where v is the parameter vec-

3

tor’. A new instance j (test example) is classified by solving f; = argmax .y f(x;,y)

where) is the output space containing all possible y’s. The optimization problem of

3For simplicity, we have omitted the intercept b.

CHAPTER 2. BACKGROUND 38

solving for v generalizes the multi-class SVM problem [20], which is given by:

1 -
argmin §|]V|]§ + C’Z@:@ (2.25)

v

s.t. Vi: v®(x,y;) — max v &(x;,y;) > 1 —§&
yEV\yi

where (vT®(x;,y;) — maxyey\y, V' ®(x;,y;)) is the margin of the instance (x;,y;). Multi-
class SVM aims to maximize the difference between the true label and the best runner-
up for each example i, increasing the certainty of classification. In the structured SVM
approach, the minimum margin of each example is constrained by a loss A(y;,y) — &
instead of 1 — &;. For example, A counts the number of incorrect labels between y;
and the prediction y: A(y;,y) = >, 1 [y§“> # y@]. A more appropriate measure for a
hierarchy may incorporate the distance between the true category (e.g. gene function)
and the predicted category (such as the one used in [88]). One example of a structured

output SVM is given by [92]:

. 1 -
argmin §||V||§ +C Zfz (2.26)

v,§20

s.t. Vi, Vy € Y : v (®(x5,y:) — B(x5,¥)) > Alyi,y) — &

If we consider all possible output vectors y €) then the number of constraints in
(2.26) grows exponentially with the number of classes ¢. Taskar and colleagues [92] and

Tsochantaridis and colleagues [96] described approximation algorithms for solving (2.26).

Sokolov and Ben-Hur [88] investigated the performance of several versions of struc-
tured output SVM in predicting gene function. Although they showed that structured
output SVM improves on the performance of a binary SVM, a label propagation algo-
rithm that solved binary classification problem out-performed both in terms of standard
evaluation metrics such as precision, recall, and area under the ROC curve [88]. One ex-

planation for this result may be the small number of training examples for many function

CHAPTER 2. BACKGROUND 39

categories in GO.

2.9 Evaluating Predictions

Consider a classifier that assigns continuous-valued discriminant scores f € R"™; we can
derive a binary classification rule from f by setting a threshold ¢ and assigning all in-
stances 7 such that f; > t to the positive class and the rest to the negative class. Area
under the ROC curve (AUROC) and precision-recall are standard measures for evaluat-
ing the performance of a classifier that produces continuous-valued discriminant scores

(or rankings) for varying settings of the threshold. Below, we will describe these metrics.

The ROC (Receiver Operator Characteristics) curve is a graphical plot of the true
positive rate (TPR) as a function of false positive rate (FPR) for a binary classifier as
we vary the discrimination threshold. TPR, which is also known as recall, is the number
of true positives divided by the total number of positives. FPR is the number of false
positives divided by the total number of negatives. The points on the curve are obtained
by varying the classification threshold to retrieve an increasing number of true positives.
Figure 2.3(a) shows an example ROC curve. The area under this curve (AUROC) can
achieve a maximum value of 1 and a minimum of 0; a random classifier will result in
AUROC of 0.5 (as shown by the black line in Figure 2.3(a)). AUROC can also be
interpreted as the probability that a randomly chosen positive is assigned a discriminant
score that is higher than a randomly chosen negative example. AUROC can be affine-
transformed to the Mann-Whitney U-statistic [34]—a non-parametric statistical test for
assessing whether two independent samples of observations have different medians. In
particular, given n™ true positive and n~ true negative examples (with n = n* +n7),
let f; for i = {1,...,n"} denote the discriminant scores assigned to the (true) positive

examples and f;” for j = {1,...,n”} denote the discriminant scores assigned to the (true)

CHAPTER 2. BACKGROUND 40

0.8 0.4

0.6

True positive rate (recall)
Precision

0.2 0.1r

. . . .) ;
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
False positive rate True positive rate (recall)

(a) (b)

Figure 2.3: (a) An example ROC curve (green line); the black line shows the performance
of a random classifier. (b) An example precision-recall curve.

Table 2.3: This table shows three different rankings of six examples, the associated true
labels, and the average precision and AUROC assigned to each ranking.

true labels predicted ranking AUROC average precision
(1,5,4,3,2,6) 0.63 0.7
(1,1,0,0,0,0) (2,3,1,4,5,6) 0.75 0.58

negative example. Then, the area under the ROC curve is given by [34]:

nt n—

1 _
AUROC = —— SN CIif > f] (2.27)
im1 j=1
where I[f;* > f] is an indicator function for f;" > f;. The double summation counts

the number of pairs (f;", f;7) where f;" > f7. In case of tied ranks (i.e. if there exist

. . 1 . . .
fi = f;7), then each such instance contributes 3 to the summation in Equation (2.27).

Precision at a given recall is defined as the fraction of predictions that are true pos-
itives and is given by TP/(TP+FP) where TP is the number of true positives and FP
is the number of false positives at the given recall rate. For a classifier with continuous
discriminant scores, to calculate precision at a given recall, we first set a threshold at
which we retrieve the desired recall and then we compute the precision. Average precision

(at varying recall levels) is equivalent to the area under the precision-recall curve where

CHAPTER 2. BACKGROUND 41

precision is plotted as a function of recall (Figure 2.3(b)).

Note that precision-recall and AUROC are not sensitive to the magnitude of the
discriminant scores and only consider the rankings of the examples. Further, a classifier
that performs better in terms of AUROC is not guaranteed to perform better in terms
of average precision, or vice versa. In general, average precision is more sensitive to a
“good” ranking of a subset of positives at low recall whereas AUROC is more sensitive
to the overall ranking of all the positives. To get a better understanding of the difference
between average precision and AUROC, Table 2.3 shows an example scenario where two
different classifiers produced rankings for six examples with two positives. In the first
ranking, one positive has the rank one (lower rank indicates higher discriminant score)
and the second is ranked fifth. In the second ranking, the two positives are ranked
second and third. AUROC and average precision evaluate these ranking in opposite

ways; average precision prefers the first ranking and AUROC prefers the second ranking.

Chapter 3

Predicting Gene Function from

Multiple Networks in Seconds

3.1 Introduction

In this chapter, we present the GeneMANIA framework for fast prediction of gene func-
tion from multiple heterogeneous data types. Our approach consists of three components:
representing heterogeneous datasets as networks, combining multiple networks based on
a particular prediction task, and making predictions from the combined network. In the
previous chapter, we have defined a common representation of heterogeneous data types
as functional linkage networks, along with existing approaches for combining such net-
works to make predictions about gene function. Here, we retain the functional linkage
network representation and define our approach for combining multiple networks and for
making predictions from the combined network. In particular, in our formulation, we
decouple the network integration step from the label prediction step. However, for each
step we use appropriate algorithms that make relevant assumptions. As we will show,
we can combine multiple large networks (on the order of 20,000 nodes) to predict a given

gene function in seconds. While fast and scalable, our formulation results in the state of

42

CHAPTER 3. PREDICTING GENE FUNCTION FROM MULTIPLE NETWORKS IN SECONDS43

the art for performance on several benchmark datasets.

The rest of this chapter is organized as follows. First we will describe several bench-
mark datasets that we and others have developed for evaluating the performance of gene
function prediction methods. Then we describe our network integration formulation,
which consists of a constrained linear regression algorithm, and propose two extensions,
regularization and simultaneous weights, for scenarios where only a limited number of pos-
itively labeled examples are available. Next, we describe how we make predictions from
the combined network using label propagation. In the results section, we first present
an intuitive example of gene function prediction with GeneMANIA and then extensively

evaluate the GeneMANIA algorithm on several benchmark datasets.

3.2 Benchmark Networks

To evaluate the performance of algorithms for predicting gene function from multiple
networks we use several benchmark datasets for various organisms. We briefly summarize

these benchmarks below—Appendix A provides a reference for each dataset.

e MouseFunc Benchmark consists of ten datasets and 21,603 genes including three
gene expression datasets, one localization dataset, two phylogenetic profile datasets,
one phenotype dataset, one protein interaction network, and two protein domain
composition datasets [76]. This benchmark was used to competitively evaluate

existing methods that have been developed to predict gene function.

e Small Yeast Benchmark (Yeastl5) consists of 15 datasets and 6,413 genes
including two phenotype datasets, seven gene expression datasets, one localization
dataset, one transcriptional regulation dataset, two domain composition datasets,

and two protein interaction networks.

e Large Yeast Benchmark (Yeast44) consists of 44 datasets and 3,904 genes

CHAPTER 3. PREDICTING GENE FUNCTION FROM MULTIPLE NETWORKS IN SECONDS44

including seven gene expression datasets, one localization dataset, and several pro-
tein interaction and genetic interaction networks. The genetic and protein interac-
tions include all available high-throughput interactions deposited in the BioGRID

database (version 2.0.45).

e Fly Benchmark consists of 38 networks and 13,562 genes including 32 gene expres-
sion datasets, four protein interaction networks, and two sets of domain composition

data.

e E. Coli Benchmark consists of seven datasets and 4,175 genes constructed by
[39] which include a protein interaction network, a gene expression dataset, and

three datasets consisting of phylogenetic profiles and shared sequence features.

e Human Benchmark consists of eight datasets and 13,281 genes including two
protein interaction networks, one domain composition dataset, two gene expression

datasets, one phenotype dataset, and one transcriptional regulation dataset.

We construct networks from both profile-based and network-based datasets by using the
Pearson Correlation Coefficient (PCC), with the exception of Yeast44 benchmark where
for the network-based data we include both direct interaction networks and networks
that are derived by using PCC. We set all negative PCC’s to zeros—we do this for
two reasons. First, negative PCC’s are often not informative of co-functionality [50],
and secondly, label propagation relies on having positive edge weights in the combined
network. We also sparsify all networks so that each gene has at most & = 100 neighbors.
To do so, we keep the top 100 interactions for each gene and set the rest to zero (see
Appendix A for details). Subsequent to sparsification, we ensure that the networks are
symmetric by setting each edge w;; to the maximum of w;; and w;;. We sparsify the
networks because the computational time of our algorithms scales with the number of
non-zero edges in the networks. We have shown that sparsification does not decrease the

predictive performance [60].

CHAPTER 3. PREDICTING GENE FUNCTION FROM MULTIPLE NETWORKS IN SECONDS45
3.3 GeneMANIA: Fast Prediction of Gene Function

from Multiple Networks

Below we first describe how we construct a combined network from multiple networks.
We then describe how we use the combined network to make predictions about gene

function.

3.3.1 Linear Regression for Combining Multiple Networks

Given d functional linkage networks {W7, ..., W;}, each over n genes, our goal is to con-
struct a weighted combination of the networks W* = >, ayW,; where the network weights
a = [aq, ..., a4, ag > 0, are optimized for predicting a given gene function of interest. As
we discussed in Chapter 2, one approach to setting the network weights, «, is to iteratively
evaluate successive settings by running the overall prediction method over each resulting
weighted network combination W*. For example, we described the TSS algorithm [97]
that alternates between optimizing the network combination W* and the solution to la-
bel propagation. Although the TSS algorithm results in competitive performance and
reduced computation time compared to the multiple kernel learning approach (e.g. [48]),
in practice, obtaining its solution requires many iterations, where each iteration involves
solving a system of linear equations with n variables. Below, we will show how to obtain
the network weights, «, using constrained linear regression, instead of repeatedly con-
sulting a prediction method as a black box. By construction, linear regression allows us
to account for redundant and irrelevant networks. In our approach, obtaining « requires
solving system of equations with d variables: in our setting this is advantageous because

the number of networks is orders of magnitude smaller than the number of genes.

Our formulation for combining multiple networks is motivated by the kernel target

alignment (KTA) score [21] which measures the fit of a kernel matrix (in our case affinity

CHAPTER 3. PREDICTING GENE FUNCTION FROM MULTIPLE NETWORKS IN SECONDS46

matrix) W for a given classification task where we must predict y = {—1,1}™

D _i; Yiliwi

o yiQ\/ Z” wizj

- yWy (3.1)
\/n trace(WTW)

KTAW,y) =

Intuitively, KTA measures how often the edge (or similarity) between two nodes i and j,
given by w;;, is consistent with the labels of ¢ and j, given by y; and y;. This consistency

measure is then normalized by dividing by a multiple of the square root of the trace of

w.

Similarly, our goal is to construct a composite network by minimizing the number of

inconsistent edges. To do so, we solve the following linear regression problem:

o = argmln Z YiYj — Zakw a>0 (3.2)

i,7=1

Similarly to KTA, our linear regression framework penalizes each edge, wj;’s, that con-
nects two oppositely labeled nodes. Note that we have the constraint o« > 0; this is to
ensure that the Laplacian constructed from W* remains positive-semidefinite. We can

write (3.2) as follows:

o = argmin trace(Zade (yy' Zade>

«

= argmin —2y'W*' y+trace(W* W) (3.3)

«

where we used the fact that trace(W*Tyy") = trace(y "W*Ty) = yTW*Ty. We can also

write the above as:

o =argmin (Qa—t)' (Qa—t), >0 (3.4)

«

CHAPTER 3. PREDICTING GENE FUNCTION FROM MULTIPLE NETWORKS IN SECONDS47

where € is a matrix of dimensions n? x d; each column d of €, denoted by €, is the
vectorized version of network Wy; Q4 = vec(Wy) and vec(W) stacks the columns of W
atop of each other; and t = vec(yy'). To avoid normalizing the columns of 2, we also
estimate a bias term «g by including a column of 1’s in 2. However, we discard this bias
when constructing the composite network. Furthermore, in gene function prediction,

there are often many more negative examples compared to positive; to address this issue

we set y; = % ify,=—1and y; = % if y; = 1, and thus t; = {(n:)Q, %Zni, (n;)+ }”2.

Intuitively, as shown in Equation (3.4), our linear regression formulation treats each
network Wy as a “feature vector” of dimensions n? x 1. In this formulation, our goal is to
construct a linear combination of these feature vectors that best reconstructs the target
vector t. The target vector t correspond to an “ideal” network where pairs of examples

with the same label are connected together with a positive edge (with edge weight of

(n

;)2 for a pair of positive examples and # for a pair of negative examples), and
positive-negative pairs are connected together by a negative edge (with an edge weight
of —’ﬁT”) Using this intuition, our linear regression formulation constructs a linear
combination of the underlying networks that result in a minimal error reconstruction of

the ideal network.

We can solve for the constrained linear regression problem presented in Equation
(3.4) using the active set method [49]. This method partitions the columns of € into
two components: active and inactive sets, represented by Q = [Q4 ;]. Initially, A =0
and I ={1,...,d} where d is the number of columns in 2. At each iteration, the indices
in A and I are updated and at termination a4 is the solution to the smaller linear
regression problem with Q4: a4 = (Q47Q4)"'Q4Ty, a4 > 0, and a; = 0 where 0 is
a vector of zeros. The termination condition is that the gradient of (3.4) is positive:
g = QT (Qa —y) > 0. This is in fact true for g4; for gr this condition indicates that to
improve the objective, a; must decrease (and thus become negative). In each iteration,

we swap an index 4 from [to A which has the most negative g;. Because d is often in

CHAPTER 3. PREDICTING GENE FUNCTION FROM MULTIPLE NETWORKS IN SECONDS48

the order of low hundreds we can solve for the solution very fast as we just have to solve
a d x d linear system at each iteration. In practice, we use a modified version of active
set where we start with Q; = 0 and Q4 = Q. In each iteration, we remove all indices J
in A that are associated with a negative coefficient a; < 0 and add them into I. This
approach is faster than the original active set method as we now remove several indices
from the active set to the inactive set at once, and thus we need fewer iterations to
compute the solution. Empirically, only a few iterations are required to obtain a4 > 0.
To ensure that our method has converged to the optimum solution, at termination we

check for the condition g > 0, which is always satisfied in our experiments.

Regularized Regression

As we will show in the results sections, the above linear regression framework works
well when we have a sufficient number of positive examples (more than 30). However
many gene functions of interest only have a few positives (three to ten). To improve
the performance of linear regression in this setting, we investigate several regularization

methods of the following form:

o = argmin (Qa — t)" (Qa—t) + J(a), a >0 (3.5)

«

where J(a) is the regularization term. In our experiments, we compare ridge, ridge
with prior, Lasso, and elastic net regularization. Below, we will describe each of these

regularization methods.

Ridge Regularization Ridge regression penalizes the £, norm, i.e. J(a) = M\ (a'a),
where \; is a scalar that determines the strength of the regularization. Ridge regression
corresponds to placing a Gaussian prior with mean zero and unit variance on «; that is,
p(a) ~ N(0,1). In addition, we also investigate placing a Gaussian prior on « that has a

mean v and diagonal precision (which is equal to inverse diagonal covariance) matrix S,

CHAPTER 3. PREDICTING GENE FUNCTION FROM MULTIPLE NETWORKS IN SECONDS49

p(a) ~ N(v,S™1), resulting in the following regularization term J(a) = A\ (o — v)S(a —

v); we will refer to this regularization as ridge with prior.

We can obtain the solution to ridge as ay = (24" Q4 + M\ I)'QTy and ridge with
prior as ay = (24" Q4 + AlsA)—lngT(y — A1 S4v) for the positive components a4 > 0.
In practice, we set v in two different ways: uniform-prior and mean-prior. In uniform-

Cll: in mean-prior we first solve

prior, we assume a uniform prior on all d networks vy =
unregularized linear regression on several function (GO) categories and set v4 to the mean
of network d’s unregularized coefficients (mean of «,’s). We set S to a diagonal matrix
with s4q = trace(W; Wy)~'/2. We chose this setting for S so as to penalize networks
with fewer non-zero edges more than those that have a larger number of non-zero edges;

our assumption is that it is harder to set accurate weights for sparser networks rather

than denser ones.

Lasso and Elastic Net Lasso regularization penalizes the ¢; norm: J(a) = A\ >, |aal.
The Lasso regularization encourages a sparse solution where many of the coefficients ay
are set to zero. Elastic net regularization [110] combines the ¢; and ¢; norm penalty
J(a) = A Y Jail + A2 D>, a2, In [110], it was shown that elastic net results in a sparse

solution and often performs better than the Lasso.

To solve the Lasso problem we use the Least Angle Regression (LARS) algorithm [25],
a modified version of forward stagewise regression [35] that solves for the solution « in d
steps by iteratively adding or removing a covariate from the Active set. LARS produces
the entire solution path for Lasso (from a model with 1 to d covariates) and a simple
modification of this algorithm allows us to incorporate the non-negative constraint on «
[25]. Zou and Hastie [110] derived a formulation of the elastic net that can also be solved

by LARS.

CHAPTER 3. PREDICTING GENE FUNCTION FROM MULTIPLE NETWORKS IN SECONDSH0

Simultaneous Weights for Combining Multiple Networks

As we will show in the results section, the ¢ norm regularization with mean-prior dras-
tically improves performance in categories with small number of annotations. However,
assigning this prior requires solving several regression problems to set the mean vec-
tor v. Here, we define a simple modification to the original linear regression problem
in (3.4) that improves the performance without increasing the computational time and
show that it performs better than previous approaches. In particular, in Simultaneous
Weights (SW), instead of assigning network weights for each category separately, we fit
the network weights to a set of related function categories. To do so, we assign the

network weights by solving the following problem:

h
a® = argmin Z (Qa—t,) " (Q —t.), ag >0

@ c=1

where t. = vec(y.y.'), ye is the label vector for function (categories) ¢, and ¢ = {1, ..., h}
are h categories (or gene sets) that are related to each other. In the results sections, we
show several methods for grouping related categories. Once we obtain a*, we construct

W= and use it to predict all h categories.

We can write the above as:
a* = argmin —2a' Qt 4+ ha'Q"Qa

where t = 23:1 t. and so we only need to solve the regression problem once to get

the simultaneous weights. As such, for each category, t¢., takes on one of the three

i)
nd
n

possible values: ()2, (%=)?, — 128 when 4, j are both negative, both positive, and have

n2
the opposite signs, respectively, and n}(n;) is the number of positives (negatives) in
category c. As we will show in the results section, combining weights by SW improves

the performance of the composite networks in predicting the relevant h gene categories

CHAPTER 3. PREDICTING GENE FUNCTION FROM MULTIPLE NETWORKS IN SECONDSH1

while reducing the computation time (as now we are only required to solve for the network

weights once when predicting h categories).

3.3.2 Predicting Gene Function from the Combined Network

To predict gene function from the combined network, we solve a binary transduction
problem with the label propagation algorithm (LPA). That is, given a label vector y =
{—1,k,1}™ where positive examples are represented by y; = 1, negative examples are
represented by y; = —1, and un-labeled genes are assigned y; = k, we compute the

discriminant scores f using LPA by solving:

f* = argmin (f—y) (f —y) + MTL*f
£

= I+ 'y

where L* is the Laplacian constructed from the symmetrically normalized combined
network W* = %" a,Wy,. As we will show, using the Conjugate Gradient algorithm we
can solve for the solution to LPA in seconds.

In [107, 109, 97], the initial label of un-labeled nodes is set to zero, that is k =

nt4n—

" where n* and n~ are
nt+n

0. We set the initial labels of un-labeled genes as k =

the number of positive and negative examples, respectively. This modification results
in better performance with unbalanced classification problems such as gene function
prediction [60]. We have investigated two different methods for setting the negative
examples; we use all non-positive, non-test genes as negatives, we also investigate setting

negatives as those genes annotated to a sibling class in GO.

Efficient Implementation of Label Propagation

As shown above, we can obtain the solution to the label propagation by solving a system

of linear equations, Af = y for example where A = (I + AL). While in principle this

CHAPTER 3. PREDICTING GENE FUNCTION FROM MULTIPLE NETWORKS IN SECONDS52

18— T T T T

112

17

©
cpu time (sec)

16

conjugate gradient iterations

15 L L L L 0
1000 5000 8000 15000 21000

number of genes

Figure 3.1: The number of CG iterations required to compute the label propagation
solution as a function of the number of genes (nodes). Left axis: the number of CG
iterations. Right axis: computation time of label propagation. Experiments were run
using a co-expression network from the MouseFunc benchmark data. The final point on
the plot used the full mouse gene complement (for which data are available), and the
other gene numbers were derived by taking random subsets of the full gene complement.
Distribution is over 100 randomly selected GO categories. The quadratic dependence of
computation time on the number of genes is due to the quadratic growth in number of
non-zero association links in the networks as a function of the number of genes.

system can be easily solved by multiplying the inverse of matrix A by y, doing so has
computational complexity in the order of O(n?®). However, for a sparse and symmetric
matrix A, we can use the conjugate gradient (CG) algorithm with O(m) complexity
where m is the number of non-zero entries in A. CG is an iterative algorithm, each
iteration requiring a matrix-vector and vector-vector products; though it is guaranteed
to converge in n steps (n being the number of nodes), in practice it converges in a few
steps (e.g. 20 iterations on all experiments described below). Here, we briefly describe
the CG algorithm—see [68] for details. In Chapter 5, we provide some reasons why CG

converges so quickly.

Similarly to the Gradient Descent method, CG uses the fact that the solution to

CHAPTER 3. PREDICTING GENE FUNCTION FROM MULTIPLE NETWORKS IN SECONDSH3

Af =y is also a unique minimizer of:
1
argmin §TfAf —fTy. (3.6)
f

In each CG iteration the current estimate of the solution f® is updated as follows:
£ = £=1 — o,p® where o is the search step (a scalar) and p® is the search direction.
In Gradient Descent, the current search direction coincides with the residual (gradient
of f in (3.6)) given by r® = Af¢~1) —y_ 1In contrast, CG ensures that p is conjugate
to pV), j < t, with respect to A (that is p(j)TAp(t) = 0). This criterion results in faster
convergence of CG compared to Gradient Descent [68].

In practice, we have consistently observed that CG converges in fewer than 20 itera-
tions. Figure 3.1 shows the average number of CG iterations and computation time on a
network of varying size (in terms of number of nodes). As shown, the maximum number
of CG iterations observed in any test was 20 and the maximum computation time was

15 seconds.

3.4 Results

We have organized our experiments in four sections. First, we present an intuitive exam-
ple of predicting gene function with GeneMANIA. Next, we report the performance of
GeneMANIA, as well as eight other existing approaches, on the MouseFunc challenge; as
well, we compare the performance of GeneMANIA, the T'SS algorithm, and BioPIXIE on
a smaller set of yeast networks (these results are from [60, 76]). We then investigate the
performance of various regularization methods and SW on yeast networks, and compare
SW with unregularized linear regression on mouse, human, fly, and E.coli networks (these
results appear in [59]). Finally, we describe a slightly different biological application of
GeneMANIA; we show how we can use GeneMANIA to quantify the “uniqueness” of

functional information in a given genomic dataset, in the context of all existing datasets.

CHAPTER 3.

PREDICTING GENE FUNCTION FROM MULTIPLE NETWORKS IN SECONDSH4

Networks legend x SNF12 RTT106 Functions legend
- HTL1 -
zo rx;e&son RSC58 ASF1 nucleosome assembly
o-localization RSC30 g o i
Ganec intractions S Nvm ‘}, swi3 FRO\O\RLF2 IR
. \—‘Rsc:h = ¢ - | \\\CAC2
2N \ S y
M Pnysical interactions MAK31 "\ ‘"RSCB RSC/ oA p—
' STH1 ' AR L
Y 4 ‘\RSC& Lo % | . 7'-‘“VS.PT16\ \
RSC1/% 1 M I S
& - HIR1 .
S \ “Q P \ . POB3
IRC5 \ . pg X
AL () HIR3
N LDB7 NHPGA .
BRF1
NHP6B

Figure 3.2: Predicting genes involved in nucleosome assembly and disassembly in yeast
using GeneMANIA. The query (positive) genes consist of eleven genes represented by
the largest circles (HTL1, RSC3, RSC8, RSC6, LDB7, POB3, RLF2, FTT06, CAC2,
HIR2, NHP6A). The graph shows the local neighborhood around the query genes as
well as the top 20 predictions. The combined network is constructed from co-expression,
co-localization, genetic and protein interactions, and shared phenotype data (shown as
“others” in the legend). Fifteen of the top 20 predictions are either involved in nucleosome
disassembly (pink nodes) or assembly (blue nodes).

3.4.1 Predicting Nucleosome Remodeling Genes

In this section, we present a graphical example of gene function prediction and the benefits
of combining multiple networks. In this example, our goal is to predict genes that are
involved in nucleosome organization (NO). Formally, in GO, the nucleosome organization
function is defined as “a process that is carried out at the cellular level which results in the
assembly, arrangement of constituent parts, or disassembly of one or more nucleosomes”.
In particular, nucleosome assembly and disassembly, the two main descendant categories
of NO, have a great impact on gene regulation as nucleosome remodeling is a necessary
step in DNA transcription, replication, and repair [10]. As of 2010, in yeast, there are
51 genes annotated with nucleosome organization, 19 with nucleosome disassembly (ND)
and 18 with nucleosome assembly (NA).

We use the GeneMANIA prediction server [103] to predict genes involved in nucle-

osome assembly or disassembly (a total of 39 genes), using only 11 positive genes as

CHAPTER 3. PREDICTING GENE FUNCTION FROM MULTIPLE NETWORKS IN SECONDS55

input (we randomly selected 6 positive genes annotated to nucleosome disassembly and 5
annotated to nucleosome assembly). Figure 3.2 shows the local network around the top
20 predicted (high-scoring) genes. Note that co-localization and co-expression networks
play an important role in linking together NA and ND genes whereas ND genes are co-
complexed with each other. Among the top 20 predictions, nine were involved in ND
and six were involved in NA. Three of the predicted genes are annotated to chromatin
organization but don’t have any specific annotations and two of the predicted genes have
no significant annotations related to chromatin remodeling. As shown in this figure, us-
ing multiple network types allows us to identify genes involved in biological process that

may span more than one complex.

3.4.2 Evaluating GeneMANIA

In this section, we extensively evaluate the GeneMANIA algorithm on the MouseFunc
and the Yeast15 benchmarks. As we will show later, other methods that achieve similar

performance as GeneMANIA require orders of magnitude longer computation times.

Performance on MouseFunc

In the MouseFunc challenge [76] the participants were provided with ten high-throughput
datasets consisting of 21,063 mouse genes and function annotations for 1,726 GO Biolog-
ical Process (BP), 326 GO Cellular Components (CC), and 763 GO Molecular Functions
(MF). The contest consists of predicting confidence scores for all genes for each of these
GO categories. The evaluation is based on 1) prediction of gene function for a random
set of genes whose annotation was left out (“test set”) and 2) prediction of gene func-
tion for a set of genes that had acquired new annotations in the span of a year when
the training data was collected from GO (“novel set”). Each participant was allowed to
make two submissions (entries) to the challenge; the second submission was due after all

participants received feedback on their performance.

CHAPTER 3. PREDICTING GENE FUNCTION FROM MULTIPLE NETWORKS IN SECONDSH6
0.95—

- A
091~ 0 N M .
Il M I B
- 1 I I 1 =l
0.85 | . T H
_ n N i | —}
0.8 i] 1 e
ey
I o
- N 1 I GeneMANIA
I GeneMANIA?
071
065
06
055
05 Ll Hi

BP 3 BP 11 BP 31 BP101 cc 3 cci1 ccal cc1o01 MF 3 MF 11 MF 31 MF101
(a) Test Set

08— Il n .
A -
-
-
0.75 i [—
M | —]
i 1 [IGeneMANIA®
il q o
07— n ey
1 q I o
" I 1 I GeneMANIA?
0.65
06
0.55
05

BP 3 BP 11 BP 31 BP101 cc 3 cc11 ccal cc1o01 MF 3 MF 11 MF 31 MF101

AUROC
=}
~
a

T

AUROC

(b) Novel Set

Figure 3.3: Performance of GeneMANIA first (GeneMANIA!) and second
(GeneMANTA?) submission to MouseFunc as well as the performance of other partic-
ipants in terms of area under the ROC curve. The second submissions are labeled by
adding a star % to the team name. The performance is shown as the average in 12 eval-
uation categories. Each evaluation category is constructed by a pairwise combination
of GO hierarchy (BP, CC, MF) and specificity (number of annotations [3-10], [11-30],
[31-100], [101-300]); for example BP3 shows the average performance in predicting BP
categories with 3-10 annotations.

CHAPTER 3. PREDICTING GENE FUNCTION FROM MULTIPLE NETWORKS IN SECONDS5H7

.
06 HEEH
I =
o]
A M | y
o5 B 1
[} 1
o !
I GeneMANIAY
041 N GeneMANIAZ —
I G- i I N
03F i i
0.2F
0.1
o I 1

BP 3 BP 11 BP31 BP10L cc 3 cc11 ccat cclol MF 3 MF11 MF31 MF101

Precision 10%

(a) Test Set

0.5
. i
I GeneMANIA? o
. -

04 DHEHF
| — 0
[—
)
[) .

0.3~ [o+
I G . n
I GeneMANIAY I

02 Il

01r

0 Ll

BP 3 BP 11 BP 31 BP101 cc 3 cc11 ccal cc1o01 MF 3 MF 11 MF 31 MF101

Precision 10%

(b) Novel Set

Figure 3.4: Performance of GeneMANIA first (GeneMANIA!) and second
(GeneMANTA?) submission to MouseFunc as well as the performance of other partic-
ipants in terms of precision at 10% recall. The second submissions are labeled by adding
a star x to the team name. The performance is shown as the average in 12 evaluation
categories.

CHAPTER 3. PREDICTING GENE FUNCTION FROM MULTIPLE NETWORKS IN SECONDSH8

In our first submission (GeneMANIA'!) we used unregularized linear regression for
combining networks and made predictions from the combined network using label prop-
agation, with the initial label of all non-positive examples set to —1 (i.e. initially we
assume all non-positives are negatives). In our second submission (GeneMANIA?) we
made two changes: 1) for each GO category ¢ we only used genes annotated to a sibling
category of ¢, but not to ¢, as a negative examples and assumed all other non-positive
genes are unlabeled, 2) we used ridge regularization with mean-prior where we set the
prior to average linear regression weights when predicting all categories in a given GO
hierarchy (thus we have three different priors: one for predicting BP, one for predicting

CC, and one for predicting MF categories).

We follow the same process as [76] and compare prediction accuracies using average
area under the ROC curve (AUROC) and precision at 10% recall in twelve MouseFunc
evaluation categories. Briefly, the evaluation classes are created by grouping GO cate-
gories corresponding to all pairwise combinations of the three GO branches (BP, cellular
component [CC], and molecular function [MF]) and category size range based on number
of annotations (categories with [3 to 10], [11 to 30], [31 to 100}, and [101 to 300] annota-

tions). We report prediction performance on both the “test” and “novel” benchmarks.

Figure 3.3 shows the performance of GeneMANIA’s first and second submission as well
as the performance of other participants in terms of AUROC. The bars are sorted based on
average performance on all evaluation categories. On the test set, either GeneMANIA! or
GeneMANIA? achieves the best performance on all evaluation categories. On the novel
set, GeneMANIA achieves the best performance in 9 of the 12 evaluation categories.
Note that in general GeneMANIA? drastically improves performance for categories with
a small number of annotations (BP3, CC3, MF3). However, GeneMANIA! has bet-
ter performance on larger categories. The reduced performance of GeneMANIA! in the
categories with the fewest annotations is likely due to overfitting, because we used un-

regularized linear regression to set the network weights. In GeneMANIA2, we switched

CHAPTER 3. PREDICTING GENE FUNCTION FROM MULTIPLE NETWORKS IN SECONDSH9

to ridge regression with mean-prior, which is less prone to overfitting. We suspect that
one reason for the drop in prediction performance of our second submission on the larger
GO categories in the test benchmark is because of our definition of negative examples.
In our first entry, we defined as negative examples all genes with any GO annotation but
not one in the category being predicted. In our second entry, we refined this definition
so that the negative examples for a given category were only those annotated to a sibling
category, that is, one that shared a parent in the GO hierarchy. Although choosing the
genes annotated to sibling categories of interest as negatives improved prediction perfor-
mance on novel tasks, it degraded the prediction performance on the test set. This may
due to the reduction in the number of negative examples. One way to alleviate this effect
is to define a range of label biases between [-1, 0] for genes that have GO annotations

but are not annotated to the function of interest.

Figure 3.4 shows the performance of the various methods in terms of precision at
10% recall. In terms of precision, GeneMANIA achieves the second-best performance or
better in most categories. Similarly, our second submission performs better than the first
when there are a small number of annotations; for larger categories our first submission
often outperforms GeneMANIAZ. As described in Chapter 2, AUROC and precision-
recall prefer different rankings: AUROC prefers a ranking whereby most true positives

¢

have a “reasonable” recall whereas precision at 10% recall only considers the ranking of
10% of the positives. Comparing Figures 3.4 and 3.3, we conclude that GeneMANIA
provides a better overall ranking of true positive genes whereas submission G* has better
precision. However, we note that a classifier dominates in ROC space (i.e. the ROC
curve always lies above) if and only if it dominates in precision-recall space [22]; thus

this result shows that there are some recall values where GeneMANIA results in better

precision compared to submission G*.

CHAPTER 3. PREDICTING GENE FUNCTION FROM MULTIPLE NETWORKS IN SECONDS60

0.8~ [GeneMANIA (5 networks)
[TSS (5 networks)

0.75

0.71

AUROC

0.65

0.6
BP 3 BP 11 BP 30 BP 101

Evaluation Category

Figure 3.5: Comparison of GeneMANIA with the TSS algorithm on a yeast benchmark
dataset consisting of five networks. The performance is measured using 3-fold cross-
validation. These networks were used by both [48] and [97]. The bars show the average
performance on 400 GO BP categories with [3-10] (BP3), [11-30] (BP11), [31-100] (BP31),
and [101-300] (BP101) annotations.

1 "I GeneMANIA (15 networks)
[__1Label Propagation on BioPIXIE
0.95 "] Local Neighborhood on BioPIXIE

LB

BP 3 BP 11 BP 30 BP 101
Evaluation Category

Figure 3.6: Comparison of GeneMANIA with the BioPIXIE network and local
neighborhood-based search method on 400 GO BP categories with [30-10] (BP3), [11-
30] (BP11), [31-100] (BP31), and [101-300] (BP101) annotations. The performance is
measured using 3-fold cross-validation. GeneMANIA shows the performance of Gene-
MANTIA on the Yeastl5 benchmark. We also compared the performance of BioPIXIE
local neighborhood-based method with label propagation applied to the same BioPIXIE
network. The BioPIXIE network is a fixed combined network constructed from hundreds
of small- and large-scale genomics and proteomics publications [63].

Performance on Yeast Networks

We also compared GeneMANIA with BioPIXIE [63] and the T'SS algorithm [97]. To com-

pare GeneMANTIA with the TSS algorithm we used five yeast functional linkage networks

CHAPTER 3. PREDICTING GENE FUNCTION FROM MULTIPLE NETWORKS IN SECONDS61

(obtained from [97]) and created an extended evaluation scheme with 400 GO categories
that we derived from a 2006 version of GO annotations (Figure 3.5). We selected a ran-
dom set of 100 BP categories with [3-10], [11-30], [31-100], and [101-300] annotations. We
report the performance in terms of AUROC using 3-fold cross-validation. We chose to
use this smaller five network benchmark as it was also used in [97, 48] to evaluate the TSS
and the MKL approaches. In particular, using this benchmark, Tsuda and colleagues [97]
showed that the TSS algorithm performs comparably to the more computationally inten-
sive MKL approach [48]. As shown in Figure 3.5, GeneMANIA considerably improves

on the predictive performance of TSS as the number of positive examples increases.

We compared GeneMANIA (ridge with mean-prior) with the BioPIXIE network be-
cause it is currently deployed on a popular website that provides gene function predic-
tions. As described in Chapter 2, the BioPIXIE algorithm [63] first combines multiple
networks using a simple Bayesian network and then makes predictions from the com-
bined network by using a local neighborhood-based method. In our experiments, we
evaluate both the BioPIXIE network, which is available for download!, and the local
neighborhood-based method for making predictions from the BioPIXIE network [63]. Fig-
ure 3.6 shows the performance of label propagation (as in GeneMANIA) on the BioPIXIE
network as well as the local neighborhood-based method deployed on the BioPIXIE algo-
rithm. As shown, extracting the combined network used in BioPIXIE and then applying
label propagation results in a considerable improvement over the local neighborhood-
based method. We note that the BioPIXIE network was built using hundreds of low-
and high-throughput datasets, so the reported performance is with regard to the specific
published network, not the Bayesian network algorithm used to derive the network. In
addition, to illustrate the accuracies attainable with additional datasets, we performed
function prediction with GeneMANIA using a 15 yeast benchmark data (GeneMANIA

(15 networks)) that we derived from recent genomics and proteomics data sources; as

'We obtained the BioPIXIE network from http://avis.princeton.edu/pixie/documents.php

CHAPTER 3. PREDICTING GENE FUNCTION FROM MULTIPLE NETWORKS IN SECONDS62

shown, using only these 15 networks GeneMANIA can achieve similar or better per-
formance than BioPIXIE, which is constructed from a much larger collection of data

sources.

Time Requirement

GeneMANIA requires orders of magnitude less computation time as compared to existing
approaches that achieve similar predictive performance. As shown in Figure 3.7, on both
Mouse and Yeast15 benchmark, GeneMANIA requires less than 20 seconds of compu-
tation time. The efficiency of GeneMANIA can be attributed to both of the following
factors: (a) our linear regression formulation for solving for the network weights, and
(b) fast convergence of the conjugate gradient algorithm (as shown in Figure 3.1) when
solving for the solution of LPA.

Figure 3.8 shows the average time requirement (in seconds) as a function of aver-
age AUROC for GeneMANIA, TSS, and BioPIXIE. Corresponding to the experiments
described above, for the TSS algorithm, the performance is shown on the five network
benchmark. For GeneMANIA, the figure shows the performance using the same five
networks as well as the larger Yeast15 benchmark. For BioPIXIE, the figure shows the
performance of BioPIXIE network when used as input to (a) local neighborhood search
described in [63] and to (b) GeneMANIA’s label propagation algorithm. On the same
input as TSS (five network benchmark), GeneMANIA achieves better performance with
less computation time. We were not able to obtain results for T'SS on the 15 network
benchmark as its current implementation (provided by [97]) did not converge in a rea-
sonable amount of time. Although the BioPIXIE local neighborhood search is fast, its
predictive performance is much lower than GeneMANIA’s label propagation applied to
the same network. Furthermore, GeneMANIA on the 15 network benchmark achieves
higher accuracy and lower computation time compared to label propagation applied to

the much denser BioPIXIE network.

CHAPTER 3. PREDICTING GENE FUNCTION FROM MULTIPLE NETWORKS IN SECONDS63

121

101

Time (seconds)
(o2}

Figure 3.7: Time requirement (in seconds) of GeneMANIA to predict gene function
from multiple networks. The time requirement is shown for predicting 100 random gene
functions with the Yeast15 and the MouseFunc benchmark networks on a standard laptop
computer (2.4GHz and 4GB memory). On each box, the central mark is the median time
for predicting 100 randomly selected GO terms, the edges of the box are the 25th and
75th percentiles, and the whiskers extend to the most extreme values.

60

50 []
40
- @ TSS-5 networks
‘g B GeneMANIA-15 networks
S 30l GeneMANIA-5 networks
e A BioPIXIE
2 BioPIXIE network with LPA
£
20
10 =
oL_A ‘ ‘ ‘ ‘ .)
0.65 0.7 0.75 0.8 0.85 0.9 0.95

AUROC

Figure 3.8: Computation time and predictive performance of GeneMANIA (with 5 and
15 networks), T'SS (with 5 networks), BioPIXIE network and algorithm (BioPIXIE), and
BioPIXIE network with label propagation (BioPIXIE network with LPA).

CHAPTER 3. PREDICTING GENE FUNCTION FROM MULTIPLE NETWORKS IN SECONDS64

Yeast Mouse
]]
Other | Other [I L
I - [Jcc
[I™MF
Shared ph % Shared ph %
ared phenotype ared phenotype
| |
]
Shared domain] Shared domain]
I I
1]
Co-complex|] Co-complex|_____]
| |
1 1
Co-exp______1 Co-exp
0 0.2 0.4 0.6 0 0.2 0.4 0.6

Figure 3.9: Proportion of network weights assigned to different network types by Gene-
MANTA on yeast and mouse networks.

Composition of the Combined Network

Figure 3.9 shows the average weight assigned to each network type for yeast and mouse
networks. It is interesting to observe certain consistent trends that are present in both
yeast and mouse. For example, in general, BP composite networks have a higher contri-
bution from shared phenotype data (e.g. networks derived from OMIM disease data) and
MF composite networks have a higher contribution from shared protein domain data. In
addition, as expected, co-expression data are more informative of BP than the MF func-
tion. In Figure 3.9, the largest variation in weight between organisms is in the “other”
category depicting the data types that were not represented in all three benchmarks.
In yeast this category contains co-localization and co-regulation networks, in mouse it
contains phylogenic profiling data. For yeast, the majority of the network weight in the
“other” category is due to the high, consistent weight placed on protein co-localization

data.

CHAPTER 3. PREDICTING GENE FUNCTION FROM MULTIPLE NETWORKS IN SECONDS65

I LASSO
0.7 I ElasticNet
09 [l unregularized
’ []Ridge (uniform)
I Ridge (mean)

0.6 I Uniform

0.85

0.5
0.8

0.4

Precision at 10% recall
AUC of ROC

0.3 0.7

0.2 0.65

0.1 0.6
BP3 BP11 BP31 BP101 BP3 BP11 BP31 BP101

Category size Category size

Figure 3.10: Comparison of performance of ridge with uniform- and mean-prior, Lasso,
elastic net, and unregularized regression in constructing the combined network. The
performance is shown in terms of both precision at 10% recall (left) and the area under
the ROC curve (right). Error bars represent the standard error.

3.4.3 Predicting Gene Function with Limited Annotation

In the last section, we showed that when there are only a few positive examples available
(e.g. when predicting GO terms which have fewer than 30 annotations) we can greatly
improve the performance of GeneMANIA by using ridge regularization with mean-prior.
In this section, we extensively evaluate several other regularization procedures, along
with Simultaneous Weights (SW), for predicting gene function on several benchmark

datasets.

Effect of Regularization

In this section, we compare the performance of unregularized regression with regression
that is regularized using Lasso, ridge regression with mean- and uniform-prior, elastic net
regularization, and an unweighted network combination. The comparison is conducted

on an extended yeast benchmark dataset (Yeast44). We evaluate the performance on

CHAPTER 3. PREDICTING GENE FUNCTION FROM MULTIPLE NETWORKS IN SECONDS66

all GO terms (downloaded Jan 2007) with 3 to 300 annotations (a total of 1,188 GO

categories) and report the performance using 3-fold cross-validation.

Figure 3.10 summarizes the performance of gene function prediction using each method
for four evaluation categories (BP GO terms which have [3-10], [11-30], [31-100], and [101-
300] positive annotations). Performance is measured in terms of precision at 10% recall
and AUROC. In ridge with mean-prior, we set the prior on each network’s weight to the
average weight that network received in predicting all 1,188 GO biological process cate-
gories with 3-300 annotations. We used the LARS [25] algorithm to solve for the Lasso
and elastic net solutions; we set the number of positive coefficients using F-statistics [35].
For elastic net, we use cross-validation to select the setting of ay from the set [1le-8, le-6,

le-4, le-2, le-1, 1] that results in the highest AUROC.

Figure 3.10 shows that ridge with mean-prior performs considerably better than the
other regularization methods. Consistently with previous studies [54, 97], this figure
shows that an unweighted network combination often performs as well as or better than
an optimized combination of networks in terms of ROC when there are no irrelevant or
redundant networks. This figure also shows that unregularized linear regression performs
as well as or better than Lasso, ridge, or elastic net regularization whereas ridge with
a prior results in a better performance overall. However, as expected, we see that the
performance of unregularized regression improves with increasing number of positives

and thus it is more appropriate to use function-specific weighting in such instances.

One explanation for the observed trend in Figure 3.10 is that regularization methods
that shrink the network weights toward zero are too selective and often identify only a
few relevant networks. For example, on average 45% (20/44), 54% (24/44), and 95%
(42/44) of the networks are assigned a non-zero weight using Lasso, unregularized lin-
ear regression, and ridge with mean-prior, respectively. Note that the best-performing
networks on their own are significantly worse than the combined data (Figure 3.11). As

shown in Figure 3.11, the combined network (constructed using ridge with mean-prior),

CHAPTER 3. PREDICTING GENE FUNCTION FROM MULTIPLE NETWORKS IN SECONDS67

Combined data
Collins PI (2007) HH
Krogan (2006) H
Gavin (2006) H
Tarassov (2008) i
Gasch (2000) i
Gvain (2002) H
Collins GI (2007) H
Hughes (2000) tH
Ho (2002) tH
Yu (2008) H
Spellman (1998) HH
Huh (2003) O
Chua (2006)]
Tong (2004) i
Roberts (2000) i
Pan (2006)
Lin (2008)
Schuldiner (2005)
Miller (2005)
Giaever (2004)
Ptacek (2005)
McClellan (2007)

0 0.1 0.2 0.3 0.4 0.5
Precision at 10% recall

Figure 3.11: The Yeast44 benchmark consist of networks constructed from 22 unique
publications (see Table 6.5 in Appendix A). This figure shows the performance of a
network constructed from each unique publication, in predicting gene function in terms
of precision at 10% recall. The performance of the combined network is shown in red.
We construct the combined network using ridge with mean-prior. Error bars represent
the standard error.

results in an average precision of 0.48 whereas the best performing network on its own

(Collins (PI) 2007 [17]) results in a much lower average precision of 0.22.

Improving the Performance with Simultaneous Weights

As we showed in the previous section, adding ridge with mean-prior regularization to the
network integration component of GeneMANIA considerably improves the performance
when there is a small number of positive examples. However, to obtain the mean-prior
we initially solve a large number of regression problems which increases the computation
time of network integration. Instead, SW simultaneously optimizes the network weights
to a group of GO categories and doesn’t require solving multiple regression problems.
We have investigated four different methods for grouping GO categories for assessing

SW: Tree’, Tree!, Size, and Clust (see Figure 3.12). In Tree? we fit SW to all GO

CHAPTER 3. PREDICTING GENE FUNCTION FROM MULTIPLE NETWORKS IN SECONDS68

(a) Biological
Level 0 Tree? process
| SN,
v = ~ v
X Cell
Level 1 RegcuI;:o[rII;;}cell communication
¥ [269]
reguistion | _Posiive Signal e
L 8 regulation of transducti P
evel 2 of cell cell cycle [4] on [221] extracellular
cycle [6] stimulus [56]
(c) Biological
Tree ! process
ree
. -~ ’ ’ ~ .
| - ~.
Regulation of cell Cel] .
cycle [158} communication
[269]
v [e || s | [Sl
€ regulation of transducti P
of cell cell cycle [4] on [221] extracellular
cycle [6] U stimulus [56]

(b) Biological
process

Size ~
‘~.
same size Regulation of cell CEI,I i
category ([ant.]) cycle [158} Comn;;ggltia on
rZ'ef.Z“ﬁfn Positve Signa e
if cell regulation of transduction extl?acellular
Il cycle [4 221
cycle [6] celcreelU (221] stimulus [56]

(d) DNA packaging
Cell division :|

Clust

exocytosis

endocytosis

cellular localization

Lipid metabolic process

phosphorus metabolic process

regulation of cell cycle :I_

regulation of a molecular
function

Figure 3.12: We define four different methods for grouping GO categories: (a) Tree:
all categories in the same hierarchy in GO, (b) Size: all categories in the same GO
hierarchy with the similar annotation level where we define 4 annotations levels: [3-10],

[11-30], [31-100], and [101-300], (c) Tree':

all categories in the same hierarchy with the

same ancestor at level 1 or lower which has no more than 300 annotations (each term is
considered an ancestor of itself), and (d) Clust#": all categories in the same hierarchy
which are clustered together using hierarchical clustering with n clusters (we vary the

number of clusters n = {3,10,20})

CHAPTER 3. PREDICTING GENE FUNCTION FROM MULTIPLE NETWORKS IN SECONDS69

0.7 0 0.9
B e
0.65 B size
[ITreet
06 [Jost®
= 055 B cust™
g Elcus> 0%
< 0.5 o
2 0.45 %
= 2
2 04
o
9] 0.8
& 0.35
0.3
0.25
0.2 0.75
BP3 BP11 BP31 BP101 overall BP3 BP11 BP31 BP101 overall
Category size range Category size range

Figure 3.13: Performance of SW with four different groupings of GO categories in pre-
dicting BP gene function with 44 yeast networks. The performance is shown in terms
of AUC of ROC and precision at 10% recall using 3-fold CV. Error bars represent the
standard error.

categories in the same GO hierarchy (e.g. BP) with 3-300 annotations, in contrast, in
Tree! we fit the weights to all GO categories in the same hierarchy that have the same
parent category at level 1 or higher. Note that we only consider GO categories that have
less than 300 annotations, therefore, each group in Tree! consists of an ancestor with 300
or less annotations and all of its descendants. In Size, we group GO categories based on
their number of annotation and hierarchy; for example, we fit one set of weights to all
BP categories which have 3-10 annotations. For the Clust method, we use hierarchical
agglomerative clustering (single linkage) with Pearson Correlation Coefficient (PCC),
of binary vectors which represent the gene annotated to categories, as the similarity
metric to cluster GO categories. We investigate three different clusterings with increasing
number of clusters n = {3,10,20}. Note that we only consider GO categories with 3-300
annotations; this is because GO categories with fewer annotations have too few examples
for training and larger GO categories are too general. Once we compute the network
weights based on a group of categories, we construct one composite network and use it

to predict all categories in the given group.

CHAPTER 3. PREDICTING GENE FUNCTION FROM MULTIPLE NETWORKS IN SECONDS70

[Ridge (mean) 0.88
I sw
0.7\ [__]uniform 0.86
— 06 0.84
[
3
‘\; 0.82
g 05 8
= x 08
=)
S <
3 04
8 . 0.78
o
. 0.76
0.3
0.74
0.2
— 0.72
BP3 BP11 BP31 BP101 BP3 BP11 BP31 BP101
Category size Category size

Figure 3.14: Comparison of SW with mean-prior and uniform weighting on large yeast
benchmark networks (Yeast44). Error bars represent the standard error.

(a)fly (b)mouse (c)human (d)ecoli

= = = = 05 *
[© @ [
3 3 * 3 3
= 0.25 *k = 0.25 2035 2 045
X X X X
=] S o3 w8
= 0.2 = 0.2 = = 04
5 5 5 0% 5
@ 0.15 @ 0.15 k7] @
o o o o
o 4 < o

- & o1 & o1 % 015 & 03

[3-10] [11-30] [31-100] [3-100] [3-10] [11-30] [31-100] [3-100] [3-10] [11-30] [31-100] [3-100] [3-10] [11-30] [31-100] [3-100]
Category size range Category size range Category size range Category size range
- (e) ® ()} (h)
o *k *
(6] Q (] Q
Q o8 Q os 2 2
k] k] k] k]
o 0.75 o 0.75 o @)
2 2 2 2
0.7 0.7

0.65 0.65 0.65
[3-10] [11-30][31-100][3-100] [3-10] [11-30][31-100][3-100] [3-10] [11-30][31-100][3-100] [3-10] [11-30][31-100][3-100]
Category size range Category size range Category size range Category size range

Figure 3.15: Comparison of performance of unregularized linear regression (Unreg), SW,
and a fixed uniform combination of networks in predicting gene function in fly ((a) and
(e)), mouse ((b) and (f)), human ((c) and (g)), and E. coli((d) and (h)). The bars show
average performance in BP categories with [3-10] (n=1,101 for fly, 952 for mouse, for
1,188 for human, 528 for E. coli) [11-30](n=668 for fly, 435 for mouse, 510 for human,
177 for E. coli), [31-100](n=426 for fly, 239 for mouse, 254 for human, and 104 for E.
coli) and [3-100] (overall). Error bars show the standard error. Stars indicate significant
different in overall performance ([3-100] category size range) using paired Wilcoxon signed
rank test with a Bonferroni correction: two stars indicate that SW performs significantly
better than both of the other methods and one star indicates that the differences were
significant only between SW and unregularized.

CHAPTER 3. PREDICTING GENE FUNCTION FROM MULTIPLE NETWORKS IN SECONDS71

We have compared the performance of composite networks constructed by SW when
using the above four groupings of GO categories (see Figure 3.13). As shown, the various
versions of SW perform similarly, however, SW-Tree? slightly out-performs the rest. In
addition, Figure 3.13 shows that as the grouping of GO categories becomes more spe-
cific (for example with Tree! and Clust#"), the predictive performance of SW decreases.
In Tree!, each group consists of the ancestor at 300-annotation level with all of its de-
scendants; within these groups 10 of 1188 categories were singletons (did not have any
descendants or ancestors which have 300 or fewer annotations) and 414 of 1188 categories
were placed in a group with 10 or more categories. If we remove these singleton categories
the performance of Tree! is still lower than that of Tree? (average area under the ROC

curve of 0.8067 for Tree! compared to 0.8273 for Tree®).

Figure 3.14 shows the performance of SW (with Tree) compared to ridge with mean
prior and a uniform combination. As shown, SW improves the performance of ridge on
most evaluation categories. We also investigated the performance of unregularized linear
regression, SW, and uniform network weights on fly, mouse, human, and E. coli networks
in all GO categories which have between 3-100 annotations (2,195 for fly, 1,626 for mouse,
1,952 for human, and 809 for E. coli). Figure 3.15 summarizes the performance in terms
of area under the ROC curve and precision at 10% recall in the four species. As shown,
SW is significantly better than unregularized linear regression in the overall category for
fly, mouse, human, and E. coli in terms of AUC of ROC. As well, SW is significantly
better than uniform and unregularized linear regression in terms of precision in fly and
human. In mouse, SW significantly outperforms unregularized linear regression in terms
of precision. We note that the human networks are sparser than those of the other
organisms, which makes it hard to assign accurate network weights (mean number of
interactions is 391,240 in human networks compared to 1,011,400 in mouse) which may
explain the smaller (but significant) improvements of SW compared to uniform weights.

As well, we note that the performance of uniform weights tends to degrade as the number

CHAPTER 3. PREDICTING GENE FUNCTION FROM MULTIPLE NETWORKS IN SECONDS72

of networks increases—this is because of the abundance of gene expression datasets and
correspondingly large number of co-expression networks. For example, out of the 38
networks for fly, 32 are co-expression networks. By not accounting for redundancy, the

performance of uniform weights is significantly worse than that of SW.

3.4.4 Example Biological Application

In the previous sections, we have focused on evaluating GeneMANIA on various bench-
marks and settings. As we have shown, GeneMANIA can be used “on-demand” to make
accurate, up-to-date predictions about gene function. In particular, in Section 3.4.1,
we presented an example application of GeneMANIA to predict genes that are involved
in the process of Nucleosome Remodeling. In addition to facilitating fast and accurate
prediction of gene function, the GeneMANIA framework allows for three other types
of analysis that are useful for biologist: (a) evaluating the “uniqueness” of the func-
tional interactions that are derived from different genomics and proteomics studies, (b)
comparing different data types in their predictiveness of gene functions of interest and
(c) identifying the types of gene functions that are accurately predicted by a dataset of
interest. In this section, we briefly detail the first application.

We can evaluate the uniqueness of a dataset by performing a leave-one-out error
analysis, where we perform gene function prediction with all except one dataset. In
particular, leaving out a dataset that provides unique information results in more error
compared to leaving out datasets that are redundant in the context of the other existing
datasets. This analysis allows biologist to evaluate the novelty of a new dataset in the
context of all existing datasets.

In collaboration with the Boone lab at University of Toronto (department of Molecular
Genetics), we used the GeneMANIA framework to assess the amount of unique informa-
tion that a new genetic interaction dataset, produced by the Boone Lab, contributed

to the existing knowledge about functional relationships between genes. In particular,

CHAPTER 3. PREDICTING GENE FUNCTION FROM MULTIPLE NETWORKS IN SECONDS73

Costanzo (2010) - =

Pan (2006)

-

.

Collins (2007)F H

Wilmes (2008) -

Tong (2004)r —

Fiedler (2009) f+

Schuldiner (2005)

] 1

Lin (2008)

0 0.01 0.02 0.03 0.04 0.05
Loss in Average Precision

Figure 3.16: Loss in average precision as a result of leave-one-out analysis of various
genetic interaction datasets.

we recorded the average precision in predicting all GO biological process categories in
yeast with 3-300 annotations in cross-validation using eight available genetic interaction
datasets. We then removed each dataset in turn and recorded the resulting difference
in precision (Figure 3.16 (results from [19]). In this way, we quantified the average loss
in precision in re-producing the known functional relationships in the absence of each
genetic interaction dataset. Our results showed that this new dataset (i.e. Costanzo
(2010)) provides unique information, resulting in a drastic improvement in predicting

gene function.

3.5 Summary

In this chapter, we have presented GeneMANIA, which consists of a constrained, regular-
ized linear regression for combining multiple networks, and a label propagation algorithm
for predicting gene function from the combined network. We have shown that GeneMA-

NIA is as accurate as, or more accurate than, leading gene function prediction algorithms

CHAPTER 3. PREDICTING GENE FUNCTION FROM MULTIPLE NETWORKS IN SECONDS74

on yeast and mouse despite requiring orders of magnitude less computation time than
many of the alternatives. We achieve the highest accuracy using a version of our algo-
rithm that requires between 10 and 15 seconds computation time on a desktop computer.
Consequently, we have demonstrated that it is possible to design a gene function predic-
tion algorithm that performs on-demand function prediction with the most up-to-date
annotation list and data sources available, while achieving the same or better accuracy

as leading algorithms.

For a given gene function, the output of GeneMANIA is a vector of discriminant scores
f € [—1,1]", where f; represents the likelihood that gene i is involved in the function
of interest. Below, we will describe few approaches for computing confidence scores or

uncertainty for these discriminant scores.

In Section 2.6.2, we described the probabilistic formulation of LPA and showed that
the discriminant scores can be obtained by performing MAP estimation in Gaussian
Markov Random Fields (GMRF), where the discriminant scores are the posterior mean
of a Gaussian distribution. Using the GMRF formulation, we can further obtain the
posterior variance for each discriminant score. In particular, we showed that f = (I +
AL)"'y where f is the mean of the following Gaussian distribution: N((I+ L)y, (I +
AL)™'). Therefore, M = (I+AL)~" is the posterior covariance matrix and M;; represents
the posterior variance of f;. One use of the posterior variance could be as a confidence
interval that indicated our uncertainty in f;. We could, for example, use these confidence
intervals to convert the ranking of the f; value’s into a partial order of f;’s that we are

certain are larger than others.

One simple method to convert the discriminant scores to probabilities is to use Platt’s
method ([78]). In particular, Platt’s method converts discriminant scores f to probabil-
ities using logistic regression: p(y; = 1|f;) = 1/(1 4 e~ (0+01f)) where the parameters by
and by are fitted using cross-validation. To do so, we leave out a portion of positive and

negative examples and compute f. We then fit by and b; using the left out examples with

CHAPTER 3. PREDICTING GENE FUNCTION FROM MULTIPLE NETWORKS IN SECONDS75

the maximum likelihood method.

We can also obtain empirical p-values through permutation tests. To do so, we
permute the initial label vector y multiple times and compute the discriminant scores for
the test examples. Using the obtained discriminant scores on permuted data, we then
construct a null distribution for the discriminant scores. We can then obtain a p-value
for each f; as the fraction of the discriminant scores in the null distribution that are equal

or larger than f;.

Chapter 4

Incorporating Ontology Structure

into Predictions

4.1 Introduction

As we discussed in Chapter 2, hierarchical gene classification schemes, such as Gene
Ontology (GO), organize gene function categories as a directed acyclic graph (DAG) in
which categories describing broader functions (e.g. eye development) are ancestors of
those describing more specific functions (e.g. eye photoreceptor cell differentiation). In
this chapter, we consider ways to incorporate the hierarchical organization of function

categorization schemes such as GO when making predictions about gene function.

Curators annotate genes by associating them with the most specific category (GO
term) supported by the available data. Often genes are annotated using internal nodes
of the DAG because there is insufficient evidence to annotate genes in the most specific,
i.e., leaf, categories. For example, a mouse gene can be annotated as being involved in
development if mice with defective copies of that gene die as embryos, before further
investigations are done to determine whether the gene functions in, e.g. eye, heart, or

brain development. These internal node annotations can provide helpful hints when

76

CHAPTER 4. INCORPORATING ONTOLOGY STRUCTURE INTO PREDICTIONS 77

classifying genes in descendent categories, so long as the classification algorithm is able

to incorporate prior knowledge about the hierarchy.

Here, we introduce two new classification methods that leverage DAG-based cate-
gorization hierarchies. Both of our algorithms extend the label propagation algorithm
[107, 109]. Our interest in this algorithm stems from its success at predicting gene func-
tion compared with other binary and hierarchy-based classification schemes [76, 60, 97].
Our first method, which we call Hierarchical label propagation (HLProp), replicates the
affinity (similarity) network for each category and then links the nodes representing the
same gene in parent and child categories, thus ensuring that the discriminant scores of a
gene in related function categories also remain close. By applying the label propagation
algorithm to this new, much larger (though sparsely-connected) network, we can perform
multi-label classification efficiently by solving a linear system of equations. We also de-
scribe a second method, Hierarchical label bias (HLBias), that uses the GO hierarchy to
set label biases of genes with annotations in internal category nodes. This second ap-
proach builds on the previous work of [26] which used the structure of the GO hierarchy

to define positive and negative examples for a given category of interest.

This chapter is organized as follows. First we introduce our two proposed methods,
HLBias and HLProp, and describe two variants of HLProp. Next, we evaluate these
methods on the MouseFunc benchmark networks (see Section 3.2) using both a “test set”
and a “novel set”. In particular, we compare the performance of HLBias and HLProp with
the regular version of label propagation, which doesn’t take advantage of the hierarchical
structure of GO, and Isotonic Regression (IR) (see Section 2.8.2), one of the state-of-the-
art reconciliation methods [69] that considers the DAG hierarchy. Finally, we conclude
this chapter with a discussion and summary of our results. The results presented here

appear in [58].

CHAPTER 4. INCORPORATING ONTOLOGY STRUCTURE INTO PREDICTIONS 78

4.2 Methods

We assume that we are given a network represented by a symmetric affinity matrix,
W = WT, over n genes with w;; > 0; W can be a single network or constructed from
multiple networks (as described in Chapter 3). We represent the labels for multiple GO
terms (categories) with the matrix Y;,.q = {0, 1}"*? where d is the number of categories;
Yie = 1 if gene ¢ is annotated to category c. We represent the hierarchy structure with a
matrix Hg.q where h;; = 1 if category 7 is a parent of category j in the GO hierarchy.
The column ¢ of Y, denoted by y©, represents the labels for category c. Below, we first

describe HLBias and then we describe HLProp and two of its variants.

4.2.1 Hierarchical Label Bias

HLBias builds on the previous work of [45] and [26]. In particular, King and colleagues
[45] used a gene’s annotations as its feature vector for predicting additional annotations
for the given gene. Eisner and colleagues [26], used the structure of the GO hierarchy
to define appropriate negative examples for predicting a given category: the appropri-
ate negative examples for a given category ¢ were deemed to be genes which have no
annotations in descendants or ancestral categories of c.

Recall that the solution to the label propagation algorithm (LPA) can be interpreted
as the MAP estimate in an appropriate Gaussian Markov Random Field (see Section
2.6.2). This interpretation suggests that the initial label y;. reflects our prior bias that
gene ¢ is annotated to category ¢ (see Section 2.6.2). Accordingly, in HLBias, we use
a gene’s previous annotations to estimate our prior bias that it will be annotated to a
given category of interest.

In our setting, when predicting category ¢, we first use as negatives all genes that
are annotated (positive examples) to any sibling category of ¢. We assign this negative

label because genes are rarely annotated in more than one child of the same parent

CHAPTER 4. INCORPORATING ONTOLOGY STRUCTURE INTO PREDICTIONS 79

category. For other genes ¢ with an annotation in an ancestral category a of ¢, we set
Yie = 2 X % — 1 where n; is the number of positive examples in category a and n/, is the
number of positive examples in category a that were also annotated in category c; this
initial label bias is proportional to the probability of a gene being annotated to category

¢ given its annotation in category a. For a gene ¢ with multiple annotations, we set ;.

to its mean value; for example, if ¢ is annotated to categories a and b, we set its initial

+

nbc
+

L

— 1 and 2 x

label bias for category ¢ to the mean of 2 x :‘ﬁ — 1. Having set these

label biases, we then solve for discriminant scores by using label propagation to predict

each category independently.

4.2.2 Hierarchical Label Propagation

Hierarchical Label Propagation (HLProp) extends the label propagation algorithm to
include the hierarchical organization scheme. As we described in Section 2.6.2, we can
determine the solution to the label propagation problem by solving a convex optimization
problem. In particular, we can write the corresponding convex optimization problem

(given by Equation (2.6)) in scalar form as follows:

f* :arglfninZ(fi —y¢)2+)\zwij<f¢ — f;)? (4.1)

y; = {—1,k,+1} is the label of the node (gene) i, where positive genes are labeled as

nt—n—

1, negative genes are labeled as -1, and unlabaled genes are labeled as k£ = (see
Section 3.3.2). In HLProp we solve for the discriminant scores for all d categories (GO

terms) simultaneously while ensuring that nearby categories have similar discriminant

CHAPTER 4. INCORPORATING ONTOLOGY STRUCTURE INTO PREDICTIONS 80

scores. To do so, we solve the following problem:
n d
F* = argmin e — fio)? + 4.2
gin 37~ o 1)

d n n d

)\Z sz](fzc - fjc>2 + ’YZ Z hmc(fzm - fic)2
c 1] i c,m

where F' = [f1) ... f@] and h,,. indicates whether m and c are directly connected in GO,

and \,~y are the regularization constants. Without the third term (by setting v = 0),

equation (4.2) corresponds to solving d independent binary classification problems. The

third term encourages the discriminant values of a gene in two related function categories

to be similar to each other (see Figure 4.1 for an example).

As with regular LPA, we set y;,. € {—1,k,+1}, where negatives for category ¢ are
represented by -1, positives for category c¢ are represented as +1, and unlabeled nodes

nd—ng

are represented as k = . When making prediction for the “test set”, we assume
non-positives, non-test genes are negatives. For the “novel set”, for each category, the
initial labels are {—1,1} for the positive and non-positive genes.

In this work, we use the GO hierarchy to define H. GO is a DAG; however, we treat
GO as an undirected graph. In particular, h., € {0,+1} represents the parent-child
relationships in GO: we set h.,, = h,. = 1 if m is a parent of ¢ or vice versa. In addition,

in our experiments we set A and each «y to a fixed value of 1 and so we drop these constants

from our subsequent equations.

Optimization

We can solve for F* by solving the following problem:

F* = argmin trace(F'F —2FTY)
F

+ trace(FTLF) + trace(FGFT) (4.3)

CHAPTER 4. INCORPORATING ONTOLOGY STRUCTURE INTO PREDICTIONS 81

Gene Ontology
Sensory organ (GO) Categories

development: y,

Sensory organ
development: y,

Eye
development: y,,

development: y,

‘ Eye

Lens
development: V3

Retinal
development: y 4

Lens Retinal
development: Y3 development: Y4

Figure 4.1: A graphical example of our model. In the left figure, there are four identical
networks over four genes (nodes); the associations between different genes is depicted by
black edges. The colors of the smaller nodes attached to each gene represent the initial
label of the gene. Pink indicates +1 and black -1; grey indicates the initial label bias of
the unlabeled genes. If we wish to predict which genes are involved in eye development,
we need to consider other related categories (as shown on the right). In our modification,
we introduce an edge between the same gene (blue edges) in the different networks (in
this figure, we have only shown blue edges for one gene); these edges will encourage the
discriminant value of the same gene (depicted as the color of the bigger nodes) in related
categories to be similar.

CHAPTER 4. INCORPORATING ONTOLOGY STRUCTURE INTO PREDICTIONS 82

where GG is the Laplacian of H, i.e. G =V — H where V is a diagonal matrix with

Vee = Zil hmc-

Taking the derivative of (4.3) with respect to the matrix F', we get the matrix equation
(I+L)F+ FG =Y. Equivalently, we can find F' by solving a large sparse linear system:
A x (vec(F)) = vec(Y), where vec(Y') is an operator that stacks the columns of Y atop
of each other, Apxayx(nxd) = (Laxa @ (I + L) + G ® I,xp), and ® denotes the Kronecker
matrix product. As an example, the matrix A that corresponds to the example in Figure

4.1 can be represented as:

I+L) —I 0 0
-1 3I+L) —I —I
A=
0 —I (2I+L) 0
0 ~I 0 (20+L)

In general, A can be represented as a block matrix with diagonal blocks A; = (I+L+wv;1)

and non-diagonal blocks —h;;I.

When H is symmetric, then A is also symmetric. Furthermore, since A is diagonally
dominant with positive diagonals, A is symmetric positive definite (SPD) and thus in-
vertible. However, for large d (number of gene function categories) and n (number of
genes), constructing A may be infeasible. Instead, we can solve for the f(©)’s iteratively:
given all £(©)’s for ¢ # m, we can solve for f(™ by solving the system of linear equations:
(I + L 4 e DE™ = 7 hep £ 4 3™ In our setting, problem (4.3) is convex and
we can calculate F* by iteratively updating f(™)’s; we have empirically observed that

*

we need 10 or fewer iterations to solve each £f0™* when there are approximately 50 GO

categories that are related to each other.

CHAPTER 4. INCORPORATING ONTOLOGY STRUCTURE INTO PREDICTIONS 83

4.2.3 Down- or Up-Propagation

In HLProp, we assume that the discriminant scores of a parent-child category pair
£(©) £(7) should be similar to each other. In a simpler model, we can only restrict the
discriminant scores of the child to be similar to the parents and not vice versa. In this
setting, we can first solve for the f"), where 7 corresponds to the category that is at the
root of the hierarchy, and then solve for each f(©), where ¢ is a child of r; continuing this
process, we can iteratively solve for all children of ¢ and so on. Conversely, we can flip
the edges so that the leaves of the hierarchy become the roots, we can then solve f)’s for
the leaf nodes | and propagate these up to solve for £, As a heuristic approximation
to HLProp, we solve for f(9’s in two ways: (a) first solving for £(") and then propagating
down to solve for all the descendant nodes (Down-Propagation) and (b) first solving for
all the leaf nodes f) and then propagating these up to solve for all ancestor nodes f(©)’s

(Up-Propagation).

4.3 Results

We perform our experiments using the MouseFunc benchmark networks [76] (see Section
3.2). We evaluate our methods, and compare their performance to regular LPA (as
a baseline) and IR (see Section 2.8.2), by using a “test set” (3-fold cross-validation)
and a “novel set” derived from GO BP annotations. For cross-validation, we perform
our analysis on all 2,634 GO BP categories (downloaded Sept. 2007) with three to
three hundred annotations. The novel set consists of a set of genes that acquired new
annotations in GO from September 2007 to September 2008. Below, we first show the

performance on the “test set” and then focus our analysis in predicting the “novel set”.

CHAPTER 4. INCORPORATING ONTOLOGY STRUCTURE INTO PREDICTIONS 84

0.95
0.9

0.85

0.8

&) —— HLBias
8 0.75F HLPropr
2 Down-Propagation
0.7} == |p—Propagation
065! rm o mi |R
B Y Label Prop
0.6r
0.55r
0.5 L L L L
500 1000 1500 2000 2500

of GO categories

Figure 4.2: Cumulative performance of various methods in predicting the function of test
genes (cross-validation) in 2,634 GO categories in terms of AUROC.

4.3.1 Predicting Test (Genes

Figure 4.2 shows the cumulative distribution of the AUROC of the Hierarchical label bias,
HLProp, Down- and Up-Propagation, IR (as used in [69]) and regular label propagation.
See Section 2.8.2 for a description of IR. Figure 4.3 summarizes the average performance

in 4 evaluation categories: BP categories with [3-10] annotations (BP3), [11-30] annota-

tions (BP11), [31-100] annotations (BP31), and [101-300] annotations (BP101).

HLProp, HLBias, and Down-Propagation considerably improve the performance of
gene function prediction. Specifically, despite being the simplest method, HLBias achieves
the best overall performance in terms of AUROC. Note that in the cross-validation set-
ting, for HLBias, the test genes are labeled as unknowns and the initial label of other
non-positive genes is set according to their previous annotations in the GO hierarchy.
One explanation for the better performance of HLBias compared to HLProp is that, in
using HLBias, genes that have an incomplete annotation in an ancestral category more

directly influence the discriminant scores of their nearby genes. This is because the initial

CHAPTER 4. INCORPORATING ONTOLOGY STRUCTURE INTO PREDICTIONS 85

Il HLBias
I HLProp
[IDown-Prop.
[JUp-Prop.
0.9 B R
I | abel Prop.
0.85
[©]
@)
T
5
<
0.8
0.75
0.7
BP3 BP11 BP31 BP101

Figure 4.3: Performance of various methods in predicting the function of test genes (cross-
validation) in 2,634 GO categories in terms of AUROC. The performance is shown in four
evaluation categories: average performance on categories with [3-10] annotations (BP3),
[11-30] annotations (BP11), [31-100] annotations (BP31), and [101-300] annotations. The
error bars represent the standard error.

label bias of a gene essentially needs to be propagated through a minimum of two edges
to affect the label bias of a test gene; in HLProp the incomplete annotation information
needs to be propagated through a minimum of three edges to affect the discriminant score
of a test gene (see Figure 4.4 for a pictoral description). Down-Propagation performs very
similar to HLProp, suggesting that propagating information down the hierarchy is the
most informative component in HLProp. In addition, we observed that IR and Up-
Propagation do not significantly improve performance. This result is consistent with
the observations in [69] that most reconciliation methods often perform similarly to the

baseline of independent predictions.

CHAPTER 4. INCORPORATING ONTOLOGY STRUCTURE INTO PREDICTIONS 86

Hierarchical label bias Hierarchical label propagation
(HLBias) (HLProp)

initial labels bias
-1
+1 GO category 1

GO category 2

Figure 4.4: An example illustrating the difference between HLBias and HLProp in as-
signing discriminant scores to a test gene. The test gene is depicted by the node whose
initial label bias is a question mark. In the right figure, the nodes in the same column
depict the same gene in different categories; only one of the five blue edges representing
each hg. is shown. In HLBias, when predicting GO category 2, the two neighboring nodes
of the test gene have a more positive label bias. In HLProp, the previous annotations
need to be propagated through more edges to affect the discriminant score of the test
gene.

0.95F
0.9r
0.85f
0.8
O
o
DD: 0.75t = HLBias
<
07k HLProp
Down-Prop.
0.65} — Up—PrOp.
rmmi R
06r ... Label Prop.
0.55F
0.5

0 100 200 300 400 500 600 700 800 900

of GO categories

Figure 4.5: Cumulative performance of HLBias and HLProp on the novel set of 903
categories that acquired 3 or more annotations in terms of AUROC.

CHAPTER 4. INCORPORATING ONTOLOGY STRUCTURE INTO PREDICTIONS 87

Il HLBias
I HLProp
[1 Down-Prop.
0.88 [JUp-Prop.
B R
0.86 I | abel Prop.
0.84
0.82
(@]
o
o 0.8
)
<
0.78
0.76
0.74
0.72
0.7
BP3 BP11 BP31 BP101

Figure 4.6: Average performance of HLBias and HLProp on the novel set in terms of
AUROC. The performance is shown for four evaluation categories: average performance
on categories with [3-10] annotations (BP3), [11-30] annotations (BP11), [31-100] anno-
tations (BP31), and [101-300] annotations. The error bars represent the standard error.

= HLBias
HLProp
Down-Prop.
m— Jp—Prop.

------ Label Prop.

Average precision

1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900
of GO categories

Figure 4.7: Comparison of performance in terms of average precision when predicting
novel genes in 903 GO categories that acquired three or more annotations in a span of
one year.

CHAPTER 4. INCORPORATING ONTOLOGY STRUCTURE INTO PREDICTIONS 88

4.3.2 Predicting Novel Genes

Here we report performance on the “novel set”. In this setting, to evaluate the perfor-
mance on a given category, we use newly annotated genes as positives and all other genes
(excluding previously annotated genes, that is, those annotated in the 2007 GO file) as
negatives. When predicting a given GO category with HLBias, we adjust the initial label
of all except the positive genes (which have an initial label bias of +1 according to the

2007 GO file) by using the incomplete annotation information in GO.

Figure 4.5 shows the cumulative performance of each method in predicting novel genes
in 903 categories that acquired new annotations in the span of one year. Similarly to
the cross-validation results, HLBias, Down-Propagation and HLProp drastically improve
on the baseline performance of LPA. To better understand the difference between the
various methods, we measured the mean performance in predicting GO categories at four
different specificity levels: those with [3-10], [11-30], [31-100], and [101-300] annotations
in the 2008 GO file. As shown in Figure 4.6, HLBias performs better than HLProp
and Down-Propagation when predicting GO categories with [101-300] annotations. The
performance of HLProp, Down-Propagation, and HLBias is similar when predicting GO

categories with [11-100] annotations.

In addition to measuring performance in terms of AUROC, we also investigated per-
formance in predicting novel gene functions in terms of average precision. As shown in
Figure 4.7, HLProp outperforms all other methods in terms of average precision. Inter-
estingly, in contrast to its performance in terms of AUROC, we observed that on average,
the performance of HLBias is not significantly different than the baseline approach (t-test
with @=0.05). However, the cumulative performance of HLBias follows the same trend
as measured in AUROC or average precision (compare Figure 4.5 and 4.7); HLBias has

a lower precision at higher percentiles but higher precision at lower percentiles.

CHAPTER 4. INCORPORATING ONTOLOGY STRUCTURE INTO PREDICTIONS 89
4.4 Summary

Here we have shown that by using the GO hierarchy information directly, either by setting
initial label biases using GO or using our formulation of hierarchical label propagation
(HLProp), we can significantly improve gene function prediction. On the other hand, our
results are consistent with the previous report that reconciliation methods may rarely
improve the performance of independent classifiers [69]; in our setting, the reconcilia-
tion of independent GO categories preform very similarly to the baseline of unreconciled
classifications obtained by regular LPA.

In order to be able to solve HLProp efficiently, we ignored the directionality of the GO
hierarchy. To do so, we set h,,. = hen, if category c is a child of category m. In contrast,
the two heuristic variants (Up- and Down-Propagation) only propagate information about
discriminant scores in one direction. Our results indicate that propagating information
down the hierarchy results in the most gain whereas Up-Propagation does not significantly
affect the performance. This result is consistent with that of [69] which found that
reconciliation with a Bayesian network model of the GO hierarchy, where the arrows are
directed from parents to the child classes performs better than the opposite model where
the arrows are directed from children to parents.

Our results on the “novel set” revealed the contrasting conclusions that may result
from using AUROC or average precision to evaluate performance in gene function pre-
diction. HLBias results in the overall highest AUROC whereas its performance in terms
of average precision is slightly better than the baseline of LPA. This suggest that HLBias
has better performance at high recall rather than low recall and that HLBias gains in
performance by correctly assigning low discriminant scores to negative examples. Since
HLProp (or Down-Propagation) and HLBias tend to improve the performance of reg-
ular LPA in different ways, combining the two methods may result in even a better

performance in terms of both AUROC and average precision.

Chapter 5

Predicting Binary Node Labels for

Very Large Networks

5.1 Introduction

In this chapter, we focus on the general task of predicting binary node labels from an
arbitrary network. In particular, given a network over n genes, represented by the matrix
Wixn, and a set of positive nodes, our goal is to predict which other nodes are likely to
be positives. We denote the initial labels as y = {0, 1}"—here we assume we only have
positive and unlabeled nodes. Binary prediction of gene function is one instantiation of
this problem. Other instantiations include predicting genes that are involved in a given
disease [71], or the subcellular localization of proteins [70], based on their physical inter-
action networks. Some example problems in other domains include predicting product
preferences [73] from social networks where people are connected based on friendship
ties, and predicting the political view (e.g. liberal or conservative) of blogs based on web

links.

In Chapter 3, we have shown that the conjugate gradient (CG) algorithm allows us to

obtain the solution to the label propagation algorithm (LPA) in seconds for fairly large

90

CHAPTER 5. PREDICTING BINARY NODE LABELS FOR VERY LARGE NETWORKS91

networks (e.g. those with 20,000 nodes and 8M edges). In this chapter, we investigate
the process of solving the iterative formulation of LPA (described in Section 2.6.2). As
we will show, in many real-world networks we can even further improve on the running
time required by CG. In fact, we can obtain an accurate approximation to the solution
to LPA with fewer than five iterations, each requiring one matrix-vector product.

In addition, our investigation shows that the geometrically decreasing contribution of
walks of increasing length, as assumed in LPA (see Section 2.6.2), is not always accurate.
As a simple example, in a genetic interaction network, nodes that are connected by a
walk of length two are disproportionately more likely to be functionally related than
those connected by a walk of length one [19]. Based on these observations, we propose
an alternative label propagation algorithm, which we refer to as the Weighted Proximal
propagation Algorithm (WPA), for predicting binary node labels in very large networks.
As we will show, WPA is faster and results in more accurate predictions in a variety of
networks.

In this chapter, we first review three versions of LPA and compare their performance
in predicting gene function from protein and genetic interaction networks. We then inves-
tigate the performance of iterative LPA with increasing numbers of iterations. Finally,
we describe WPA and compare its performance to LPA on a protein interaction net-
work, a genetic interaction network, five social networks, a blogs web-link network, and

a patent-citation network.

5.2 Benchmark Networks

We evaluate the performance of LPA and WPA on a protein interaction network (PI),
genetic interaction network (GI), five social networks (Facebook), a web-link network

(Blogs), and a patent-citation network (Patent), as described below:

e Yeast Protein interaction network (PI). We construct a protein-interaction

CHAPTER 5. PREDICTING BINARY NODE LABELS FOR VERY LARGE NETWORKS92

network from all high-throughput interactions in BioGRID [91] (downloaded April

2010). This network consists of 5,306 nodes and 71,262 edges.

e Yeast Genetic interaction network (GI). We construct a genetic-interaction
network from all high-throughput negative genetic interactions in BioGRID [91]
(downloaded April 2010). This network consists of 4,563 nodes and 152,188 edges.

e Facebook Networks. We obtain five Facebook networks from [94]. The nodes
in these network represents students and the edges represents friendship ties. The
five different networks were obtained from friendships between students at five
universities: Caltech (769 nodes and 33,312 edges), Princeton (6,596 nodes and
586,640 edges), Oklahoma (17,425 nodes and 1,785,056 edges), University of North
Carolina (UNC) (18,163 nodes and 1,533,600 edges), and Georgetown (9,414 nodes
and 851,276 edges).

e Blogs Network. We obtain a network of links between political blogs from [1].

This network consists of 1,224 nodes and 33,433 edges.

e Patent Network. We obtain patent-citation data from [32]. In this network,
nodes represent patents and edges represent a patent citation: two patents are
connected if either one cites the other. This network consists of 3M nodes and 18M

edges.

For the PI and GI networks, the labels are annotated gene functions. We use 47 non-
redundant GO functions (downloaded April 2010) that have more than 30 annotations.
These functions were deemed to be a minimal set of non-redundant and informative
functions by a panel of biologists [62]. For the Facebook networks, we use genders as
labels. For the Blog network, we use political views (liberal or conservative) as labels.

For the patent network, we use 381 patent categories as labels.

CHAPTER 5. PREDICTING BINARY NODE LABELS FOR VERY LARGE NETWORKS93

5.3 Methods

5.3.1 Iterative LPA and Random Walks

In Chapter 2, we described an iterative version of LPA where the discriminant scores f

are obtained using an infinite sum:

f=(1-X)) (W)y. (5.1)

r=0

Under the condition that the eigenvalues of W are in [—1, +1] (denoted by p(W) < 1)
and 0 < A < 1, the infinite sum converges and we obtain: f = (1 — \)(I — A\IV) " ly.

We consider two different normalizations of W for guaranteeing that p(1W) <1 [16]:
asymmetric normalization P = D~'WW and symmetric normalization S = D=2 D~1/2
where D is the diagonal row sum matrix d; = Z;L wj;. Yet, we can obtain a third conver-
gent version of LPA by using the convex optimization formulation without normalizing
the Laplacian: f = (1 — \)(I + AL)™'y (see Section 2.6.2).

Figure 5.1 shows the performance of the three versions of LPA for protein-interaction
(PI) and genetic-interaction (GI) networks. These variants of LPA are obtained by
using the symmetrically normalized S (we will refer to this as SymLPA) or the Markov
Transition Matrix P (we will refer to this as AsymLPA) or using the (un-normalized)
Laplacian L in the convex optimization formulation. As shown, all three methods result
in similar performance in terms of AUROC, however, using SymLPA results in better
performance in terms of average precision. In the rest of this Chapter, we will use

SymLPA f = (1 — X\)(I — AS)~'y when performing label propagation.

Truncated LPA

To determine the contribution of walks of increasing length to the performance of LPA,

we compare the result of truncated LPA: f = Y~ (AS)"y for m = {1,2,...,10}, with

CHAPTER 5. PREDICTING BINARY NODE LABELS FOR VERY LARGE NETWORKS94

0.3
] t=0-28)7y 0781]
0.25 | [=)y |
& | I t=(-.P)y
@
S 0.2 %) 0.7
a (@]
o
o 0.15)
g < |
[} |
2 o4 1 0.65 I
— 0.6
Pl network Gl network Pl network Gl network

Figure 5.1: Comparison of label propagation with three different normalization meth-
ods on the protein-interaction (PI) network and genetic-interaction (GI) networks. The
performance is shown in terms of AUROC (right) and average precision (left) on 47 in-
formative and non-redundant GO categories [62]. We determine the optimal setting of
parameter A for each method using cross-validation. Error bars represent the standard
error.

the exact solution. When m = 1, the truncated LPA corresponds to the weighted-voting
classifier which only considers direct network neighbors in making predictions. Similarly,
when m = 2, truncated LPA only considers first- and second-degree neighbors (those
that are connected to the positives with a walk of length two or less). In general, when
m = k, truncated LPA makes its predictions by only considering nodes that have a
walk of length k or smaller to the positive nodes. Note that A plays a crucial role in
determining the degree to which walks of increasing length contribute to the solution of
LPA; for example, when A is very small, the discriminant scores are essentially computed

based on a very local neighborhood around the genes.

Figure 5.2 shows the performance of truncated LPA on GI and PI networks at several
settings of A. This figure reveals several important observations. First, by only consid-
ering first and second neighbors, we can achieve precision and AUROC similar to that
of the exact solution of LPA. Furthermore, with an incorrect setting of the parameter A,
the performance of LPA could even decrease with increasing m. Third, with A < 0.5 the

truncated LPA converges to the exact solution very rapidly. Finally, the performance

CHAPTER 5. PREDICTING BINARY NODE LABELS FOR VERY LARGE NETWORKS95

024} —_————
c 0.235¢ * 0.73} — .01 \ *x
S 023f 0.1
S 0.72+ 0.2
7] L Q
s 0.225 \ : 8 03 *
3 022 2 071} 0.4
g 0215} 0.6
Z 0.7
021t 0.7+ 0.8
0.205 — 0.9
A A A A x 0.69 A A A A
0 2 4 6 8 10 «© 0 4 6 8 10 o
Truncation Truncation
0.665
0.11r
5 0.105¢} x 0.66
%)
S o1} * Q *
i O 0.655/
o 0.095¢ =)
g <
3 » 0.65F
% 0.09
0.085 ¢ 0.645 -
0.08¢
0 2 4 6 8 10 o 0 2 4 6 8 10
Truncation Truncation

Figure 5.2: The performance of truncated LPA with truncation level m = {1,2,...,10}
on PI (top) and GI (bottom) networks. The performance is shown in terms of average
precision (left) and AUROC (right). Each line shows the performance with increasing m
for a particular setting of the parameter A\. For each m and A, the performance of the
exact solution to LPA is shown by a star.

on the GI network reveals a widely reported property of genetic interactions: a gene’s
second-order neighbor is highly informative about its function [93, 19]. Note that when
A is large, the influence of walks of increasing length decays very slowly, which again

explains the sharp decline in performance for m > 3.

One explanation for this sharp decline in performance with increasing walk lengths

is the convergence of random walks to stationary distributions. Substituting for S into

CHAPTER 5. PREDICTING BINARY NODE LABELS FOR VERY LARGE NETWORKS96

Equation (5.1) we obtain:

fo= (1-X)> (A9)y (5.2)

= (1-XD2) (AP D'y (5.3)
r=0
where the second equality is obtained by noting that S = DY/2PD~'/2 and (D'/?PD~'/2)" =
DY2pPrD=1/2_ Thus, the solution to LPA depends on increasing powers of the matrix P.
It is well known that for a connected and non-periodic (or equivalently ergodic) Markov
transition matrix (also known as a singly stochastic matrix) P, we have:

lim P" = 17" (5.4)

r—00

where 7 and 1 are vectors of dimension n x 1. « is known as the stationary distribution
[16]. In other words, for large r, P" converges to a matrix with identical rows 7. Thus,
we note that if A does not decay fast enough, adding multiple copies of P" may decrease

the performance. Below, we describe how to measure the convergence of P’.

Note that for any positive vector v with >, v; = 1 we have that lim, . viP =
77. The mizing time of a random walk quantifies how large r should be for v' P" to
approximately converge to m'. Formally, mixing time is defined as the smallest r such

that:
[[vIPT —xT|| <e (5.5)

where ||.|| denotes the chosen measure of the distance [16]. A standard distance metric
for measuring convergence is the total variation distance defined as half of the ¢;-norm:
TV = $>,|[vTP"]; — | and by convention € = 1. Thus, we define the mixing time of

the Markov transition matrix P as the smallest r» such that the total variation distance

CHAPTER 5. PREDICTING BINARY NODE LABELS FOR VERY LARGE NETWORKS97

1.

between v' P", for a randomly chosen vector v with > ;vi = 1, and 7 is less than ;

%(Xi: VTP —) < %1 (5.6)

If P" converges to 17T then when computing (5.3), with each P! for ¢ bigger than mixing

time, we add a scalar proportional to > y % to each node i. Figure 5.3 shows the mixing
time for the convergence of the PI and GI networks. As shown, the GI network has a
mixing time of 3 (using a threshold of 0.25) which explains the sharp decline shown in
Figure 5.2. Convergence for the PI network is slightly slower, which again is consistent

with the results in Figure 5.2.

A related explanation for the fast convergence of the precision and AUROC of trun-
cated LPA to the exact solution is the small average shortest distance in “small-world”
networks, which scales with loglogn [67]. Small-world networks have a small diameter
meaning that most nodes can be reached from every other by a small number of hops
or steps. This property is attributed to the existence of hubs, which connect different
communities (or clusters); once a node reaches a hub in the network, it can reach most

other nodes through that hub [6].

To summarize, our results on the analysis and performance of truncated LPA allow us
to make two conclusions: 1) due to the multiplication of P" with A", LPA assumes that
the influence of walks of increasing length decreases geometrically. However, this form
of decay may not be always appropriate; for instance, in the GI network walks of length
two are more informative of co-functionality than those of length one. 2) Due to the
small-world properties of empirical networks and fast convergence of P" to a stationary
distribution, we can effectively use truncated LPA instead of solving LPA exactly. In the
next section, we use these two observations to propose a modified version of LPA that is

faster and more accurate.

CHAPTER 5. PREDICTING BINARY NODE LABELS FOR VERY LARGE NETWORKS98

0.9+

0.8

o
3

0.6

Total Variation
o
ol

Total Variation

Figure 5.3: Convergence of random walks according to the total variation distance. To
generate each line, we start from a random vector v, with >, v; = 1. For each value
of r = {1,2,...,10}, we measure the convergence of v' P" to the stationary distribution
7 using the total variation distance (i.e. the y-axis shows 3|v'P" — 7|, as a function
of r, where |a|; is the ¢;-norm of a). The grey lines show the total variation distance
for 100 randomly chosen vectors v with increasing r. The figure on the left shows the
convergence on the PI network and the figure on the right shows the convergence on the
GI network. The red lines show the median of total variation distances on each network.

5.3.2 Weighted Proximal Propagation

In this section we propose Weighted Proximal Propagation (WPA), our modified version
of LPA that 1) doesn’t assume a geometric decay in down-weighting walks of increasing
length and 2) is faster than LPA by only using local (short) walks. In particular, we
define WPA as:

f=>B.(5)y (5.7)

where 5 = [f1, ..., ﬁm]T consists of the model parameters. The difference between (5.7)
and truncated LPA is that here the [3;’s are free to be optimized separately, for walks of
different lengths. WPA allows us to set the truncation level m and set the parameters
(. A brute force approach to determine both is to perform a grid search on the training

data, which is rather costly. We set m = 3 as we have found this setting to work well on

CHAPTER 5. PREDICTING BINARY NODE LABELS FOR VERY LARGE NETWORKS99

a variety of networks.

Recall that the (i, 7)™ entry of S™, i.e. [S™];;, is non-zero only if there is a walk of
length m between nodes ¢ and j. Note that the existence of a walk of length m does
not exclude the existence of a shorter walk—for example, node ¢ can be connected to
node j with both a walk of length one and two. As a result, the entries of S, S?, and
S3 may overlap—such overlaps help to discern community structure as two nodes in a
tightly knit community share more paths of short length compared to pairs of nodes that
are not in the same community [66] (for example, as shown for the modular network in
Figure 2.2).

We propose to obtain values of § using Linear Discriminant Analysis (LDA) [9].
Intuitively, LDA estimates a linear combination of walks of length 1 to m using the
coefficients 3; the coefficients are set to maximize the difference between the scores of
the positives and the non-positives. Denote the input to node i from a walk of length
r by $§r) = >_;[5"ijy;. Thus, the final score of node ¢ is computed as f; = >, ﬁrxgr).
Using the linear regression interpretation of LDA [9] , we determine # by minimizing the

squared error for each f; with respect to y;:
argmin 33)" — 5)° (5.8)

where g; is set to n% for positive examples and —n% for non-positives. The solution to
(5.8) is given by 3 = (XTX)"1XT§; where X is an n x 7 matrix whose i'* row is given

by [z 2]

. Prior to solving for (3, we center the columns of X to have mean zero.
Note that in (5.8) we are using y to estimate x;’s, so to avoid overfitting, we perform
LDA in cross-validation!.

Although our choice of setting m = 3 is motivated based on empirical observations,

previous studies have reported similar results on a variety of other networks [13, 14]. In

"'We leave out a random portion of positives, assume they were non-positives, obtaining y.,, we use
Yev to compute X

CHAPTER 5. PREDICTING BINARY NODE LABELS FOR VERY LARGE NETWORKS100

the next section, we show that m = 3 holds for several other networks as well. However,
since we set the coefficients of WPA using LDA-based linear regression, as future work,
we can also determine m by performing forward-stage-wise search where we determine
m based on a penalized likelihood score (such as Akaike Information Criterion (AIC) or

Bayesian Information Criterion (BIC) [9]).

Unlike with the label propagation algorithm, the coefficients 3 are not constrained
to be positive or smaller than one. This flexibility is required to accurately predict node
labels in the presence of arbitrary patterns of label distribution. For instance, Figure
5.4 shows an example scenario using a bipartite network. Similar to the intuition about
negative genetic interactions?, our assumption is that nodes connected by a walk of length
two have the same function. In this case, label propagation’s geometric decay assumption
leads to erroneous support for first-degree neighbors, whereas WPA correctly identifies
second-degree neighbors as the main targets while exploiting the “negative information”

presented by the first-degree neighbors.

To summarize, our major observation is that labeling patterns of nodes can vary
between different networks. Therefore, we can improve on the performance of LPA by
learning the contribution of walks of increasing length for a given network. Furthermore,
we have shown that the performance of truncated LPA equals or exceeds that of the
exact solution to LPA. This observation explains the success of local neighborhood-based
heuristics [65, 89]. In WPA we exploit these properties by setting the truncation level
to m = 3, in addition to fitting the parameter (to allow separate control over the

contribution of walks of a given length to the discriminant scores.

2Recent studies have shown that second-order neighbors in negative genetic interaction networks are
more likely to share the same function than first degree neighbors [93, 19].

CHAPTER 5. PREDICTING BINARY NODE LABELS FOR VERY LARGE NETWORKS101

(a) Labels on a bipartite graph (b) LPA: Discriminant Scores
Scores
Positive
Negative
(c) WPA: Paths of length 1 WPA: Paths of length 2 WPA: Discriminant Scores

Figure 5.4: An example bipartite network where the nodes are divided into two groups
that link only to nodes in the opposite group. This example is meant to resemble a small
genetic interaction network where genes connected with a walk of length 2 are more likely
to be co-complexed and thus perform the same function. In this scenario, LPA fails to
up-weight the second-order neighbors. In contrast, WPA automatically assigns a high
coefficient to walks of length 2 and thus the final discriminant score reflects the initial
pattern that nodes in the same cluster have the same label.

CHAPTER 5. PREDICTING BINARY NODE LABELS FOR VERY LARGE NETWORKS102

0.3
Jiear 076
0.25 [[B wPA 0.74 { [
s l I 0.72 |
%) X
g 02 8 0.7 ‘
o
o | % 0.68
& 0.15 | < [
) 0.66
z : l
01 I 0.64
0.62
0.05 0.6
Pl network Gl network Pl network Gl network

Figure 5.5: The performance of exact LPA and WPA (using walks of length up to three)
on PI and GI networks. The performance is shown in terms of both AUROC (left) and
average precision (right). Error bars show the standard error.

5.4 Results

In this section, we compare the performance of WPA with exact LPA on PI and GI
networks. As well, we apply WPA to three other problems: predicting gender from five
Facebook networks, political view (conservative or liberal) from a blog web-links network,

and predicting 381 patent categories from a patent-citation network.

5.4.1 Predicting Gene Function with WPA

Figure 5.5 shows the performance of exact LPA and WPA. Using only walks of length
up to three, WPA performs similarly to (PI network) or significantly better than (GI
network) LPA. Since the influence decay model of LPA holds for PI networks, WPA
performs similarly to LPA on this network. On the other hand, WPA is able to exploit
the significance of second-order interactions in GI networks and thus improves on the
performance of LPA in this setting. In Figure 5.5, the performance is shown for predicting
47 non-redundant GO terms (obtained from [62]) which have at least 30 annotations.

The mean and median number of annotations in these 47 categories are 110.7 and 96,

CHAPTER 5. PREDICTING BINARY NODE LABELS FOR VERY LARGE NETWORKS103

vesicletnediabed transport

rritatic cell cycle

b phase

response bo DNA darmage stirnulus
filarnentous growth

tranzcription from B polymerase | promoter
DA, pe plicakion

establishrnent of protein localization
cellularrespiration

rueleacyt oplastmic trans port
nuclear trans por

Fh&, elongation
gene silencing

organelle fizsion

prokein complexassembly

regative regulakion of transctiption
chromosomne segregation

establishtnent of RNA [ocalization
meiatic cell cywele

reszponse bo osmotic stress

ion homeostasis

sexual reproduction

responsebo pheramone

wac uolar transport

stall GTPaze mediated sigral trans duction

aging

positive regulation of transciption
lipidtransport

prabeir arnin o acid acetyation

Dkl recarn birati on
cell division
prokein folding

ritochordeial trans pott
proteolysis
interphaze

azexual reproduction

nuclear division

tranzcripltion initiation

organ elle inhetitance

organelle fusion

jontransport

organic acid trans port
Rh& s plicing

amine transport

carbohydrate transport

requlation of signal transduction
Rh& 3-end processing

WPAC oefficients

Figure 5.6: The coefficients assigned to walks of length one to three for the PI network
when predicting 47 GO categories. The columns show the magnitude of the coefficients
in order (column 1 represents (3; etc.). The rows are ordered by clustering the coefficients.
The coefficients [3,’s are scaled to have an absolute sum of 1.

CHAPTER 5. PREDICTING BINARY NODE LABELS FOR VERY LARGE NETWORKS104

vesicletnediated transport
Fh& elongation

azexual reproduction
nucleocytoplasenic trans port
nuclear transport

prabeir arnin o acid acebyation
rhibokic cell cwele
Dkl replication

establizhment of BHAocalization
trarsct phiar initiation

response bo DA damage stimulus
organelle fizsion
aging

regative regulakion of transctiption
nuclear division
chromosome segregation
reszponse bo osmotic stress
sexual repraduction

transcription from BRA polwnerase | promoter
vacuolartransport

establishment of proteinlocalizakion
responsebo pheramone
protein complexassembly
gene silencing

b phase

Dkl rec arn birati on
cellularrespiration
protealysis

organelle inhetitanc e

filarnentous growth

ian homeostasis
interphase

tnit ochandrial trans port
Rh& s plicing

stnall GTPas e mediaked signal trans duckion

cell disision

organelle fusion

meiatic cell cyele

RhA, 3'-end processing
prokein folding

carbohydrale transport
jontransport

positive regulation of transcription
organic acid trans port
lipidtransport

arnite trans pott
requlation of signal transduction 1

WPRACoefficients

Figure 5.7: The coefficients assigned to walks of length one to three for the GI network
when predicting 47 GO categories. The columns show the magnitude of the coefficients
in order (column 1 represents (3; etc.). The rows are ordered by clustering the coefficients.
The coefficients [3,’s are scaled to have an absolute sum of 1.

CHAPTER 5. PREDICTING BINARY NODE LABELS FOR VERY LARGE NETWORKS105

respectively. In general, we didn’t observe significant differences in the performance based

on number of annotations.

Figures 5.6 and 5.7 show the assigned coefficients for the 47 GO categories. With a
few exceptions, in both networks, walks of length two have a larger coefficient than those
of length one. This observation is more exaggerated for the GI network. Furthermore,
walks of length three are often assigned a negative coefficient. There are two explanations
for this observation. One explanation for this phenomenon may be the high clustering
coefficient (CC) of the small-world network. Intuitively, CC is a measure a “cliqueness”
or how often a node’s first-degree neighbors are also second-degree neighbors. Due a high
CC, walks of length two will be given a higher coefficient as they also reflect direct neigh-
bor connections. Another explanation is that since B3 < 0, the probability distribution
of walks of length three from a node ¢ to the other nodes is approaching the equilibrium
distribution and so WPA “subtracts oft” the equilibrium distribution component from

walks of length two by assigning a negative coefficient to walks of length three.

One interesting observation from Figures 5.6 and 5.7 is that there are two clusters
of GO categories; the majority of the functions are in one big cluster where 3, > [,
and a few “outliers” fall in the second category where 35 is comparatively smaller. In
particular, for both networks “regulation of signal transduction” and “amine transport”
fall under the second cluster where (3, is small, (35 is positive, and (3, is negative. This
observation can be explained by the fact that for both “regulation of signal transduction”
and “amine transport” functions, only a small fraction of positive genes have a direct
interaction (i.e. the positives are sparsely connected to each other), which result in
a low (. Furthermore, performance of LPA and WPA in terms of average precision
is much lower on these categories compared to the average performance: for example,
for predicting “regulation of signal transduction” with the GI network, WPA results in
average precision of 0.02 and LPA results in average precision of 0.03, whereas the overall

average precision of WPA is 0.15. In general, the outlier functions tend to be the functions

CHAPTER 5. PREDICTING BINARY NODE LABELS FOR VERY LARGE NETWORKS106

Table 5.1: Performance of LPA and WPA on five Facebook networks (from five univer-
sities), the Blogs network, and the Patent network.

AUROC Precision
WPA LPA WPA LPA
Caltech 0.726 0.593 | 0.662 0.531

Georgetown 0.768 0.588 | 0.703 0.498
Oklahoma 0.845 0.631 0.807 0.581
Princeton 0.786 0.644 | 0.727 0.553

UNC 0.817 0.625 | 0.772 0.552
Blogs 0.954 0.930 | 0.961 0.931
Patent 0.981 0.992 | 0.642 0.610

where the positives are not well connected and so local neighborhood connections are not

very predictive of shared functionality.

5.4.2 Other Applications

In this section, we investigate the performance of WPA and LPA on predicting gender
from five Facebook networks, political view from a blog web-link (“Blogs”) network, and
381 patent categories from a patent-citation (“Patent”) network.

Table 5.1 summarizes the results for these networks. As shown, in most cases WPA
considerably improves the performance of LPA despite only requiring three matrix-vector
products. By examining the coefficients found by WPA, we can gain insight into the
characteristic patterns in how labels are distributed within the network structure. For
example, we found that a person is likely to have the same gender as her (or his) friends-
of-friends (0 < 1 < (2). In addition, the coefficient assigned to walks of length three
is negative (83 < 0); in the absence of “negative” information from friends-of-friends-
of-friends, the performance of label prediction drops to the baseline (almost random
performance) and so this information, in combination with gender of friends-of-friends,
is crucial for accurately predicting gender. One explanation for this phenomenon can be
the convergence of random walks to the equilibrium distribution. By assigning a negative

coefficient to walks of length three, WPA is able to “subtract off” the contribution from

CHAPTER 5. PREDICTING BINARY NODE LABELS FOR VERY LARGE NETWORKS107

Caltzch
Gieorgetown .
Oklahoma -
Princeton "
UNG h
Blogs -1

1

WPA Coefficients

Figure 5.8: The coefficients of WPA assigned to five Facebook networks and the Blogs
network. As shown, walks of length two are most predictive of gender (in Facebook) and
political view (in Blogs), resulting in larger values of [3,.

the equilibrium distribution and thus improve on the performance of LPA. Similar pat-
terns hold for the Blogs networks; most blogs with the same political view are connected
to each other by walks of length no more than two. Accordingly, one explanation for this
phenomenon is the existence of “liberal” and “conservative” hubs which connect blogs

with the same view.

Figure 5.9 shows the coefficients (8 assigned by WPA when predicting 381 patent
categories. These categories were also classified into six technology types (Chemical,
Computers and Communications (CC), Drugs and Medical (DM), Electrical and Elec-
tronics (EE), Mechanical, and Others) [32]; without using any information about the
technology types, the assigned coefficients are more similar for patent categories of the
“newer” technology types (CC and DM) compared to the “older” ones (Chemical, EE,
Mechanical and Others). Note that there are two distinct trends: patents whose direct

neighbors are assigned a negative coefficient and whose third degree neighbors are as-

CHAPTER 5. PREDICTING BINARY NODE LABELS FOR VERY LARGE NETWORKS108

0.5
0.4
0.3

0.2

0.1 02 °
L]
&(‘3 ()
2
0 2We .
L]
-0.1 .
L]
e Computers and Communications ° R
-0.2 ® Drugs and Medical @ o
Other ° ®
® oo
-0.3 o ©® :'
'.
u;'c L]
-0.4 N < .
1
0.5
0
-0.2 -0.15 -0.1 -005 0O 0.05 0.1 0.15 0.2 0.25 0.3
B
2
B,
(a)
09 05 05
0.85 * 0.4 . 0.4
08 03] 03
075 5 B 0.2 L 02
07 ° 0.1 e r " 0.1
o~ M © o
o o o]
065 0 0
06 . ., 0.1 . § 0.1
055 s -02 0.2 ~
3. oY ax,
0.5 <. -0.3 3 : -03 ;'
& 2
045 04 04
02 -01 [01 02 03 02 -0 [01 02 03 04 05 06 07 08 09
B, B, B,

Figure 5.9: The coefficients of WPA assigned to the Patent network when predicting
381 patent categories. Each dot corresponds to one patent category. These 381 patent
categories can be categorized into six technology types. We further categorize these six
technology types into two groups made up of “newer” patents (Computers and Commu-
nications, Drugs and Medical) and one group made up of the “older” patents (“Other”
which is made up of Textiles and Agriculture, Mechanical, Chemical, and Electric and
Electronics). The coefficients assigned by WPA are similar for patent categories that are
in the same technology type. Plot (a) shows the coefficients (aq, ag, ag) in three dimen-
sions, and plot (b) shows all pairwise combinations of coefficients, with (ay,as) on the
left, (a1, ar3) in the middle, and (as, a3) on the right.

CHAPTER 5. PREDICTING BINARY NODE LABELS FOR VERY LARGE NETWORKS109

signed a large positive coefficient, versus patents whose direct neighbors are assigned a
positive coefficient and whose third degree neighbors are assigned negative coefficients.
The former trend mostly comprises Mechanical or Other types of patents (which are more
likely to be older) and the latter mostly comprises Computers or Communications and

Drugs and Medical patents.

5.5 Summary

In this chapter, we have introduced WPA, a faster alternative to LPA for predicting
binary node labels from networks. As we have shown, WPA also equals or exceeds LPA
in accuracy and precision on a variety of networks. The improvement is most drastic
where the labeling pattern of nodes does not fall under the influence decay model of LPA
that down-weights the propagation received from walks of increasing length, according
to a fixed exponential scale. Another advantage of WPA is that its solution only requires
a few matrix-vector products and thus its complexity is O(m) where m is the number
of non-zero edges in the network. This allows us to apply WPA to very large networks,

such as the patent network with its 3M nodes and 16M edges.

Chapter 6

Conclusions and Future Work

The availability of a large number of genomics and proteomics datasets presents an oppor-
tunity for predicting the function of uncharacterized genes. However, existing approaches
either do not scale to large genomes, or gain scalability by making assumptions that de-
grade their accuracy. In this dissertation, we design and develop algorithms that scale
to large datasets, and can be used to accurately predict gene function from arbitrary
datasets and query genes, on demand. By combining scalability and accuracy, we can
now take advantage of the persistent improvement and proliferation of genomics and
proteomics datasets to make up-to-date predictions for large genomes such as the human
genome, rather than having to resort to static databases that attempt to pre-compute a

large number of pre-defined queries.

In Chapter 2, we reviewed the body of research on predicting gene function from het-
erogeneous data sources. As discussed, a common approach for combining heterogeneous
data is to first represent each dataset as a network. In this context, we have described
existing approaches for combining multiple networks and making predictions from the
combined network. We showed that the existing approaches fall under one of two cate-
gories: those that make weak assumptions but solve challenging optimization problems

and therefore do not scale to larger genomes or less sparse networks; or those that gain

110

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 111

scalability by making stronger limiting assumptions that greatly decrease the accuracy

of their predictions.

In Chapter 3, we presented the GeneMANIA framework for accurate and efficient
prediction of gene function from multiple networks. We achieve scalability by formu-
lating a constrained linear regression problem for constructing query-specific network
combinations, and by using a label propagation algorithm for making predictions from
the combined network. By exploiting a large amount of high-throughput data while ac-
counting for redundant and irrelevant networks, we automatically reduce or remove false

positive interactions, and thus improve on the accuracy of existing methods.

In Chapter 4, we described extensions to the label propagation algorithm, HLProp
and HLBias, for incorporating the ontological organization of gene functions when making
predictions. We showed that this type of prior information can significantly improve the
performance of regular label propagation. One observation was that although HLBias
merely improves the performance in terms of AUROC, HLProp improves the performance
in terms of both AUROC and average precision. As well, we showed that a simple
approximation to HLProp results in competitive performance while having a much lower

computational cost.

In Chapter 5, we further considered the general problem of predicting binary node
labels from arbitrary networks. There, we closely studied the empirical behavior of label
propagation on real-world networks. We explained the reasons for the successes of some
local neighborhood-based methods in terms of their relation to label propagation. Moti-
vated by our observations, we introduced a new label propagation algorithm, WPA | that
exploits the empirical properties of real-world networks to make faster and more accurate
predictions. WPA achieves its accuracy by independently weighting the contribution of
random walks of increasing length to support a wider range of labeling patterns. We
showed that WPA outperforms label propagation on networks from varying domains.

WPA is scalable to very large networks as its solution only requires a few matrix-vector

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 112

products.

One practical observation from our experiments in Chapter 3, 4, and 5 is on the se-
lection of negative examples. In Chapter 3 and 4, we observed that explicitly assigning
negative examples based on sibling categories may not always improve the performance,
however, in Chapter 4, we showed that we can considerably improve the predictive per-
formance by setting an initial label bias according to the ontology structure (e.g. by using
the Down Propagation method). This result shows that the ontology structure embod-
ies information that is useful for improving function prediction and negative selection.
However, this information may not always be available (for example when GeneM ANIA
is used as an online prediction server). In Chapter 5, we assigned all non-positive genes
the same initial label (equal to zero). In experimentation, we have observed that by
simply using binary labels (as done in Chapter 5), we obtain similar performance as
when assigning “average label bias” to the unlabeled genes (as done in Chapter 3). The
results from Chapter 3 and 5 our complementary in the sense that in Chapter 3, the
initial label bias assigned to unlabeled genes tends to be close to the label of the negative
examples—this is because in gene function prediction, the number of potential negative
examples is orders of magnitude larger than the number of positive examples. Thus, our
results suggest that in the absence of knowledge about ontology structure, we can obtain

good performance by simply setting the initial labels of all non-positives to zero.

In a broader context, the approaches that we have introduced in this thesis are promis-
ing for solving any prediction problem for which there is a large amount of unlabeled data
available that can be used to associate the examples (instances) in various ways. For in-
stance, a relevant problem is to predict diagnosis or prognosis for a patient based on
multiple similarity networks constructed over the patients. These similarity networks
can be derived from different types of molecular data that are available for a group of
people such as their gene-expression profiles, SNPs, and epigenomics features. In other

applications, our algorithms can be used to predict a person’s preference for a product

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 113

based on multiple networks, for example, those derived from friendship ties and demo-
graphic information. Our extensions of label propagation for incorporating ontology
structure may also be useful in predicting genes that are involved in different diseases.
This is motivated by recent studies that have constructed networks of disease-disease
similarities (e.g. the Diseaseome network [30]).

In summary, one recurring observation is that for exploiting the large scale datasets
considered in this thesis, well-formulated linear models have resulted in predictive perfor-
mance that equals or exceeds that of more complex models. Furthermore, obtaining the
solution to a variety of models requires solving sparse systems of linear equations. We
have shown that such systems of equations that arise from appropriate models of data can
be solved efficiently, often requiring a few matrix-vector products. These observations

are likely to hold in other “data-rich” domains.

Future Work

Here we suggest directions for future research that are motivated by the present project.

The probabilistic interpretation of label propagation motivates several directions for
future work. Accordingly, an initial label bias can be interpreted as a prior probability
with a fixed precision. In Chapter 4, we showed that setting prior probabilities for
labels according to the ontological structure of gene functions (Section 4.2.1), or the
proportion of observed positives for a given prediction task (Section 3.3.2), can greatly
improve the predictive performance. An extension to this work is to learn the prior
precisions from data. For example, one can use the GO evidence codes to estimate
prior precisions. Another extension would be to set the prior precisions by using profile-
based data. For example, as opposed to using domain composition data in the form of a
shared domain network, we can use the domain data to learn the prior precisions. This

extension can further speed up label propagation on large-scale datasets—networks that

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 114

are constructed from feature-based data are often dense, whereas solving for the solution

to label propagation scales with the number of non-zero edges in the networks.

As we showed in Section 2.6.2, we can use the probabilistic interpretation of LPA
to compute the posterior variance for each discriminant score. One area of future work
would be to compute these posterior variances, combine them with the discriminant
scores, and assess the performance. A related topic is to investigate how to convert the
discriminant scores to confidence scores. In particular, the discriminant scores returned
by label propagation depend on the number of positive examples and so discriminant
scores of a gene for two different classification tasks are not directly comparable. A
simple method for computing confidence scores is to normalize the initial label vector
(e.g. to have a length of one) and to fit a sigmoid function to the discriminant scores
(e.g. as done in [78]). Another possibility is to perform cross-validation to adjust the
discriminant scores based on the discriminant scores assigned to the left out positive

examples.

In Chapter 5, we showed that we can define three different versions of label propa-
gation by changing how we normalize the Laplacian matrix of an affinity network. This
normalization has a large impact on the accuracy of the obtained solution. In particu-
lar, the symmetric normalization up-weights the discriminant scores of nodes with larger
weighted degrees, which works well for the purpose of gene function prediction—a recent
study showed that because of multi-functionality of hubs, node degrees can be highly
predictive of gene function [29]. A future direction is to further investigate the effect and
potential of different normalization methods and their impact on node ranking. Another
area for future work is to further investigate the observations reported in [29] by remov-
ing high degree nodes and then assessing the predictive performance. Removing hubs
that connect different types of functional modules (e.g. “date hubs” [33]) may result in

improved performance.

As we showed in Chapter 5, the iterative solution of label propagation converges very

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 115

quickly on real-world networks. These observations will be very useful when designing
algorithms for combining and making predictions from networks. One obvious extension
to WPA is to learn the random walks parameters for several networks and thus allow for
predictions from multiple networks simultaneously. Another possible extension of WPA
is to learn separate weight for random walks originating from each node, as opposed to
having one parameter for all random walks of a given length for all nodes.

In conclusion, we have introduced accurate and scalable algorithms for predicting gene
function form multiple networks. As we have discussed, our observations and algorithms
are instructive for solving other prediction problems for which there is a large amount of

unlabeled data available that can be used to associate the examples (instances).

Appendix A

In this appendix, we summarize the data sources we used to construct functional linkage
networks. To construct networks from both profile-based data and network-based data
we use the Pearson Correlation Coefficient (PCC) to measure pairwise similarities. We
set all negative PCC values to zero. The PCC networks are often dense and there is
often a large proportion of non-zero edges. This is because many pairs of genes may
have a very small yet non-zero correlation coefficient. Since the efficiency of algorithms
for predicting node labels from networks depend on the number of non-zero edges, we
sparsify dense PCC networks. To do so, for each gene we keep its top k nearest neighbor
neighbors (NN) and set the rest to zero. Subsequent to sparsifying a network, we ensure
that is symmetric by setting w;; to the maximum of w;; or wj;. Empirically, we have
observed that we can set k = 100 without sacrificing performance [60]. Tables 6.1-6.6

provide references for all datasets that we used to construct networks.

116

Appendix 117

Table 6.1: Data sources used for constructing eight networks in Human. Most of these
data was collected from the HPRD database [57] (downloaded November 2007), otherwise
we provide the PubMed ID (PMID) of the corresponding publication. We construct
networks from each dataset by using the PCC to measure pairwise similarities between
genes.

Source Type

HPRD Shared domain composition

HPRD Co-complexed

HPRD Shared regulation

HPRD Shared prost-transcriptional modification
HPRD Co-expression

HPRD Protein interaction

HPRD Shared phenotype (OMIM disease)

PMID:15075390 Co-expression

Table 6.2: Data sources used for constructing 15 networks in Yeast (Yeastl5). We
construct networks from each dataset by using the PCC to measure pairwise similarities
between genes. PMID indicates the corresponding PubMed ID for each publication.

Source Publication Type

PMID:9843569 Spellman, Mol Biol Cell, 1998 Co-expression
PMID:10929718 Hughes, Cell, 2000 Co-expression
PMID:1110252 Gasch, Mol Biol Cell, 2000 Co-expression
PMID:16880382 Chua (DM), PNAS, 2006 Co-expression
PMID:16880382 Chua (OE), PNAS, 2006 Co-expression
PMID:10657304 Roberts, Science, 2000 Co-expression
PMID:12897782 Yvert, Nat Genet, 2003 Co-expression

PfamA 2006 Shared domain composition
PfamB 2006 Shared domain composition
PMID:14718668 Giaever, PNAS, 2004 Shared phenotype
PMID:12399584 Lee, Science, 2002 Shared regulation

PMID: 15343339 Harbison, Nature, 2004 Shared regulation
PMID:16429126 Gavin, Nature, 2006 Protein interaction
PMID:16554755 Krogan, Nature, 2006 Protein interaction

PMID:14562095 Huh, Nature, 2003 Co-localization

Appendix

118

Table 6.3: Data sources used for constructing seven networks in E.coli. This datasets
were collected by Hu and colleagues [39]. We construct networks from each dataset
by using the PCC to measure pairwise similarities between genes. PMID indicates the
corresponding PubMed ID for each publication.

Source

Publication

Type

PMID:19402753
M3D database

PMID:19402753
PMID:19402753
PMID:19402753
PMID:19402753
PMID:19402753

Hu. Plos Biol, 2009
M3D database

Hu, Plos Biol, 2009
Hu, Plos Biol, 2009
Hu, Plos Biol, 2009
Hu, Plos Biol, 2009
Hu, Plos Biol, 2009

Protein interaction

Co-expression

Shared Operons

Gene fusion

Co-inheritance (shared phylogenetic profile)
Close distance in chromosome features 1
Close distance in chromosome features 2

Table 6.4: Data sources used for constructing ten mouse networks. This datasets were
collected by Pena-Castillo and colleagues [76] and used in the MouseFunc challenge. We
construct networks from each dataset by using the PCC to measure pairwise similarities
between genes. PMID indicates the corresponding PubMed ID for each publication.

Source

Publication

Type

PMID:1558831
PMID:15075390
SAGE Libraries
OPHID

Pfam

InterPro
bioMART
Inparanoid
MGI

OMIM

Zhange, J. Biol, 2004
Su, PNAS, 2004
2007

2007

2007

2007

2007

2007

2007

2007

Co-expression

Co-expression

Co-expression

Protein interaction

Shared domain composition

Shared domain composition

Co-inheritance (shared phylogenetic profile)
Co-inheritance (shared phylogenetic profile)
Shared phenotype

Shared phenotype (disease)

Appendix 119

Table 6.5: Data sources used for constructing 44 networks for yeast (Yeast44). For ge-
netic interaction networks that reported both positive and genetic interaction scores, we
construct four functional linkage networks: one direct negative genetic interaction net-
work, one direct positive genetic interaction network, one PCC network constructed from
the positive genetic interactions, and one PCC network constructed from the negative
genetic interactions. For the protein interaction data, we use a direct interaction network
as well as one constructed by using the PCC. PMID indicates the corresponding PubMed
ID for each publication.

Number of
networks

Source Publication Type

PMID:10657304 Roberts, Science 2000
PMID:10929718 Hughes, Cell 2000
PMID:11102521 Gasch, Mol Biol Cell. 2000
PMID:11805826 Gavin, Nature 2002
PMID:11805837 Ho, Nature 2002
PMID:14562095 Huh, Nature 2003
PMID:14718668 Giaever, PNAS, 2004

Co-expression
Co-expression
Co-expression
Protein interaction
Protein interaction
Co-localization
Co-regulation

PMID:14764870
PMID:16093310
PMID:16269340
PMID:16319894
PMID:16429126
PMID:16487579

Tong, Science 2004.
Miller, PNAS 2005

Schuldiner, Cell 2005 (PS)

Ptacek, Sciene 2005
Gavin, Nature 2006
Pan, Cell 2006 (SL)

Genetic interaction
Protein interaction
Genetic interaction
Protein interaction
Protein interaction
Genetic interaction
Protein interaction

PMID:16554755 Krogan, Nature 2006
PMID:16880382 Chua, PNAS 2006 Co-expression

PMID:17200106 Collins, Mol Cell Proteomics 2007 Protein interaction
PMID:17314980 Collins, Nature 2007 (PS) Genetic interaction
PMID:17923092 McClellan, Cell 2007 Genetic interaction
PMID:18467557 Tarassov, Sciene 2008 Protein interaction
PMID:18676811 Lin, Gens Dev 2008 Genetic interaction
PMID:18719252 Yu, Science 2008 Protein interaction
PMID:9843569 Spellman, Mol Biol Cell. 1998 Co-expression

NN DNDNEREREDNNNEREDNDNAENDNREFE =N~ -

Appendix 120

Table 6.6: Data sources used for constructing 38 networks for fly. We construct two
networks from each protein interaction dataset: one direct network and one PCC net-
work. The gene expression datasets were downloaded from GEO, below we provide the
corresponding GEO ID for the corresponding publications.

Accession Source Type Number of net-
works
GDS2674 Gene Expression Omnibus Co-expresions 1
GDS2399 Gene Expression Omnibus Co-expresions 1
GDS2485 Gene Expression Omnibus Co-expresions 1
GDS516 Gene Expression Omnibus Co-expresions 1
GDS1937 Gene Expression Omnibus Co-expresions 1
GDS2675 Gene Expression Omnibus Co-expresions 1
GDS1842 Gene Expression Omnibus Co-expresions 1
GDS2504 Gene Expression Omnibus Co-expresions 1
GDS2272 Gene Expression Omnibus Co-expresions 1
GDS1526 Gene Expression Omnibus Co-expresions 1
GDS23 Gene Expression Omnibus Co-expresions 1
GDS444 Gene Expression Omnibus Co-expresions 1
GDS732 Gene Expression Omnibus Co-expresions 1
GDS443 Gene Expression Omnibus Co-expresions 1
GDS667 Gene Expression Omnibus Co-expresions 1
GDS664 Gene Expression Omnibus Co-expresions 1
GDS653 Gene Expression Omnibus Co-expresions 1
GDS1690 Gene Expression Omnibus Co-expresions 1
GDS2665 Gene Expression Omnibus Co-expresions 1
GDS2071 Gene Expression Omnibus Co-expresions 1
GDS2479 Gene Expression Omnibus Co-expresions 1
GDS1911 Gene Expression Omnibus Co-expresions 1
GDS1739 Gene Expression Omnibus Co-expresions 1
GDS2673 Gene Expression Omnibus Co-expresions 1
GDS1977 Gene Expression Omnibus Co-expresions 1
GDS1877 Gene Expression Omnibus Co-expresions 1
GDS1686 Gene Expression Omnibus Co-expresions 1
GDS2830 Gene Expression Omnibus Co-expresions 1
GDS2784 Gene Expression Omnibus Co-expresions 1
GDS2228 Gene Expression Omnibus Co-expresions 1
GDS1395 Gene Expression Omnibus Co-expresions 1
GDS602 Gene Expression Omnibus Co-expresions 1
PMID14605208 BIOGRID Protein interaction 2
PMID15575970 BIOGRID Protein interaction 2
Interpro domains Interpro Shared domain composition 1
Pfam domains Pfam Shared domain composition 1

Bibliography

[1]

L.A. Adamic and N. Glance. The political blogosphere and the 2004 U.S. election.
WWW-2005 Workshop on the Weblogging Ecosystem, 2005.

S. Aerts, D. Lambrechts, S. Maity, P. Van Loo, B. Coessens, and F. De Smet et al.

Gene prioritization through genomic data fusion. Nat Biotech, 24:537-544, 2006.

S.F. Altschul, T.L. Madden, A.A. Schaer, J. Zhang, Z. Zhang, W. Miller, and D.J.
Lipma. Gapped blast and psi-blast: a new generation of protein database search

programs. Nucleic Acids Research, pages 3389-3402, 1997.

A. Bairoch. The enzyme database in 2000. Nucleic Acids Research, 28:304-305,
2000.

G.H. Bakir, T. Hofmann, B. Scholkopf, A.J. Smola, B. Taskar, and S.V.N. Vish-
wanathan, editors. Predicting Structured Data. Advances in neural information

processing systems. MIT Press, Cambridge, MA, USA, 2007.

A L. Barabasi and R. Albert. Emergence of scaling in random networks. Science,

286/(5439):509-512, 1999.

R.E. Barlow, D.J. Bartholomew, J.M. Bremmer, and H.D. Brunk. Statistical in-
ference under order restrictions; the theory and application of isotonic regression.

Wiley, New York. ISBN 0-4-71-04970-0, 1972.

121

BIBLIOGRAPHY 122

8]

[10]

[11]

[12]

[14]

[15]

[16]

[17]

7. Barutcuoglu, R.E. Schapire, and O.G. Troyanskaya. Hierarchical multi-label

prediction of gene function. Bioinformatics, 22(7):830-836, 2008.
C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

H. Boeger, D. Bushnell, R. Davis, J. Griesenbeck, Y. Lorch, and J. Strattan et al.

Structural basis of eukaryotic gene transcription. FEBS Letters, (899-903), 2005.

M.P Brown, W.N. Grundy, D. Lin, N. Cristianini, C.W. Sugnet, and T.S. Furey et
al. Knowledge-based analysis of microarray gene expression data by using Support
Vector Machines. Proceedings of National Academy of Science USA, 97:262-267,
2000.

O. Burdakov, O. Sysoeve, A. Grimvall, and M. Hussain. Large-Scale Nonlinear Op-
timization, pages 25—33. In Nonconvex Optimization and Its Application. Springer-

Verlag, Berlin, 2006.

N.A. Christakis and J.H. Fowler. The spread of obesity in a large social network
over 32 years. New England Journal of Medicine, 357(4):370-379, 2007.

N.A. Christakis and J.H. Fowler. The collective dynamics of smoking in a large

social network. New England Journal of Medicine, 358(21):2249-2258, 2008.

H.N. Chua, W.K. Sung, and L. Wong. Exploiting indirect neighbors and topological
weight to predict protein function from protein-protein interactions. Bioinformat-

ics, 22:1623-1630, 2006.

F.R. Chung. Spectral Graph Theory. CBMS Regional Conference Series in Mathe-

matics. American Mathematical Society, 1997.

S.R. Collins, P. Kemmeren, X. Zhao, J.F. Greenblatt, F. Spencer, and F.C. Holstege
et al. Toward a comprehensive atlas of the physical interactome of Saccharomyces

cerevisiae. Molecular Cell Proteomics, 6:439-450, 2007.

BIBLIOGRAPHY 123

[18]

[19]

[20]

[22]

23]

[25]

[20]

[27]

Gene Ontology Consortium. Gene Ontology: tool for unification of biology. Nature
Genetics, 25:25-29, 2000.

M. Costanzo, A. Baryshnikova, J. Bellay, Y. Kim, E.D. Spears, and C.S. Sevier et
al. The genetic landscape of a cell. Science, 327(5964):425-431, 2010.

K. Crammer and Y. Singer. On the algorithmic implementation of multi-class

SVMs. Journal of Machine Learning Research, 2001.

N. Cristianini, J. Shawe-Taylor, and J. Kandola. On kernel target alignment. Ad-

vances in Neural Information Processing Systems, pages 367-373, 2002.

J. Davis and M. Goadrich. The relationship between precision-recall and ROC

curves. International Conference on Machine Learning, 2006.

M. Deng, T. Chen, and F. Sun. An integrated probabilistic mode for functional

prediction of proteins. Journal of Computational Biology, 11:463-475, 2004.

R. Edgar, M. Domrachev, and A.E. Lash. Gene expression omnibus: NCBI gene
expression and hybridization array data repository. Nucleic Acids Research, pages

207-210, 2002.

B. Efron, T. Hastie, 1. Johnstone, and R. Tibshirani. Least Angle Regression.

Annals of Statistics, 32(2):407-499, 2004.

R. Eisner, B. Poulin, D. Szafron, P. Lu, and R. Greiner. Improving protein function
prediction using the hierarchical structure of the gene ontology. CIBCB Conference,

pages 354-363, 2005.

O. Emanuelsson, S. Brunak, G. von Heijne, and H. Nielsen. Locating proteins in
the cell using TargetP, SignalP, and related tools. Nature Protocols, 2:953-971,
2007.

BIBLIOGRAPHY 124

[28]

[29]

[30]

[31]

[33]

[34]

[36]

R. Finn, J. Mistry, J. Tate, P. Coggill, A. Heger, and J.E. Pollington et al. The

Pfam protein families database. Nucleic Acids Research, 38:D211-D222, 2010.

J. Gillis and P. Pavlidis. Multifunctionality drives gene characterization. In Sub-

mission, 2010.

K.I. Goh, M.E. Cusick, D. Valle, B. Childs, M. Vidal, and A.L. Barabasi. The hu-
man disease network. Proceedings of National Academy of Science USA, 104:8685—
8690, 2007.

H. Yu H, P. Braun, M.A. Yildirim, I. Lemmons, K. Venkatesan, and J. Sahalie. High
quality binary protein interaction map of the yeast interactome network. Science,

322:104-110, 2008.

B.H. Hall, A.B. Jaffe, and M. Trojtenberg. The NBER patent citation data file:
Lessons, insights and methodological tools. NBER Working Paper 8489, 2001.

J. Han, N. Bertin, T. Hao, D.S. Goldberg, G.F. Berriz, and L.V. Zhang et al. Evi-
dence for dynamically organized modularity in the yeast proteinprotein interaction

network. Nature, 430, 2004.

H. Hanley and B. McNeil. The meaning and use of the area under a receiver

operator characteristic (ROC) curve. Radiology, 1982.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.

Springer, 2001.

H Hegyi and M. Gerstein. The relationship between protein structure and function:
a comprehensive survey with application to yeast genome. Journal of Molecular

Biology, 288:147-164, 1999.

BIBLIOGRAPHY 125

[37]

[38]

[39]

[40]

[41]

[42]

[45]

M.A. Hibbs, D.C. Hess, C.L. Myers, C. Huttenhower, and O.G. Troyanskaya. Ex-
ploring the functional landscape of gene expression: directed search of large mi-

croarray compendia. Genome Biology, 23(20):2692-2699, 2007.

H. Hishigaki, K. Nakai, T. Ono, A. Tanigami, and T. Takagi. Assessment of pre-
diction accuracy of protein function from protein-protein interaction data. Yeast,

18:523-531, 2001.

P. Hu, S.C. Janga, M. Babu, J.J. Diaz-Mejia, G. Butland, and W. Yang et al.
Global functional atlas of Escherichia coli encompassing previously uncharacterized

proteins. PLoS Biology, 7:€96, 2009.

W. Hubh, J. Falvo, L. Gerke, A. Carroll, R. Howson, J. Weissman, and E.K. O’Shea.

Global analysis of protein localization in budding yeast. Nature, 425:686—691, 2003.

C. Huttenhower, E.M Haley, M.A. Hibbs, V. Dumeaux, D.R. Barrett, H.A. Coller,
and O.G. Troyanskaya. Exploring the human genome with functional maps.

Genome Research, 19:1093-1106, 2009.

J. Jin, X. Xie, C. Chen, J. Park, C. Stark, D.A. James, and et al. Eukaryotic protein

domains as functional units of cellular evolution. Science Signaling, 2, 2009.

K. Kanehisa and S. Goto. KEGG: Kyoto Encyclopedia of Genes and Genome.
Nucleic Acids Research, pages 27-30, 2000.

U. Karaoz, T.M. Murali, S. Letovsky, Y. Zheng, C. Ding, C.R. Cantor, and S. Kasif.
Whole-genome annotation by using evidence integration in functional-linkage net-

works. Proceedings of National Academy of Science USA, 101:2888-2893, 2003.

0.D. King, R.E. Foulger, S.S. Dwight, J.V. White, and F.P. Roth. Predicting gene

function from patterns of annotation. Genome Research, 13, 2003.

BIBLIOGRAPHY 126

[46]

[47]

[48]

[49]

[51]

[52]

[54]

R. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete input

spaces. International Conference on Machine Learning (ICML), 2002.

N.J. Krogan, G. Cagney, H. Yu, G. Zhong, X. Guo, and A. Ignatchenko et al. Global
landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature,

440:637-643, 2006.

G.R. Lanckriet, T. De Bie, N.Cristianini, M.I. Jordan, and W.S. Noble. A statistical

framework for genomic data fusion. Bioinformatics, 20:2626-2635, 2004.

C.L. Lawson and R.J. Hanson. Solving Least Squares Problems. Prentice-Hall,
1974.

I. Lee and E.M. Marcotte. Integrating functional genomics data. Methods in Molec-
ular Biology, 453:267-278, 2008.

T.I. Lee, N.J. Rinaldi, F. Robert, D.T. Odom, Z. Bar-Joseph, and G.K. Gerber
et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science,

298:799-804, 2002.

C. Leslie, E. Eskin, and W.S. Noble. The spectrum kernel: a string kernel for svm
protein classification. In proceedings of The Pacific Symposium on Biocomputing,

pages 564-575, 2002.

C. Leslie, E. Eskin, J. Weston, and W.S. Noble. Mismatch string kernels for
SVM protein classification. Advances in Neural Information Processing Systems,

15:1141-1448, 2002.

D.P. Lewis and W.S. Noble. Support Vector Machine learning from heterogeneous
data: an empirical analysis using protein sequence and structure. Bioinformatics,

22(22):2753-2760, 2006.

BIBLIOGRAPHY 127

[55]

[56]

[57]

[58]

[59]

[60]

[62]

C. Lippert, Z. Ghahramani, and K. Borgwardt. Gene function prediction from
synthetic lethality networks via ranking on demand. Bioinformatics, 26:912-918,
2010.

E.M. Marcotte, M. Pellegrini, M.J. Thompson, T.O. Yeates, and D. Eisenberg.
A combined algorithm for genome-wide prediction of protein function. Nature,

42:83-86, 1999.

G. Mishra, M. Suresh, K. Kumaran, N. Kannabiran, S. Suresh, and P. Bala et
al. Human protein reference database — 2006 update. Nucleic Acids Research,

34(Database Issue):D411-D414, 2006.

S. Mostafavi and Q. Morris. Using the Gene Ontology hierarchy when predicting

gene function. Conference on Uncertainty in Artificial Intelligence, 20009.

S. Mostafavi and Q. Morris. Fast integration of heterogeneous data sources for
predicting gene function with limited annotation. Bioinformatics, 26:1759-1765,

2010.

S. Mostafavi, D. Ray, D. Warde-Farley, C. Grouios, and Q. Morris. GeneMANIA:
a real-time multiple association network integration algorithm for predicting gene

function. Genome Biology, 9(Suppl 1):54, 2008.

T.M. Murali, C.J. Wu, and S. Kasif. The art of gene function prediction. Nature
Biotechnology, 24:1474-1475, 2006.

C.L. Myers, DR. Barrett, M.A. Hibbs, C. Huttenhower, and O.G. Troyanskaya.
Finding function: evaluation methods for functional genomic data. BMC Genomics,

7:187, 2006.

BIBLIOGRAPHY 128

[63]

[66]

[70]

C.L. Myers, D. Robson, A. Wible, M. Hibbs, C. Chiriac, C.L. Theesfeld, K. Dolin-
ski, and O.G. Troyanskaya. Discovery of biological networks from diverse functional

genomic data. Genome Biology, 6:R114, 2005.

C.L. Myers and O.G. Troyanskaya. Context-sensitive data integration and predic-

tion of biological networks. Bioinformatics, 23:2322-2330, 2007.

E. Nabieva, K. Jim, A. Agarwal, B. Chazelle, and M. Singh. Whole-proteome pre-
diction of protein function via graph-theoretic analysis of interaction maps. Bioin-

formatics, 2(Suppl. 1), 2005.

M.E.J. Newman. Modularity and community structure in networks. Proceedings

of the National Academy of Science USA, 103:8577-8582, 2006.

M.E.J. Newman. Networks: An Introduction. Oxford University Press, 2010.

J. Nocedal and S.J. Wright. Numerical Optimization. Springer, 2006.

G. Obozinski, G. Lanckriet, C. Grant, M.I. Jordan, and W.S. Noble. Consistent
probabilistic outputs for protein function prediction. Genome Biology, 9(Suppl
1):S6, 2008.

C.S. Ong and A. Zien. An automated combination of kernels for predicting pro-
tein subcellular localization. Proceedings of the 8th Workshop on Algorithms in

Bioinformatics (WABI), pages 179-186, 2008.

M. Oti and HG. Brunner. The modular nature of genetic diseases. Clinical Genetics,

1:1-11, 2007.

X. Pan, D. Yuan, S. Ooi, X. Wang, S. Sookhai-Mahadeo, P. Meluh, and J.D. Boeke.
dSLAM analysis of genome-wide genetic interactions in Saccharomyces cerevisiae.

Methods, 41:206-22, 2007.

BIBLIOGRAPHY 129

[73]

[74]

[76]

[81]

J. Park and A.L. Barabasi. Distribution of node characteristics in complex net-
works. Proceedings of National Academy of Science USA, 104(46):17916-17920,
2007.

P. Pavlidis, J. Weston, J. Cai, and W.S. Noble. Learning gene functional classi-
fication from multiple data types. Journal of Computational Biology, 9:401-411,
2002.

M. Pellegrini, E.M. Marcotte, M.J. Thompson, D. Eisenberg, and T.O. Yeates.
Assigning functions by comparative genome analysis: protein phylogenetic profiles.

Proceedings of National Academy of Science USA, 96:4285-4288, 1999.

L. Pena-Castillo, M. Tasan, C.L. Myers, H. Lee, T. Joshi, and C. Zhang et al.
A critical assessment of Mus musculus gene function prediction using integrated

genomic evidence. Genome Biology, 9(Suppl 1):52, 2008.

K. Petersen and M. Pedersen. The Matriz Cookbook. Technical University of

Denmark, 2008.

J. Platt. Probabilistic Outputs for Support Vector Machines and Comparisons to
Regularized Likelithood Methods. Large Margin Classifiers. MIT Press, 1999.

J.C. Platt. Using analytic QP and sparseness to speed the training of Support
Vector Machines. Neural Information Processing Systems (NIPS), 1999.

Y. Qi, Y. Suhail, Y.Y. Lin, J.D. Boeke, and J.S. Bader. Finding friends and enemies
in an enemies-only network: A graph diffusion kernel for predicting novel genetic
interactions and co-complex membership from yeast genetic interactions. Genome

Research, 18(1991-2004), 2008.

A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. SimpleMKL. Journal

of Machine Learning Research, 2008.

BIBLIOGRAPHY 130

[82]

[33]

[84]

[85]

3]

[89]

[90]

M. Rogers and A. Ben-Hur. The use of Gene Ontology evidence codes in preventing

classifier assessment bias. Bioinformatics, 25(9):1173-1177, 2009.

H. Rue and L. Held. Gaussian Markov Random Fields: Theory and Applications,
volume 104 of Monographs on Statistics and Applied Probability. Chapman & Hall,
London, 2005.

M. Schena, D. Shalon, R.W. Davis, and P. Brown. Quantitative monitoring of gene
expression patterns with a complementary DNA microarray. Science, 270:467-470,

1995.

B. Scholkopf and A.J. Smola. Learning with kernels : Support Vector Machines,
reqularization, optimization, and beyond. Adaptive computation and machine learn-

ing. MIT Press, 2002.

B. Shahbaba and R. Neal. Gene function prediction with hierarchical models with
hierarchy-based prior. BMC' Bioinformatics, 7:448, 2006.

D. Smedley, S. Haider, B. Ballester, R. Holland, D. London, G. Thorisson, and
A. Kasprzyk. BioMart—biological queries made easy. BMC' Genomics, 14:10-22,
2009.

A. Sokolov and A. Ben-Hur. Hierarchical classification of Gene Ontology terms
using the GOstruct method. Journal of Bioinformatics and Computational Biology,

2010.

J. Song and M. Singh. How and when should interactome-derived clusters be used
to predict functional modules and protein function? Bioinformatics, 25(23):3143—

3150, 2009.

S. Sonnenberg, G. Ratch, C. Schafer, and B. Scholkpof. Large scale multiple kernel

learning. Journal of Machine Learning Research, 2006.

BIBLIOGRAPHY 131

[91]

[92]

[94]

[96]

[97]

[99]

C. Stark, BJ. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, and M. Tyers.
BioGRID: a general repository for interaction datasets. Nucleic Acids Research,

1(Database issue):D539-D539, 2006.

B. Taskar, C. Guestrin, and D. Koller. Max-Margin Markov networks. Neural

Information Processing Systems Conference, 2003.

A H. Tong, G. Lesage, G.D. Bader, H. Ding, H. Xu, and J. Young et al. Global

mapping of the yeast genetic interaction network. Science, 303:808-813, 2004.

A.L. Traud, E.D. Kelsic, P.J. Mucha, and M.A. Porter. Community structure in

online collegiate social networks. arXiv, 0809.0690, 2008.

0O.G. Troyanskaya, K. Dolinski, A.B. Owen, R.B. Altman, and D. Botstein. A
bayesian framework for combining heterogeneous data sources for gene function

prediction. Proceedings of National Academy of Science, USA, 100:8348-8353, 2003.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector learn-
ing for interdependent and structured output spaces. International Conference on

Machine Learning, 2004.

K. Tsuda, H.J. Shin, and B. Scholkopf. Fast protein classification with multiple

networks. Bioinformatics, 21(Suppl 2):1159-1i65, 2005.

P. Uetz, L. Giot, G. Cagney, T.A. Mansfield, R.S. Judson RS, and J.R. Knight
et al. A comprehensive analysis of protein-protein interactions in Saccharomyces

cerevisiae. Nature, 403:623-627, 2000.

A. Vazquez, A. Flammini, A. Martian, and A. Vespignani. Global protein func-
tion prediction from protein-protein interaction networks. Nature Biotechnology,

21:697-700, 2003.

BIBLIOGRAPHY 132

[100]

[101]

102]

103]

104]

[105]

[106]

107]

V. Velculescu, L. Zhang, B. Vogelstein, K., and Kinzler. Serial analysis of gene
expression. Science, 270:484—487, 1995.

C. von Mering, M. Huynen, D. Jaeggi, S. Schmidt, P. Bork, and B. Snel. STRING:
a database of predicted functional associations between proteins. Nucleic Acids

Research, 31(1):258-261, 2003.

C. von Mering, R. Krause, B. Snel, M. Cornell, S.G. Oliver, S. Fields, and P. Bork.
Comparative assessment of large-scale data sets of protein-protein interactions.

Nature, 417:399-403, 2002.

D. Warde-Farley, SL. Donaldson, O. Comes, K. Zuberi, R. Badrawi, and P. Chao
et al. The GeneMANIA prediction server: biological network integration for gene
prioritization and predicting gene funciton. Nucleic Acids Research, 38(W214-
W220), 2010.

J. Weston, A. Elisseeft, D. Zhou, C. Leslie, and W.S. Noble. Protein ranking: From
local to global structure in the protein similarity network. Proceedings of National

Academy of Science USA, 101:6559-6563, 2004.

B. Zhang and S. Horvath. A general framework for weighted gene co-expression
network analysis. Statistical Applications in Genetics and Molecular Biology, 4,

2005.

L.V. Zhang, O.D. King, S.. Wong, D.S. Goldberg, H.A. Tong, and G. Lesage et
al. Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae

interaction network. Journal of Biology, 4:6, 2005.

D. Zhou, O. Bousquet, J. Weston, and B. Scholkopf. Learning with local and global

consistency. Advances in Neural Information Processing Systems, 16:321-328, 2004.

BIBLIOGRAPHY 133

[108] X. Zhou, M.C. Kao, and W.H. Wong. Transitive functional annotation by shortest-

path analysis of gene expression data. Proceedings of National Academy of Science

USA, 99(20):12783-12788.

[109] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using Gaus-
sian Fields and harmonic functions. The Twentieth International Conference on

Machine Learning, pages 912-919, 2003.

[110] H. Zou and T. Hastie. Regularization and variable selection via the Elastic Net.

Journal of Royal Statistics Society, 67(2):301-320, 2005.

