Problem Set 4
Due at the beginning of class on Tuesday, March 14.

Collaboration is allowed in groups of at most three students, but you must submit separate write-ups. Please also write the names of all your collaborators on your submissions. If you are working alone, we will drop the problem with the lowest score.

Problem 1. (25 points) Chaining Local Alignments

(a) (10 points) Consider the following problem:

Let \(S \) be a sequence of \(k \) numbers \(n_1, ..., n_k \). Let each number have an associated weight \(w_1, ..., w_k \). We want to find the heaviest increasing subsequence of \(S \); that is, a subsequence \(n_{i_1} < ... < n_{i_m} \) (where \(i_1 < ... < i_m \)), such that \(w_{i_1} + ... + w_{i_m} \) is maximum.

Show how to solve this problem in \(O(k \log k) \) time by reducing it to the chaining problem presented in class, for which a sparse dynamic programming algorithm was described.

(b) Let \(X \) and \(Y \) be DNA sequences of lengths \(L_X \) and \(L_Y \) respectively. Let \(A_X \) and \(A_Y \) be two sequences of \((n - 1) \) anchors that will be used to align \(X \) and \(Y \). Anchors in \(A_X \) and \(A_Y \) are ordered from left to right (anchor \(i \) of \(A_X \) will match anchor \(i \) of \(A_Y \), and is located to the left of anchor \(j \) of \(A_X \) if and only if \(i < j \)).

Throughout this problem, assume the lengths of the anchors themselves are negligible. Let \(x_i \) be the distance between anchors \(i-1 \) and \(i \) in \(A_X \), and similarly for \(y_i \). We also include the distances between the beginning of the sequence and the first anchor, and between the last anchor and the end; therefore, the sets \(X_d = x_1, ..., x_n \) and \(Y_d \) both have cardinality \(n \), one greater than the number of anchors.

We will globally align \(X \) and \(Y \) by fixing the alignments of corresponding anchors to each other, and using Needleman-Wunsch to align the portions of \(X \) and \(Y \) between neighboring anchors. We want to calculate the running time of this anchored alignment in terms of \(x_i \) and \(y_i \). For the following two questions, consult the list of definitions at the end of this problem.
(i) (7 points) Suppose \(L_X = L = L_Y \) and the anchors in \(X \) and \(Y \) are spaced in exactly the same way; that is, \(x_i = y_i \) for all \(i \). Write down the running time as a function of only those terms: \(L \), \(n \), and \(\text{Var}(X_d) \).

(ii) (8 points) Without making any assumptions about the relationship between the anchors in \(X \) and \(Y \), write down the running time as a function of only those terms: \(L_X \), \(L_Y \), \(n \), and \(\text{Cov}(X_d, Y_d) \).

Definitions:

- Mean: \(\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \)
- Variance: \(\text{Var}(X_d) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 \)
- Covariance: \(\text{Cov}(X_d, Y_d) = \frac{1}{n} \sum_{i=1}^{n} ((x_i - \bar{x})(y_i - \bar{y})) \)

Problem 2. (25 points) Multiple Sequence Alignments

(a) (12 points) Consensus multiple alignment versus sum-of-pairs multiple alignment.

Definitions: (adapted from Gusfield, p. 352)

1. Given a multiple alignment \(M \) of a set of strings \(S \), the **consensus character** of column \(i \) of \(M \) is the character that maximizes the summed score between the character and all the characters in column \(i \). (In case of ties, say by convention that we prefer A over C over G over T over ‘gap’). The score of (gap, gap) is 0. Let \(d(i) \) denote that maximum summed score in column \(i \).

2. The **consensus string** \(S_M \) derived from alignment \(M \) is the concatenation of the consensus characters for each column of \(M \).

3. The **alignment score** of \(S_M \) equals to the sum of column scores \(d(S_M) = d(1) + \ldots + d(m) \), where \(M \) has \(m \) columns.

4. The **optimal consensus multiple alignment** is a multiple alignment \(M \) for input string set \(S \) whose consensus string \(S_M \) has largest alignment score over all possible multiple alignments of \(S \).

Example: \(S = \{ \text{AGCC, ACC, TCC} \} \), and match, mismatch, gap = +2, -2, -3. Consider the following alignments:

- \(M_1: \{ \text{AGCC, A--CC, T--CC} \}; S_{M_1} = \text{A--CC}, \) and \(d(S_{M_1}) = (+2) + (-3) + (+6) + (+6) = 11. \)
- \(M_2: \{ \text{AGCC, A--CC, --TCC} \}; S_{M_2} = \text{AGCC}, \) and \(d(S_{M_2}) = (+1) + (-3) + (+6) + (+6) = 10. \)

Show an example with three or more sequences where all optimal multiple alignments according to the above model are different from all optimal alignments according to the Sum-Of-Pairs model. **In other words, since there may be several equally-scoring optimal alignments, the...**
set of optimal alignments for the consensus model must be disjoint from the set of optimal alignments for the Sum-Of-Pairs model.

Assume either a match, mismatch, and gap penalty of (+2, -2, -3) or (+2, -1, -1) (you may find the second set of scoring parameters easier to prove). Let the alphabet be \{A,C,G,T\}.

(b) (13 points) Phylogenetic-tree–based alignment.

Definitions:
(1) Given an input rooted binary tree \(T\) with a distinct string (from a set of strings \(S\)) written at each leaf, a **phylogenetic alignment** for \(T\) is an assignment of one string to each internal node of \(T\), **subject to the additional constraint described below**. Note that the strings assigned to internal nodes need not be distinct and need not be from the input strings \(S\).
(2) If strings \(S\) and \(S'\) are assigned to the endpoints of an edge \((i, j)\), then that edge has **edge distance** \(D(S, S')\), which is simply the maximum pair-wise alignment score between the two strings \(S\) and \(S'\). The distance of a phylogenetic alignment is the total of all edge distances in the tree.
(3) The **phylogenetic alignment** problem for \(T\) is to find an assignment of strings to internal nodes of \(T\) (one string to each node) that maximizes the distance of the alignment.

Additional constraint:
In the maximum pair-wise alignment between a leaf node \(x\) and an internal node \(S\), a letter in \(x\) must match or mismatch some letter in \(S\), and not be gapped. Also, the maximum pair-wise alignment between two adjacent internal nodes \(S\) and \(S'\) may not have any gaps. Then, constructing the multiple alignment of the input sequences given the phylogenetic alignment is straight-forward.

Note: it is also possible to define the problem where \(T\) is unrooted. If you prefer that definition, please go ahead and use it instead.

Example:
\[S = \{x = \text{ACC}, y = \text{AGCC}, z = \text{TCC}\},\] and match, mismatch, gap = +2, -2, -3. Let \(T = \{\text{Nodes = \{x, y, z, v_{yz}, v_{xyz}\}}, \text{Edges = \{(x, v_{xyz}), (v_{xyz}, v_{yz}), (v_{yz}, y), (v_{yz}, z)\}}, \text{Root = v_{xyz}}\), with leafs \{x, y, z\} and root \(v_{xyz}\).

Here is a phylogenetic alignment, which is just a labeling of the internal nodes: Label \(v_{yz}\) with “\text{AGCC}”, and \(v_{xyz}\) with “\text{AGCC}”. Then, the alignment score is \(D(x, v_{xyz}) + D(v_{xyz}, v_{yz}) + D(v_{yz}, y) + D(v_{yz}, z) = (+3) + (+8) + (+8) + (-1) = 18\).

Show an example with three or more sequences where **all** their optimal phylogenetic alignments differ from either the set of optimal consensus multiple alignments or the set of optimal Sum-Of-Pairs multiple alignments.

Similar to the previous problem, assume either a match, mismatch, and gap penalty of (+2, -2, -3) or (+2, -1, -1). Let the alphabet be \{A,C,G,T\}.
Problem 3. (25 points) Phylogeny

(a) (9 points) Given the following sequences, aligned with no gaps:

\[\begin{align*}
X & : \ \text{TACCCGAT} \\
Y & : \ \text{TAAACGAT} \\
Z & : \ \text{AAAACGCG} \\
W & : \ \text{AAAACGAT}
\end{align*} \]

Define the distance \(S(u, v) \) between two sequences \(u \) and \(v \) to be simply the number of letter substitutions (Hamming distance). Is this distance function \(S(u, v) \) ultrametric on these four sequences? Regardless of ultrametricity, build the average linkage (a.k.a., UPGMA) tree \(T_{\text{AL}} \) for these four sequences.

(b) (9 points) On the same sequences, run the Parsimony algorithm as described in lecture on \(T_{\text{AL}} \) from part (a). Is this the optimal parsimony tree? Either argue why it is, or find a tree with a lower parsimony cost.

(c) (7 points) Show that the neighboring leaves (1, 3) and (2, 4) in the tree given below have the smallest distances according to the neighbor-joining distance metric \(D_{ij} \).

\[
\begin{array}{c}
1 \\
0.1 \\
0.1 \\
0.4
\end{array}
\begin{array}{c}
2 \\
0.1 \\
0.4
\end{array}
\begin{array}{c}
3 \\
0.4
\end{array}
\]

Problem 4. (25 points) Gene Prediction

A simple strategy for locating genes in compact genomes not containing introns is to look for long open reading frames (ORFs). An ORF is defined as a sequence of DNA beginning with a start codon (ATG) and containing no in-frame stop codons (TAA, TAG, or TGA). ORF scanning works because genes contain long open reading frames which are unlikely to occur by chance.

(a) Suppose we select a random ORF from a section of noncoding DNA in which all positions are independent and each base is equally likely.
(i) (6 points) What is the probability distribution for the length of such an ORF, where the length includes the start codon but not the stop codon? (That is, an ORF consisting of a start codon, N amino-acids, and then a stop codon, has a length N+1, and not N+2).

(ii) (2 points) What is the probability that the length is at least 100 codons (300 bp)?

(iii) (4 points) What is the probability that the length is at least 100 codons if the base distribution is \(P(A) = 0.2, P(C) = 0.3, P(G) = 0.3, \) and \(P(T) = 0.2 \)?

(b) Suppose we would like to find genes in *Saccharomyces cerevisiae* (baker’s yeast) by ORF scanning. We estimate that only about 5% of yeast coding regions are less than 100 codons long based on our experience with other organisms. Therefore, we will predict any ORF of at least 100 codons as a gene. Assume for simplicity that the yeast genome has a uniform distribution of base pairs \(P(A) = P(C) = P(G) = P(T) = 0.25 \).

(i) (7 points) For a noncoding region of length \(L \), show that the probability of predicting at least one false positive gene in the region is no more than

\[
1 - \left[1 - \frac{1}{64} \left(\frac{61}{64} \right)^{99} \right]^{L-299}
\]

Explain why this is an upper bound but not the exact probability.

(ii) (3 points) Assume for simplicity that all the *S. cerevisiae* noncoding regions longer than 300 bp have length 500 bp and that there are 2,000 such regions. Using the upper bound from part (i), and ignoring the possibility of multiple false positives in a single region, provide an estimate for the total number of false positive genes we will predict. Given that the yeast genome has about 6,000 real genes (95% of which we will correctly predict), what is the sensitivity and specificity of this approach?

Definitions:

- **Sensitivity** = true genes predicted correctly / total true genes
- **Specificity** = true genes predicted correctly / total genes predicted

(iii) (3 points) Now suppose we would like to try ORF scanning in the human genome. Since many human exons are short, we set our threshold at 50 codons (150 bp). Inspired by part (ii), give an upper bound on the probability that we will predict a false positive coding region in a typical human intron of length 2,000 bp. Give a similar bound for a typical human intergenic region of length 50,000 bp.