Motif Finding

Regulation of Genes

Transcription Factor (Protein) → RNA polymerase (Protein)

DNA → Regulatory Element → Gene

Regulatory Element

Gene

Microarrays

- A 2D array of DNA sequences from thousands of genes
- Each spot has many copies of same gene
- Allow mRNAs from a sample to hybridize
- Measure number of hybridizations per spot

Finding Regulatory Motifs

Tiny Multiple Local Alignments of Many Sequences
Finding Regulatory Motifs

Given a collection of genes with common expression, Find the TF-binding motif in common

Characteristics of Regulatory Motifs

- Tiny
- Highly Variable
- ~Constant Size
- Often repeated
- Low-complexity-ish

Problem Definition

Given a collection of promoter sequences $s_1, ..., s_N$ of genes with common expression

<table>
<thead>
<tr>
<th>Probabilistic</th>
<th>Combinatorial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motif: M_i: $1 \leq i \leq W$ $1 \leq j \leq 4$ $M_i = \text{Prob[letter j, pos i]}$</td>
<td>Motif M: $m_1 ... m_W$ Some of the m_i's blank</td>
</tr>
<tr>
<td>Find best M, and positions $p_1, ..., p_N$ in sequences</td>
<td>Find M that occurs in all s_i with $\leq k$ differences</td>
</tr>
</tbody>
</table>

Essentially a Multiple Local Alignment

- Find "best" multiple local alignment

Alignment score defined differently in probabilistic/combinatorial cases

Algorithms

- Probabilistic
 1. Expectation Maximization: MEME
 2. Gibbs Sampling: AlignACE, BioProspector
- Combinatorial
 CONSENSUS, TEIRESIAS, SP-STAR, others

Discrete Approaches to Motif Finding
Discrete Formulations

Given sequences $S = \{x_1, \ldots, x^n\}$

- A motif W is a consensus string $w_1 \ldots w_K$
- Find motif W^* with “best” match to x_1, \ldots, x^n

Definition of “best”:
\[
d(W, x) = \min \text{hamming dist. between } W \text{ and a word in } x
\]
\[
d(W, S) = \sum_i d(W, x_i)
\]

Approaches

- Exhaustive Searches
- CONSENSUS
- MULTIPROFILER, TEIRESIAS, SP-STAR, WINLOWER

Exhaustive Searches

1. Pattern-driven algorithm
 - For $W = AA \ldots A$ to $TT \ldots T$ (4^K possibilities)
 - Find $d(W, S)$
 - Report $W^* = \arg \min d(W, S)$
 - Running time: $O(KN4^K)$
 (where $N = \sum_i |x_i|$)
 - Advantage: Finds provably best motif W
 - Disadvantage: Time

Exhaustive Searches

2. Sample-driven algorithm
 - For $W = a$ a K-long word in some x_i
 - Find $d(W, S)$
 - Report $W^* = \arg \min d(W, S)$
 OR Report a local improvement of W^*
 - Running time: $O(KN^2)$
 - Advantage: Time
 - Disadvantage: If true motif does not occur in data, and true motif is “weak”
 Then, random motif may score better than any instance of true motif

CONSENSUS (1)

Algorithm:

Cycle 1:
For each word W in S
 For each word W' in S
 Create alignment (gap free) of W, W'
 Keep the C_1 best alignments, A_1, \ldots, A_{C_1}
 $ACGGTTG$, $CAGACTT$, $GGGCTCT$...
 $ACGCTTG$, $AGAACTA$, $GGGCGT$...

CONSENSUS (2)

Algorithm (cont'd):

Cycle t:
For each word W in S
 For each alignment A_i from cycle t - 1
 Create alignment (gap free) of W, A_i
 Keep the C_t best alignments A_t, \ldots, A_{C_t}
 $ACGGTTG$, $CAGACTT$, $GGGCTCT$...
 $ACGCTTG$, $AGAACTA$, $GGGCGT$...
 $ACGGCTC$, $AGATCTT$, $GGGGTCT$...

CONSENSUS (3)

\(C_1, \ldots, C_n \) are user-defined heuristic constants

Running time:

\[
O(N^2) + O(N C_1) + O(N C_2) + \ldots + O(N C_n)
\]

\[
= O(N^2 + NC_{\text{total}})
\]

Where \(C_{\text{total}} = \sum C_i \), typically \(O(nc) \), where \(C \) is a big constant

MULTIPROFILER

- Extended sample-driven approach

 Given a \(K \)-long word \(W \), define:

 \(N_a(W) = \) words \(W' \) in \(S \) s.t. \(d(W, W') \leq a \)

Idea:

Assume \(W \) is occurrence of true motif \(W^* \)
Will use \(N_a(W) \) to correct "errors" in \(W \)

MULTIPROFILER (2)

Assume \(W \) differs from true motif \(W^* \) in at most \(L \) positions

Define:

A wordlet \(G \) of \(W \) is a \(L \)-long pattern with blanks, differing from \(W \)

Example:

\(K = 7; \; L = 3 \)

\(W = \text{ACGTGGA} \)

\(G = \text{--AG--CG} \)

MULTIPROFILER (2)

Algorithm:

For each \(W \) in \(S \):

For \(L = 1 \) to \(L_{\text{max}} \)

1. Find all "strong" \(L \)-long wordlets \(G \) in \(N_a(W) \)
2. Modify \(W \) by the wordlet \(G \) \(\rightarrow W' \)
3. Compute \(d(W', S) \)

Report \(W^* = \arg\min d(W', S) \)

Step 1 above: Smaller motif-finding problem;
Use exhaustive search

Expectation Maximization (1)

- The MM algorithm, part of MEME package uses Expectation Maximization

Algorithm (sketch):

1. Given genomic sequences find all \(K \)-long words
2. Assume each word is motif or background
3. Find likeliest
 - Motif Model
 - Background Model
 - classification of words into either Motif or Background
Expectation Maximization (2)

- Given sequences $x^1, ..., x^i$.
- Find all k-long words $X_1, ..., X_n$.
- Define motif model:
 $M = (M_1, ..., M_k)$
 $M_i = (M_{i1}, ..., M_{i4})$ (assume {A, C, G, T})
 $\text{where } M_{ij} = \text{Prob[motif position } i \text{ is letter } j]}$

Expectation Maximization (3)

- Define
 $Z_{i1} = \begin{cases} 1, & \text{if } X_i \text{ is motif;} \\ 0, & \text{otherwise } \end{cases}$
 $Z_{i2} = \begin{cases} 0, & \text{if } X_i \text{ is motif;} \\ 1, & \text{otherwise } \end{cases}$

- Given a word $X_i = x[1]...x[k]$,
 $P(X_i, Z_{i1} = 1) = \lambda M_{1x[1]}...M_{kx[k]}$
 $P(X_i, Z_{i2} = 1) = (1 - \lambda) B_{x[1]}...B_{x[k]}$
 Let $\lambda_1 = \lambda; \lambda_2 = (1 - \lambda)$

Expectation Maximization (4)

Define:
Parameter space $\theta = (M, B)$

Objective:
Maximize log likelihood of model:
$$
\log P(X_1, ..., X_n, Z \mid \theta, \lambda) = \sum_{i=1}^{n} \sum_{j=1}^{k} Z_{ij} \log(\lambda_j P(X_i \mid \theta_j))
$$
$$
\sum_{i=1}^{n} \sum_{j=1}^{k} Z_{ij} \log P(X_i \mid \theta_j) + \sum_{i=1}^{n} \sum_{j=1}^{k} Z_{ij} \log \lambda_j
$$

Expectation Maximization (5)

- Maximize expected likelihood, in iteration of two steps:
 Expectation:
 Find expected value of log likelihood:
 $$E[\log P(X_1, ..., X_n, Z \mid \theta, \lambda)]$$
 Maximization:
 Maximize expected value over θ, λ

Expectation Maximization (6): E-step

Expectation:
Find expected value of log likelihood:
$$E[\log P(X_1, ..., X_n, Z \mid \theta, \lambda)] =$$
$$\sum_{i=1}^{n} \sum_{j=1}^{k} E[Z_{ij}] \log P(X_i \mid \theta_j) + \sum_{i=1}^{n} \sum_{j=1}^{k} E[Z_{ij}] \log \lambda_j$$

where expected values of Z can be computed as follows:
$$Z_{ij} = \frac{\lambda_j P(X_i \mid \theta_j)}{\sum_{k=1}^{k} \lambda_k P(X_i \mid \theta_k)}$$

Expectation Maximization (7): M-step

Maximization:
Maximize expected value over θ and λ independently

For λ_j, this is easy:
$$\lambda_{j_{\text{new}}} = \arg \max_{\lambda_j} \sum_{i=1}^{n} E[Z_{ij}] \log \lambda_j = \frac{\sum_{i=1}^{n} Z_{ij}}{n}$$
Expectation Maximization (8): M-step

- For \(\theta = (M, B) \), define

 \[c_{jk} = E[\text{# times letter } k \text{ appears in motif position } j] \]

 \[c_{0k} = E[\text{# times letter } k \text{ appears in background}] \]

 It easily follows:

 \[\sum_{j=1}^{J_{\text{new}}} \frac{c_{jk}}{c_{0k}} = \frac{M_{\text{new}}}{\sum_{j=1}^{J_{\text{new}}} c_{0k}} \]

 to not allow any 0's, add pseudocounts

Overview of EM Algorithm

1. Initialize parameters \(\theta = (M, B), \lambda \):
 - Try different values of \(\lambda \) from \(N^{\frac{-1}{2}} \) to \(1/(2K) \)

2. Repeat:
 a. Expectation
 b. Maximization

3. Until change in \(\theta = (M, B), \lambda \) falls below \(\epsilon \)

4. Report results for several "good" \(\lambda \)

Initial Parameters Matter!

Consider the following "artificial" example:

- \(x_1, ..., x_N \) contain:
 - \(2^k \) patterns A…A, A…AT, …, T…T
 - \(2^k \) patterns C…C, C…CG, …, G…G
 - \(D \ll 2^k \) occurrences of K-mer ACTG…ACTG

Some local maxima:

- \(\lambda = \frac{1}{2}; \quad B = \frac{1}{2}C, \frac{1}{2}G; \quad M_i = \frac{1}{2}A, \frac{1}{2}T, i = 1, ..., K \)

- \(\lambda = D^{2^{-1/2}}; \quad B = \frac{1}{4}A, \frac{1}{4}C, \frac{1}{4}G, \frac{1}{4}T; \quad M_1 = 100\% A, M_2 = 100\% C, M_3 = 100\% T, etc. \)

Conclusion

- One iteration running time: \(O(NK) \)
 - Usually need \(< N \) iterations for convergence, and \(< N \) starting points
 - Overall complexity: unclear - typically \(O(N^2 K) \) - \(O(N^3 K) \)

- EM is a local optimization method
- Initial parameters matter