Learning Bounded Treewidth Bayesian Networks

Gal Elidan Stephen Gould
Department of Statistics Department of Electrical Engineering
Hebrew University Stanford University
Jerusalem, 91905, Israel Stanford, CA 94305, USA
galel @wuji.ac.il sgoul d@t anf ord. edu
Abstract

With the increased availability of data for complex domaiitds desirable to

learn Bayesian network structures that are sufficientlyesgive for generaliza-
tion while also allowing for tractable inference. While thetmod of thin junction

trees can, in principle, be used for this purpose, its fullgegly nature makes it
prone to overfitting, particularly when data is scarce. lis thork we present a
novel method for learning Bayesian networks of boundedntidt® that employs

global structure modifications and that is polynomial in $iee of the graph and
the treewidth bound. At the heart of our method is a triangdagraph that we
dynamically update in a way that facilitates the additiorclodin structures that
increase the bound on the model’s treewidth by at most onedéfenstrate the
effectiveness of our “treewidth-friendly” method on sealeeal-life datasets. Im-
portantly, we also show that by using global operators, weeahte to achieve bet-
ter generalization even when learning Bayesian networkimbdunded treewidth.

1 Introduction

Recent years have seen a surge of readily available datarfgplex and varied domains. Accord-
ingly, increased attention has been directed towards tteereaiic learning of complex probabilistic
graphical models [22], and in particular learning #irictureof a Bayesian network. With the goal
of making predictions or providing probabilistic explaioats, it is desirable to learn models that
generalize well and at the same time have low inference aaxitplor a small treewidth [23].

While learning optimal tree-structured models is easy [Bdrhing the optimal structure of general
and even quite simple (e.g., poly-trees, chains) Bayesigwarks is computationally difficult [8,

10, 19]. Several works attempt to generalize the tree-straaesult of Chow and Liu [5], either

by making assumptions about the true distribution (e.g.211), by searching for a local maxima
over tree mixtures [20], or by approximate methods that atgrmial in the size of the graph but
exponential in the treewidth bound (e.g., [3, 15]). In thateat of general Bayesian networks, the
thin junction tree approach of Bach and Jordan [2] is a locaédy search procedure that relies
at each step on tree-decomposition heuristic techniquesdimputing an upper bound the true
treewidth of the model. Like any local search approach,iéshod does not provide performance
guarantees butis appealing in its ability to efficientlyrfemodels with an arbitrary treewidth bound.

The thin junction tree method, however, suffers from two amant limitations. First, while useful
on average, even the best of the tree-decomposition hiearésthibit some variance in the treewidth
estimate [16]. As a result, a single edge addition can leadump in thetreewidth estimateespite
the fact that it can increase tireie treewidthby at most one. More importantly, structure learning
scores (e.g., BIC, BDe) tend to learn spurious edges thaltriesoverfitting when the number of
samples is relatively small, a phenomenon that is made wwyrse fully greedy approach. Intu-
itively, to generalize well, we want to learn bounded tredtwiBayesian networks where structure
modifications are globally beneficial (i.e., contributelte score in many regions of the network).

In this work we propose a novel method for efficiently leagniBayesian networks of bounded
treewidth that addresses these concerns. At the heart ahethod is a dynamic update of the
triangulation of the model in a way that is tree-width frigndthe treewidth of the triangulated
graph (upper bound on the model’s true treewidth) is guasghto increase by at most one when an



edge is added to the network. Building on the single edgedtikation, we characterize sets of edges
that argointly treewidth-friendly. We use this characterization in a dyi@programming approach
for learning the optimal treewidth-friendly chain with pesct to a node ordering. Finally, we learn
a bounded treewidth Bayesian network by iteratively augingrthe model with such chains.

Instead of using local edge modifications, our method psxge by incrementally adding chain
structures that are globally beneficial, improving our i&pito generalize. We are also able to
guaranteghat the bound on the model’s treewidth grows by at most oeaett iteration. Thus, our
method resembles the global nature of Chow and Liu [5] masseat) than the thin junction tree
approach of Bach and Jordan [2], while being applicable atfice to any desired treewidth.

We evaluate our method on several challenging real-lifaskits and show that our method is able
to learn richer models that generalize better than the tniictjon tree approach as well as an un-
bounded aggressive search strategy. Furthermore, we stadveden when learning models with
unbounded treewidth, by using global structure modificatperators, we are better able to cope
with the problem of local maxima and learn better models.

2 Background: Bayesian networks and tree decompositions

A Bayesian network22] is a pair(G, ©) that encodes a joint probability distribution over a finite
setX = {X;,..., X, } of random variablesg is a directed acyclic graph whose nodes correspond
to the variables int'. The parameter® x, p,, €ncode locatonditional probability distributios
(CPDs) for each nod&; given its parents ir;. Together, these define a unique joint probability
distribution overX given by P(X1, ..., X,) = [, P(X; | Pa;).

Given a structurg/ and a complete training sét, estimating the (regularized)aximum likelihood
(ML) parameters is easy for many choices of CPDs (see [14détails). Learning the structure of
a network, however, is generally NP-hard [4, 10, 19] as thaler of possible structures is super-
exponential in the number of variables. In practice, strireefearning relies on a greedy search
procedure that examines easy to evaluate local structumeges (add, delete or reverse an edge).
This search is usually guided by a decomposable score thatdaes the likelihood of the data and
the complexity of the model (e.g., BIC [28ayesian scorg14]). Chow and Liu [5] showed that
the ML tree can be learned efficiently. Their result is eagéyeralized to any decomposable score.

Given a model, we are interested in the task of inferenceyauating queries of the for®(Y | Z)
whereY andZ are arbitrary subsets ¢f. This task is, in general, NP-hard [7], except whgrs
tree structured. The actual complexity of inference in ad3gn network is proportional to its
treewidth[23] which, roughly speaking, measures how closely the ngtwesembles a tree. The
notions of tree-decompositions and treewidth were intoediby Robertson and Seymour [23]:

Definition 2.1: A tree-decomposition of an undirected gregth= (V, E) is a pair({C; }ic7,7 ),
whereT is a tree,{C;} is a subset oV such that J,. - C; = V and where

o for all edgeqv, w) € E there exists an € 7 with v € C; andw € C;.

eforalli,j, k € 7:if jis onthe (unique) path fromto % in 7, thenC; N C;, C C;. 11

The treewidth of a tree-decomposition is defined take; 7 |C;| — 1. The treewidthl'W (H) of
an undirected grapf is the minimum treewidth over all possible tree-decompas# of . An
equivalent notion of treewidth can be phrased in terms obalgthat is a triangulation Gf.

Definition 2.2: An induced pathP in an undirected grapl is a path such that for every non-
adjacent verticep;, p; € P there is no edgép,—p;) € H. A triangulated (chordal) graph is an
undirected graph with no induced cycles. Equivalentlysifin undirected graph in which every
cycle of length four or more contains a chold.

It can be easily shown that the treewidth of a triangulategblyiis the size of the maximal clique of
the graph minus one [23]. The treewidth of an undirected lyfdps then the minimum treewidth
of all triangulations of{. For the underlying directed acyclic graph of a Bayesiarwnet, the
treewidth can be characterized via a triangulation of theatimed graph.

Definition 2.3: A moralized graphM of a directed acyclic grap§ is an undirected graph that has
an edggi—j) for every(i — j) € G and an edgép—q) for every pair(p — i),(¢ — i) € G. 1

The tree-decomposition properties are equivalent to the corresgpfadiily preservingandrunning in-
tersectionproperties of clique trees introduced by Lauritzen and Spiegelhalteaflatbund the same time.



Input:  dataseD, treewidth boundy
Output: a network with treewidth< K
G « best scoring tree
M™T — undirected skeleton &
k—1
While k < K
O « node ordering giveg and M
C < best chain with respect {©
G—gucC
Foreach (i — j) € C do
M™T — EdgeUpdateft™, (i — 5))
k — maximal clique size of™
Greedily add edges while treewidth K
Return G (d)

Figure 1: (left) Outline of our algorithm for learning Bayesian networks of bounded tigtbw (right) An
example of the different steps of our triangulation procedure (b)v{en(s — t) is added to the graph in (a).
The blocks ard s, v1 }, {v1, car }, and{car, v2, v3, p1, p2, t} With corresponding cut-verticas andcys. The
augmented graph (e) has a treewidth of three (maximal clique of sizg fén alternative triangulation (f),
connecting-as to ¢, would result in a maximal clique of size five.

The treewidth of a Bayesian network graghs defined as the treewidth of its moralized graph
It follows that the maximal clique odny moralized triangulation ofj is an upper bound on the
treewidth of the model, and thus its inference complexity.

3 Learning Bounded Treewidth Bayesian Networks

In this section we outline our approach for learning Bayesiatworks given an arbitrary treewidth
bound that is polynomial in both the number of variables drel desired treewidth. We rely on
global structure modifications that are optimal with regge@ node ordering.

At the heart of our method is the idea of using a dynamicallynmaéned triangulated graph to upper
bound the treewidth of the current model. When an edge is atdbe Bayesian network we update
this triangulated graph in a way that is not only guaranteqaréduce a valid triangulation, but that
is also treewidth-friendly. Thatis, our update is guaradt increase the size of the maximal clique
of the triangulated graph, and hence the treewidth boundt byost one. An important property of
our edge update is that we can characterize the parts of th@rkethat are “contaminated” by the
new edge. This allows us to define sets of edges thgbany treewidth-friendly. Building on the
characterization of these sets, we propose a dynamic progiag approach for efficiently learning
the optimal treewidth-friendly chain with respect to a nadéering.

Figure 1 shows pseudo-code for our method. Briefly, we leaBaygesian network with bounded
treewidth K by starting from a Chow-Liu tree and iteratively augmentihg current structure with
an optimaltreewidth-friendly chain During each iteration (below the treewidth bound) we apply
our treewidth-friendly edge update procedure that mamstaimoralized and triangulated graph for
the model at hand. Appealingly, as each global modificatamincrease the treewidth by at most
one, at leasK such chains will be added before we face the problem of loeadima. In practice,
as some chains do not increase the treewidth, many more baatsare added for a givex.

Theorem 3.1: Given a treewidth bound and dataset oveN variables, the algorithm outlined in
Figure 1 runs in time polynomial iV and K.

This result relies on the efficiency of each step of the atgoriand that there can be at mdét K
iterations € |edge$) before exceeding the treewidth bound. In the next sectiemslevelop the
edge update and best scoring chain procedures and showothatre polynomial inV and K.

4 Treewidth-Friendly Edge Update

The basic building block of our method is a procedure for riaining a valid triangulation of the
Bayesian network. An appealing feature of this procedutkdsthe treewidth bound is guaranteed
to grow by at most one after the update. We first consider siedgg(s — ¢) addition to the model.
For clarity of exposition, we start with a simple variant afrqprocedure, and later refine this to
allow for multiple edge additions while maintaining our gaiatee on the treewidth bound.



To gain intuition into how the dynamic nature of our updatassful, we use the notion of induced
paths or paths with no shortcuts (see Section 2), and maklieiexpe following obvious fact:

Observation 4.1: Let G be a Bayesian network structure and.Jet™ be a moralized triangulation
of G. Let M(,_, be M* augmented with the edge—t) and with the edgess—p) for every
parentp of £ in G. Then, every non-chordal cycle i ,_.;) involvess and eithert or a parent ot
and an induced path between the two verti@es.

Stated simply, if the graph was triangulated before thetarddof (s — ¢) to the Bayesian network,
then we only need to triangulate cycles created by the ahddf the new edge or those forced by
moralization. This observation immediately suggestsaigiit-forwardsingle-source triangulation
whereby we simply add an edge—uv) for every nodev on an induced path betweerandt or its
parents before the edge update. Clearly, this naive mettmdts in a valid moralized triangulation
of G U (s — t). Surprisingly, we can also show that it is treewidth-frignd

Theorem 4.2: The treewidth of the graph produced by #iagle-source triangulatioprocedure is
greater than the treewidth of the input grap™ by at most one.

Proof: (outline) For the treewidth to increase by more than one, some maxiiialM™ needs to
connect to two new nodes. Since all edges are being addedsfrdris can only happen in one of
two ways: (i) eithett, a parenp of ¢, or a nodev on induced path betweerandt is also connected
to C, but not part ofC, or (ii) two such (non-adjacent) nodes exist anid in C. In either case one
edge is missing after the update procedure preventing theafiion of a larger cliquell

One problem with the proposed single-source triangulatitaspite it being treewidth-friendly, is
that many vertices are connected to the source node, makéngiangulations shallow. This can
have an undesirable effect on future edge additions anéasess the chances of the formation of
large cligues. We can alleviate this problem with a refinelnadrthe single-source triangulation
procedure that makes use of the concepts of cut-verticesk$fland block trees.

Definition 4.3: A block of an undirected grapH is a set of connected nodes that cannot be discon-
nected by the removal of a single vertex. By convention,éfédge(u—uv) is in H thenu andv are
in the same block. Vertices that separate (are in the intBoseof) blocks are called cut-verticek.

It is easy to see that between every two nodes in a block ofgsezater than two there are at least
two distinct paths, i.e. a cycle. There are also no simpléesyiavolving nodes in different blocks.

Definition 4.4: The (unigue) block treés of an undirected grapl is a graph with nodes that
correspond both to cut-vertices and to blockstf The edges in the block tree connect any block
nodeB; with a cut-vertex node; if and only ifv; € B; in H. Il

It can be easily shown that any path#hbetween two nodes in different blocks passes through all
the cut-vertices along the path between the blocks.inAn important consequence that follows
from Dirac [11] is that an undirected graph whose blocks aamtjulated is overall triangulated.

Our refined treewidth-friendly triangulation procedunéu@trated via an example in Figure 1) makes
use of this fact as follows. First, the triangulated grapaugmented with the edde—t) and any
edges needed for moralization (Figure 1(b) and (c)). Secardock level triangulation is carried
out by zig-zagging across cut-vertices along the uniquk patween the blocks containingand

t and its parents (Figure 1(d)). Next, within each block (nmbtainings or ¢) along the path, a
single-source triangulation is performed with respecth® tentry” and “exit” cut-vertices. This
short-circuits any othenode paththrough (and within) the block. For the block containinghe
single-source triangulation is performed betwaemnd the “exit” cut-vertex. The block containing

t and its parents is treated differently: we add chords divéoim s to any nodes within the block
that is on arinduced pattbetweens and¢ (or parents ot) (Figure 1(e)). This is required to prevent
moralization and triangulation edges from interacting iway that will increase the treewidth by
more than one (e.g., Figure 1(f)).dfand¢ happen to be in the same block, then we only triangulate
the induced paths betweemndyt, i.e., the last step outlined above. Finally, in the spemak that
andt are indisconnectedomponents of, the only edges added are those required for moralization.

Theorem 4.5: Our revised edge update procedure results in a triangutatgzh with a treewidth at
most one greater than that of the input graph. Furthermbrens in polynomial time.

Proof: (outline) First, observe that the final step of adding chords emagdtom s is a single-
source triangulation once the other steps have been pextbri8ince each block along the block
path between andt is triangulated separately, we only need to consider theaggtriangulation be-
tween blocks. As this creates 3-cycles, the graph must a&l$oamgulated. To see that the treewidth



increases by at most one, we use similar arguments to theseiushe proof of Theorem 4.2, and
observe that the zig-zag triangulation only touches cuticas and any three of these vertices could
not have been in the same clique. The fact that the updategwoe runs in polynomial time follows
from the fact that an adaptation (not shown for lack of spafehaximum cardinality search (see,
for example [16]) can be used to efficiently identify all irghal nodes betweenand:. i

Multiple Edge Updates. We now consider the addition of multiple edges to the grépfio ensure
that multiple edges do not interact in ways that will inceettge treewidth bound by more than one,
we need to characterize the nodemtaminatedy each edge addition—a nodds contaminated
by the adding(s — t) to G if it is incident to anewedge added during our treewidth friendly
triangulation. Below are several examples of contaminatetd (solid nodes) incident to edges
added (dashed) by our edge update procedure for differenlidate edge additions — t) to the
Bayesian network on the left. In all examples except thettasvidth is increased by one.

O O O O

Using the notion of contamination, we can characterize sttdges that argointly treewidth-
friendly. We will use this to learn optimal treewidth frielycchains given a ordering in Section 5.

Theorem 4.6: (Treewidth-friendly set). Let G be a graph structure ant™ be its corresponding
moralized triangulation. I (s; — t;)} is a set of candidate edges satisfying the following:

e the contaminated sets of afy; — ¢;) and(s; — t;) are disjoint, or,

e the contaminated sets overlap at a single cut-velieithe endpoints of each edge are not
in the same blockndthe block paths between the endpoints do not overlap;

then adding all edges @ can increase the treewidth bound by at most one.

Proof: (outline) The theorem holds trivially for the first condition. Undéetsecond condition, the
only common vertex is a cut-vertex. However, since all ott@rtaminated nodes are in in different
blocks, they cannot interact to form a large cliglie.

5 Learning Optimal Treewidth-Friendly Chains

In the previous section we described our edge update proeedhd characterized edge chains that
jointly increase the treewidth bound by at most one. We noavthis to search for optimal chain
structures that satisfy Theorem 4.6, and are thus treevigthdly, given a topological node or-
dering. On the surface, one might question the need for afgpeade ordering altogether if chain
global operators are to be used—given the result of Chow am{bl, one might expect that learning
the optimal chain with respect @y ordering can be carried out efficiently. However, Meek [19]
showed that learning an optimal chain over a set of randombias is computationally difficult and
the result can be generalized to learning a chain conditidhe current model. Thus, during any
iteration of our algorithm, we cannot expect to find the oltergtimal chain.

Instead, we commit to a single node ordering that is topcoklli consistent (each node appears
after its parent in the network) and learn the optimal trekhfriendly chain with respect to that
order (we briefly discuss the details of our ordering belovid. find such a chain in polynomial
time, we use a straightforward dynamic programming apgro#lte best treewidth-friendly chain
that containg O, — ;) is the concatenation of:

e the best chain from the first nod2, to O, the first node contaminated ¥, — O,)
e the edgd O, — O)

e the best chain starting from optimal chain optimal chain
the last node contaminat&el;, N \NNNS O \NNN0
to the last node inthe ord€?y. & &z Os g Aa N

We note that when the end nodes are not separating cutegrtiee maintain a gap so that the
contamination sets are disjoint and the conditions of Téeo4.6 are met.



Aggressive

Test log-loss / instance
Runtime in minutes

T " Teewidhbound " terton " " Treewidthbound
Figure 2: Gene expression resultgleft) 5-fold mean test log-loss pénstance vs. treewidth bound. Our
method (solid blue squares) is compared to the thin junction tree methdeftieel circles), and an unbounded
aggressive search (dotted blackhniddle) the treewidth estimate and the number of edges in the chain during
the iterations of a typical run with the bound set to {f@ght) shows running time as a function of the bound.

Formally, we define’'[z, j] as the optimal chain whose contamination is limited to tingedO;,0,]
and our goal is to comput€[1, N]. Using F to denote the first node ordered in the contaminatibn
of (s — t) (and L for the last), we can computg1, N] via the following recursive update principle

maxg . p—i r—j(s — 1) no split
Cli,j] = { maxp—it1.j_1 Cli, k] UC[k,5] split
0 leave a gap

where the maximization is with respect to the structuree¢erg., BIC). That is, the best chain in a
subsequencp, j| in the ordering is the maximum of three alternatives: edgesse contamination
boundaries are exactiyand; (no split); two chains that are joined at some nade k& < j (split);

a gap betweenand; when there is no positive edge whose contamination 5 i.

Finally, for lack of space we only provide a brief descriptiof our topological node ordering.
Intuitively, since edges contaminate nodes along the biatk between the edge’s endpoints (see
Section 4), we want to adopt a DFS ordering over the blockssso #acilitate as many edges as
possible between different branches of the block tree. Weranodes with a block by the distance
from the “entry” vertex as motivated by the following resol the distance/’! (u,v) between
nodesu, v in the triangulated grapM ™ (proof not shown for lack of space):

Theorem 5.1: Let r, s, ¢ be nodes in a blocB in the triangulated grapiM* with dM (r,s) <
d (r,t). Then for anyv on an induced path betweerandt we haved! (r,v) < d (r,t).

The efficiency of our method outlined in Figure 1 in the numiiferariables and the treewidth bound
(Theorem 3.1) now follows from the efficiency of the orderemyd chain learning procedures.

6 Experimental Evaluation

We compare our approach on four real-world datasets to akenethods. The first is an improved
variant of the thin junction tree method [2]. We start (asim method) with a Chow-Liu forest and
iteratively add the single best scoring edge as long as ¢élesvtdth bound is not exceeded. To make
the comparison independent of the choice of triangulatiethad, at each iteration we replace the
heuristic triangulation (best of maximum cardinality sgaor minimum fill-in [16], which in prac-
tice had negligible differences) with our triangulationtifesults in a lower treewidth.The second
baseline is an aggressive structure learning approaclconabines greedy edge modifications with
a TABU list (e.g., [13]) and random moves and that is not aaiséd by a treewidth bound. Where
relevant we also compare our results to the results of Chkalzand Guestrin [3].

Gene ExpressionWe first consider a continuous dataset of the expressionasftygenes (variables)
in 173 experiments (instances) [12]. We learn sigmoid Bayesetworks using the BIC structure
score [24] using the fully observed set of 89 genes that@paie in general metabolic processes.
Here a learned model indicates possible regulatory or fanat connections between genes.

Figure 2(a) shows test log-loss as a function of treewidthnido The first obvious phenomenon
is that both our method and the thin junction tree approaetsaperior to the aggressive baseline.
As one might expect, the aggressive baseline achieves &rhBJIC score on training data (not
shown), but overfits due to the scarcity of the data. The st@si superiority of our method over
thin junction trees demonstrates that a better choice aé®dge., ones chosen by a global operator,
can lead to increased robustness and better generalizétideed, even when the treewidth bound



45~ Aggressive;___...--.......------"‘“

———————

Thin Junction-tree

4

65

Test log-loss / instance

Test log-loss / instance
8

Test log-loss / instance

-7
1 Chechetka+Guestrin

r3
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 2 4 6 8 10 12 14 16 18 20
Training instances Training instances Treewidth bound

Figure 3: 5-fold mean test log-loginstance for a treewidth| Figure 4: Average log-loss vs. treewidth
bound of two vs. training set size for the temperature (left) antbound for the Hapmap data. Compared
traffic (right) datasets. Compared are our approach (solid blugre an unbounded aggressive search (dot-
squares), the thin junction tree method (dashed red circles)| &d) and unconstrained (thin) and con-
aggressive unbounded search (dotted black), and the methadstfained by the DNA order (thick) variants
Chechetka and Guestrin [3] (dash-dot magenta diamonds). | of ours and the thin junction tree method.

is increased past the saturation point, our method surpdsst@ baselines. In this case, we are
learning unbounded networks and all benefit comes from thigadjinature of our updates.

To qualitatively illustrate the progression of our algbrit, in Figure 2(b) we plot the number of
edges in the chain and the treewidth estimate at the end bfiezation for a typical run. Our
algorithm aggressively adds multi-edge chains until teewidth bound is reached, at which point
(iteration 24) it becomes fully greedy. To appreciate the-triviality of some of the chains learned
with 4 — 7 edges, we recall that the chains are adafiéel a Chow-Liu model was initially learned. It

is also worth noting that despite their complexity, somdmhdo not increase the treewidth estimate
and we typically have more thak iterations where chains with more than one edge are added. Th
number of such iterations is still polynomially bounded aisd Bayesian network withVv variables
adding more thaik - N edges will necessarily result in a treewidth that is gretitan K.

To evaluate the efficiency of our method we measured its ngitiine as a function of the treewidth
bound. Figure 2(c) shows results for the gene expressi@seatObserve that our method and the
greedy thin junction tree approach are both approximaialalr in the treewidth bound. Appeal-
ingly, the additional computation our method requires issignificant £ 25%). This should not
come as a surprise as the bulk of the time is spent on the tiolleaf the data sufficient statistics.

It is also worth discussing the range of treewidths we careid in the above experiment as well as
the Haplotype experiment below. While treewidths greatantB5 seem excessive for exact infer-
ence, state-of-the-art techniques (e.g., [9, 18]) caroredy handle inference in networks of this
complexity. Furthermore, as our results show, it is bengfiai practice to learn such models. Thus,
combining our method with state-of-the-art inference teghes can allow practitioners to push the
envelope of the complexity of models learned for real agpions that rely on exact inference.

The Traffic and Temperature Datasets.We now compare our method to the mutual-information
based LPACJT approach of Chechetka and Guestrin [3] (we apip the better variant). As their
method is exponential in the treewidth and cannot be usdtkigéne expression setting, we compare
to it on the two discrete real-life datasets Chechetka anels@in [3] considered: the temperature
data is from a deployment of 54 sensor nodes; the traffic datastains traffic flow information
measured every 5 minutes in 32 locations in California. Tdertae comparison fair, we used the
same discretization and train/test splits. Furthermasehair method can only be applied to a small
treewidth bound, we also limited our model to a treewidthvad t Figure 3 compares the different
methods. Both our method and the thin junction tree appreagtificantly outperform the LPACJT
on small sample sizes. This result is consistent with thelteseported in Chechetka and Guestrin
[3] and is due to the fact that the LPACJT method does notifatglthe use of regularization which
is crucial in the sparse-data regime. The performance ofhmethod is comparable to the greedy
thin junction tree approach with no obvious superiority ibfier method. This should not come as a
surprise since the fact that the unbounded aggressivehsisanot significantly better suggests that
the strong signal in the data can be captured rather easifact, Chechetka and Guestrin [3] show
that even a Chow-Liu tree does rather well on these datasetspare this to the gene expression
dataset where the aggressive variant was superior evemesveidth of five).

Haplotype Sequenceskinally we consider a more difficult discrete dataset of ausege of single
nucleotide polymorphism (SNP) alleles from the Human Hapldiject [6]. Our model is defined
over 200 SNPs (binary variables) from chromosome 22 of a [i@an population consisting of 60
individuals (we considered several different sequencasgathe chromosome with similar results).



In this case, there is a natural ordering of variables thatesponds to the position of the SNPs in
the DNA sequence. Figure 4 shows test log-loss results whisrotdering is enforced (thicker)
and when it is not (thinner). The superiority of our methodewtthe ordering is used is obvious
while the performance of the thin junction tree method dégsa This can be expected as the greedy
method does not make use of a node ordering, while our mettovities optimality guarantees with
respect to a variable ordering at each iteration. Whethestcained to the natural variable ordering
or not, our method ultimately also surpasses the unboungigessive search.

7 Discussion and Future Work

In this work we presented a novel method for learning Bayesitworks of bounded treewidth in
time that is polynomial iroththe number of variables and the treewidth bound. Our methidds
on an edge update algorithm that dynamically maintains ia vabralized triangulation in a way
that facilitates the addition of chains that are guaranteédcrease the treewidth bound by at most
one. We demonstrated the effectiveness of our treewidkindty method on real-life datasets, and
showed that by utilizing global structure modification cgters, we are able to learn better models
than competing methods, even when the treewidth of the rmdel@ained is not constrained.

Our method can be viewed as a generalization of the work of\Giral Liu [5] that is constrained to
a chain structure but that provides an optimality guaratéii respect to a node ordering) at every
treewidth. In addition, unlike the thin junction trees apgeh of Bach and Jordan [2], we provide
a guarantee that our estimate of the treewidth bound willimotease by more than one at each
iteration. Furthermore, we add multiple edges at eachtitarawhich in turn allows us to better
cope with the problem of local maxima in the search. To oumkedge, ours is the first method for
efficiently learning Bayesian networks with an arbitramyewidth bound that is not fully greedy.

Our method motivates several exciting future directionswduld be interesting to see to what
extent we could overcome the need to commit to a specific natkriag at each iteration. While
we provably cannot consider every ordering, it may be pdssipolynomially provide a reasonable
approximation. Second, it may be possible to refine our ataraation of the contamination that
results from an edge update, which in turn may facilitateatidition of more complex treewidth-
friendly structures at each iteration. Finally, we are miosérested in exploring whether tools
similar to the ones employed in this work could be used to dyinally update the bounded treewidth
structure that is the approximating distribution in a vidaal approximate inference setting.

References

[1] P. Abbeel, D. Koller, and A. Ng. Learning factor graphs in poly. ti€heample complexityJMLR 2006.
[2] F. Bach and M. I. Jordan. Thin junction trees.NiPS 2001.
[3] A. Chechetka and C. Guestrin. Efficient principled learning of thircfion trees. IlNIPS 2008.
[4] D. Chickering. Learning Bayesian networks is NP-completd.darning from Data: Al & Stats V1996.
[5] C.Chow and C. Liu. Approx. discrete distrib. with dependence trH&SE Trans. on Info. Theor1968.
[6] The International HapMap Consortium. The international hapmajept. Nature 2003.
[7] G.F. Cooper. The computationl complexity of probabilistic inferensimg belief networksAl, 1990.
[8] P. Dagum and M. Luby. An optimal approximation algorithm for bagsi#erence Al, 1993.
[9] A. Darwiche. Recursive conditioningirtificial Intelligence 2001.
[10] S. Dasgupta. Learning polytrees. WAl, 1999.
[11] G. A. Dirac. Onrigid circuit graphs. Abhandlungen aus dem M&gminar der Univ. Hamburg 25, 1961.
[12] A. Gasch et al. Genomic expression program in the responseadt yells to environmental changes.
Molecular Biology of the Cell2000.
[13] F. Glover and M. Laguna. Tabu search.Miodern Heuristic Tech. for Comb. Problepi®93.
[14] D. Heckerman. A tutorial on learning Bayesian networks. Team&port, Microsoft Research, 1995.
[15] D. Karger and N. Srebro. Learning markov networks: maximhounded tree-width graphs. Bympo-
sium on Discrete Algorithm2001.
[16] A. Koster, H. Bodlaender, and S. Van Hoesel. Treewidth: Cadatmnal experiments. Technical report,
Universiteit Utrecht, 2001.
[17] S. Lauritzen and D. Spiegelhalter. Local computations with probaBilitregraphical structuregournal
of the Royal Statistical Societ¥988.
[18] R. Marinescu and R. Dechter. And/or branch-and-bound faplgical modelslJCAI, 2005.
[19] C. Meek. Finding a path is harder than finding a tréaurnal of Artificial Intelligence ResearcB001.
[20] M. Meila and M. I. Jordan. Learning with mixtures of tredd/LR, 2000.
[21] M. Narasimhan and J. Bilmes. Pac-learning bounded tree-widibhgral models. IJAI, 2004.
[22] J. Pearl.Probabilistic Reasoning in Intelligent SystenMorgan Kaufmann, 1988.
[23] N. Robertson and P. Seymour. Graph minors Il. algorithmic etspe tree-width.J. of Algorithms 1987.
[24] G. Schwarz. Estimating the dimension of a modeinals of Statistic6:461-464, 1978.



