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1 Overview

The STAIR Vision Library provides a Matlab interface for learning and running inference on medium-
sized! Markov random fields (MRFs) and conditional Markov random fields (CRFs) over discrete variables.
The models are assumed to be log-linear, i.e.,models of the form
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where the Y,, C Y are cliques over variables and X,,, is the corresponding subsets of features for the m-th
clique, and where 0(y,,,) and x(y,,) indicate the subset of parameters and features contributing to the factor
when Y., = yum.

Note that in many cases the structure of the W¥,, will repeat, e.g.,pairwise CRFs. In addition, each
instance of a problem may have a different structure (number of variables, etc), but share the same types of
factors and model parameters. Therefore we will make use of factor templates for describing how features
and parameters map to the various factor entries. Thus we have ¥,,, = Wy(,,,y where t(m) € {0,..., 7 — 1}
indexes a pre-specified template.

We separate a CRF into a model and one or more instances. The model defines the CRF weights and
templates for each clique potential. For example, a dense stereo algorithm can be defined by two potential
templates; the first template corresponds to the data term (and is defined over single variables) and the
second template corresponds to the smoothness term (and is defined over pairs of adjacent variables). A
particular instantiation of the CRF model (e.g., a given pair of left and right stereo images) is then defined
by the instance.

Formally, we specify the model by

M={6,V,:t=0,...,T1} (2)
and an instance by
T ={Ynskn, Y, Xyt :n=0,...,N—=1;m=0,...,M — 1} (3)

where we have an assignment ¥, and cardinality k, for each variable and a set of variables Y,,, feature
vector x,,, and template index t,, for each clique.
These concepts will become more concrete in the examples below.

Here “medium-sized” relates to the size of the largest clique (potential). Typically models with a few hundred variables of
cardinality between 2 and 50, and with cliques of no more than 3 or 4 variables can be handled efficiently.



1.1 Compilation

In order to use the Matlab interface you need to compile the SVL library as well as Matlab mex applications.
You should also have setup the Matlab compiler by calling mex -setup from the Matlab command prompt.

cd $CODEBASE
make
make mex

This will compile mexCRFLearn and mexCRFInfer and place them in the bin directory. Alternatively, you
can add BUILD_MEX_APPS = 1 to your make.local file (see the installation instructions for more details).
Running make from $CODEBASE will then automatically build the mex functions.

1.2 Starting Matlab

You can automatically add the path to the SVL mex functions (as well as all the project directories) to the
Matlab search path by calling addSVLPaths.m from the Matlab command prompt:

run ( ’$CODEBASE/svl/scripts /addSVLPaths’);

2 Example 1: MRF Inference

Consider the example of running inference on a very simple MRF comprising of four binary variables arranged
in a loop. We have a singleton potential on each variable as well as pairwise potentials on each pair of adjacent
variables. Suppose that our singleton and pairwise potentials are as shown below (in log-space):
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Now recall that we need to split the MRF into a model and an instance. While this may seem overkill
for such a simple example, it becomes extremely useful when models get large. Notice that, although we
have defined eight potentials (four singleton and four pairwise), there are only four different templates. We
specify these templates as follows:

% initialize model weights
model. weights = [];

% construct first template

model. weights = [model.weights, log([1.0, 0.5])];
model. templates (1).cards = [2]; % potential over a single binary wvar
model. templates (1).entries (1).wi = [0]; % model. weights (1)




model . templates (1).entries (2).wi = [1]; % model. weights (2)
[model. templates (1).entries (1:2).xi] = deal(—1); % no features

% construct second template
model. weights = [model. weights, log([0.5, 0.5])];

model. templates (2).cards = [2]; % potential over a single binary wvar
model. templates (2).entries (1).wi = [2]; % model. weights (3)

model . templates (2).entries (2).wi = [3]; % model. weights (4)

[model. templates (2).entries (1:2).xi] = deal(—1); % no features

% construct third template

model. weights = [model. weights, log([0.9, 0.1])];

model. templates (3).cards = [2, 2]; % potential over a two binary wvars
model. templates (3).entries (1).wi = [4]; % model. weights (5)

model. templates (3).entries (2).wi = [5]; % model. weights (6)

model. templates (3).entries (3).wi = [5]; % model. weights (6)
model . templates (3).entries (4).wi = [4]; % model. weights (5)

[model. templates (3). entries (1:4).xi] = deal(—1); % no features

% construct third template

model. weights = [model. weights, log([0.2, 0.8])];

model. templates (4).cards = [2, 2]; % potential over a two binary vars
model. templates (4). entries (1).wi = [6]; % model. weights (6)
model . templates (4). entries (2).wi = [7]; % model. weights (7)

model. templates (4).entries (3).wi = [7]; % model. weights (7)

model. templates (4). entries(4) wi = [6]; % model. weights (6)
[model.templates (4).entries (1:4).xi] = deal(—1); % no features

Constructing the instance is now a simple matter of specifying the variables and cliques:

instance.values = []; % variables are unknown
instance.cards = [2, 2, 2, 2]; % instance has four binary wvariables
instance.cliques (1).Cm = [0]; % singleton clique over Y[0]
instance. cliques (1).Tm = 0; % use first template for potential
for i = 2:4,

instance.cliques(i).Cm = [i — 1]; % singleton clique over Y[i — 1]

instance.cliques (i).Tm = 1; % use second template for potential
end;
instance.cliques (5).Cm = [0, 1]; % pairwise clique over Y[0] and Y[1]
instance. cliques (5).Tm = 2; % wuse third template for potential
instance.cliques (6).Cm = [1, 2]; % pairwise clique over Y[1] and Y[2]
instance. cliques (6).Tm = 3; % use forth template for potential
instance.cliques (7).Cm = [2, 3]; % pairwise clique over Y[2] and Y/[3]
instance.cliques (7).Tm = 2; % use third template for potential
instance.cliques (8).Cm = [3, 0]; % pairwise clique over Y[8] and Y/[0]
instance.cliques (8).Tm = 3; % use forth template for potential
[instance.cliques (:).Xm] = deal ([]); % no features for any clique

Running inference is now a simply:

options = struct(’verbose’, 1, 'maxIterations’, 100);
output = mexCRFInfer (model, instance, options);
disp ([output.values|);

The code returns assignment Y = [0,0, 1, 1].
You can turn verbose output off by setting verbose to 0. The library uses sum-product loopy belief
propagation. You can change the maximum number of iterations by setting the maxIterations option.




3 Example 1: CRF Inference

In this example we’ll consider very simple (and efficient) chain CRFs. Note, however, that the SVL supports
arbitrary graph topologies.
TODO

4 Example 3: CRF Learning

TODO

5 References

TODO



