
STAIR Vision Library (v2.0)

Stephen Gould

sgould@stanford.edu

Olga Russakovsky

olga@cs.stanford.edu

Ian Goodfellow

ia3n@cs.stanford.edu

Paul Baumstarck

pbaumstarck@stanford.edu

April 16, 2009

2

Contents

1 Introduction 7
1.1 Library Design . 7

1.1.1 Directory Structure . 7
1.2 Installation . 8

2 SVL Libraries 9
2.1 svlBase . 9

2.1.1 Command Line Processing . 9
2.1.2 Code Profiling . 10
2.1.3 Loop Timing . 11
2.1.4 Messages, Warnings and Errors . 12
2.1.5 Configuration Manager . 13
2.1.6 Unconstrained Optimization . 14
2.1.7 Smart Pointers . 15
2.1.8 Thread Pool . 15
2.1.9 File Utilities . 16
2.1.10 String Utilities . 16
2.1.11 Statistics Utilities . 16
2.1.12 Options Interface Class . 18
2.1.13 Factory . 19

2.2 svlPGM . 21
2.2.1 Factors and Factor Operations . 22
2.2.2 Cluster Graphs . 23
2.2.3 Inference . 24
2.2.4 Pairwise Log-Linear CRF Models . 25
2.2.5 General Log-Linear CRF Models . 26

2.3 svlML . 28
2.3.1 Classifiers . 28
2.3.2 Feature Whitening . 29
2.3.3 Multi-variate Gaussians and Conditional Gaussians . 30
2.3.4 Confusion Matrices . 31
2.3.5 Disjoint Sets . 31
2.3.6 Vector-Quantization . 31
2.3.7 Evaluation . 31

2.4 svlVision . 33
2.4.1 OpenCV Utilities . 33
2.4.2 Vision Utilities . 34
2.4.3 Object detection storage types . 34
2.4.4 I/O file format . 36
2.4.5 Loading images . 36

3

2.4.6 Building a training dataset . 38
2.4.7 Interest point detection . 39
2.4.8 Feature extraction . 39
2.4.9 Sliding window object detection . 43
2.4.10 Detection evaluation . 43
2.4.11 Camera Models . 43
2.4.12 3d . 43
2.4.13 Segmentation . 44
2.4.14 svlConvolution . 44

2.5 svlCuda . 44
2.5.1 Data structures and allocation . 45
2.5.2 Memory transfer . 46
2.5.3 Line integrals . 46
2.5.4 Integral images . 47
2.5.5 Convolution functions . 48
2.5.6 Sliding window detector . 49
2.5.7 Verification function . 49

3 SVL Applications and Scripts 51
3.1 GUI Applications . 51

3.1.1 Point Cloud Viewer . 51
3.1.2 Image Sequence Labeler . 51
3.1.3 Region Labeler . 52

3.2 Machine Learning Applications . 52
3.2.1 Classifiers . 52
3.2.2 Precision-recall curves . 53

3.3 Matlab (mex) Applications . 53
3.3.1 Probabilistic Graphical Model Inference . 53
3.3.2 General CRF Learning and Inference . 54
3.3.3 Classifier Training and Evaluation . 55

3.4 Test Applications . 55
3.5 Computer Vision Applications . 56

3.5.1 Object Detection pipeline . 56
3.5.2 Object Detection utilities . 58
3.5.3 Multi-class Image Segmentation . 59
3.5.4 Video Processing Utilities . 61
3.5.5 Depth Superresolution . 61

4 Projects 63
4.1 Building Your Own Projects . 63

A Coding Guidelines 65
A.1 Source Control . 65
A.2 Structure . 66
A.3 Variable and Object Naming . 66
A.4 Comments . 66
A.5 Portability and Maintainability . 66
A.6 Performance . 67
A.7 Miscellaneous . 67
A.8 Testing . 67

B Configuration 69

4

C License 73

5

6

Chapter 1

Introduction

This document provides a detailed description of the design and implementation of the STAIR Vision
Library. It includes an overview of the various components of the library, installation instructions, coding
conventions, and outline of specific classes within the library. The intended audience is users and developers of
the STAIR Vision Library. The document assumes that you are familiar with either the Linux or Windows
(Microsoft Visual Studio) development environments, and are an experienced C/C++ programmer.

Since the code is under continuous development and improvement, the ultimate specification for classes
within the library is the code itself. When using the library you should consult the various headers for
specific details on expected arguments, etc.. Separate tutorial/HOWTO documents provide detail step-by-
step instructions on the use of various applications and projects that are built using the library.

The SVL is a library of research code initially developed to support the STanford AI Project (STAIR). It
has since been expanded to provide a range of software infrastructure for computer vision, machine learning,
and probabilistic graphical models. However, the library has maintained its focus as a vehicle for research
and this is reflected in its design—many of the classes in the library are only loosely coupled allowing
researchers to pull out only what they need and link against their code. The library is intended to be
platform independent and currently compiles on both Linux and Windows. We have released the library
under the BSD license (see Appendix C).

1.1 Library Design

The STAIR Vision Library is actually a collection of software libraries (see Figure 1.1) some of which
are third-party open source projects including xmlParser, lbfgs, Eigen, OpenCV and wxWidgets.1 The
main library is divided into base components (svlBase), probabilistic graphical models (svlPGM), machine
learning algorithms (svlML), vision (svlVision), and GPU optimized code (svlCuda). The dependency
structure for the libraries is shown in Figure 1.1.

Building on top of the library is a whole host of standard applications that are distributed with the
library. These applications range from machine learning utilities to entire object detection applications. In
addition to these applications, a number of student/research projects have been developed that make use of
the library. However, these projects may require additional third-party libraries and do not conform to all
the same coding guidelines or software architecture specified by the SVL.

1.1.1 Directory Structure

The following represents the Stanford University STAIR Vision project repository. The STAIR Vision
Library, made available publicly, represents only part of this directory tree:

1Eigen, OpenCV, and wxWidgets need to be installed separately.

7

Figure 1.1: STAIR Vision Library design.

Directory Contents

bin12 Compiled SVL libraries, applications, and projects.
data12 (empty) Recommended for storing or linking to datasets.
doc SVL documentation (see also http://ai.stanford.edu/~sgould/svl/).
experiments12 (empty) Recommended for running experiments.
external External libraries required by the STAIR Vision Library. Small libraries

are included with the SVL source code. Larger libraries (Eigen, OpenCV
and wxWidgets) should be downloaded separately and placed (or linked) here.
Under Windows, OpenCV and wxWidgets should be installed in their default
system locations.

include Include directory for applications that use the SVL.
models1 Recommended for storing model files, e.g., for object detection.
projects1 Recommended for STAIR Vision group projects. Some projects will eventually

get bundled with official SVL releases.
sandbox1 Individual user directories for prototypes and throw-away code.
svl/apps STAIR Vision Library applications source code.
svl/lib STAIR Vision Library source code.
svl/scripts STAIR Vision Library perl and Matlab scripts.
tests SVL regression tests.

Notes: 1Indicates that the directory contents are not part of official SVL releases. The directories
are still under source control at Stanford, but not available publicly. 2Indicates that directory contents are
excluded from source control. Some scripts might assume that these directories exist.

1.2 Installation

Complete and up-to-date installation instructions for both Linux and Windows exists on the STAIR Vi-
sion Library website: http://ai.stanford.edu/~sgould/svl/. Note that you may need to install some
additional build tools and software libraries.

8

Chapter 2

SVL Libraries

2.1 svlBase

The svlBase library provides a number of utility classes such as profiling and logging that are used through-
out the rest of the library. All applications that use the SVL must include svlBase.h and link to this
library.

2.1.1 Command Line Processing

Most SVL applications require user-specified input from the command line. For example, an object detection
application requires the user to provide the model files (patch dictionaries and classifier parameters), the
image to be processed and a specification of what to do with the output. The general form of a command
line for executing SVL applications is:

bin/<app l i c a t i on > [<OPTIONS>] (<ARGUMENTS>)∗

where <application> is the executable for the SVL application, <OPTIONS> are optional command line
parameters and <ARGUMENTS> are required command line arguments. Optional parameters must start with
a dash (e.g., -verbose) and precede any required arguments. Most SVL applications will print out a usage
statement if invoked without any arguments. There are a number of standard options shown in Table 2.1
used by all SVL applications.

Command line processing is assisted by the use of a number of macros defined in svlCommandLine.h.
The following is an example code segment that processes command line arguments.

#inc lude ” sv lBase . h”

Option Description

-config <xml> Configure SVL using an XML file (see svlConfiguration).
-set <module> <name> <val> Set <module>::<name> to have <value> (see svlConfiguration).
-profile Enable code profiling (see svlCodeProfiler).
-quiet Disable printing of all messages except for errors (see svlLogger).
-verbose Enable printing of verbose messages.
-debug Enable printing of debug messages.
-log <filename> Log all messages to file <filename>.
-threads <num> Set the maximum number of allowed threads (see svlThreadPool).

Table 2.1: Standard SVL command line options.

9

int main (int argc , char ∗argv [])
{

// i n i t i a l i z e op t ions with d e f a u l t s e t t i n g s
int i n t e g e rVa r i ab l e = 0 ;
const char ∗ s t r i n gVa r i ab l e = NULL;

// process command l i n e
SVL BEGIN CMDLINE PROCESSING(argc , argv)

SVL CMDLINE INT OPTION(”−in tgerOpt ion ” , i n t e g e rVa r i ab l e)
SVL CMDLINE STR OPTION(”−s t r ingOpt ion ” , s t r i n gVa r i ab l e)
SVL CMDLINE OPTION BEGIN(”−longOption ” , p)

cout << p [0] << ”\n” ;
cout << p [1] << ”\n” ;

SVL CMDLINE OPTION END(2)
SVL END CMDLINE PROCESSING() ;

// process requ i red arguments
for (int i = 0 ; i < SVL CMDLINE ARGC; i++) {

cout << SVL CMDLINE ARGV[i] << endl ;
}

return 0 ;
}

The SVL END CMDLINE PROCESSING macro can take a code block or function call to be executed if
the code comes across an unrecognized option. This is useful for printing out usage help. The macros
SVL CMDLINE ARGC and SVL CMDLINE ARGV[] have the same behavior as argc and argv[] but with the
optional arguments removed.

2.1.2 Code Profiling

Code profiling is a useful debugging tool during development as well as being important for comparing
the running times of different algorithms in scientific research. The svlCodeProfiler class provides basic
support for code profiling that gets displayed when the application completes. The profiling is only an
estimate and not meant to replace high-quality profiling tools such as gprof.

The timer accumulates the amount of processor and real (wall clock) time used between tic() and toc()

calls (child processes, such as file I/O, are not counted in this time). Processor times may be inaccurate for
functions that take longer than about 1 hour.

By default, code profiling is turned off. Use svlCodeProfiler::enabled = true to turn it on. Most
SVL applications use the standard command line option -profile to enable profiling. The following code
snippet provides an example of code profiling.

#inc lude ” sv lBase . h”

void myFunc ()
{

stat ic int h = sv lCodePro f i l e r : : getHandle (”myFunc”) ;
s v lCodePro f i l e r : : t i c (h) ;

// do something

s v lCodePro f i l e r : : toc (h) ;
}

int main (int argc , char ∗argv [])
{

s v lCodePro f i l e r : : enabled = true ;
s v lCodePro f i l e r : : t i c (s v lCodePro f i l e r : : getHandle (”main”)) ;

for (int i = 0 ; i < 1000 ; i++)
myFunc () ;

10

s v lCodePro f i l e r : : toc (s v lCodePro f i l e r : : getHandle (”main”)) ;
s v lCodePro f i l e r : : p r i n t (cout) ;
return 0 ;

}

The macros SVL FCN TIC and SVL FCN TOC can be used at the entry and exit of your functions to instru-
ment the entire function.

Warning: Instrumenting code for profiling will unavoidably slow the code down, so do not use
tic() and toc() within tight loops. Unlike compiling with -pg for gprof, tic() and toc() are
always compiled into the code.

2.1.3 Loop Timing

Complementary to the code profiler is the svlLoopTimer, which provides expected times to completion
(ETC) for nested loops. In a multi-loop procedure, after just one iteration of the innermost loop, the class
can provide an accurate ETC for every surrounding loop. This is useful for any procedure that takes longer
than a few minutes to run, including multi-hour training.

To time a loop, one uses the push(int n trials) method of the class to add a new timer (this method
must know the total number of loop iterations to be able to provide ETC values). Inside of the loop, the
inc() method should be called at the end of every loop to increment the timer. After completion of the
loop, the pop() method discards the top-most timer. Some example code with output is given below:

svlLoopTimer t ;
int i t r i a l s = 10 ;
t . push (i t r i a l s) ; // I n i t i a l i z e with number o f i t e r a t i o n s
for (int i =0; i< i t r i a l s ; ++i) {

t . printETC () ; // Ca l l a t beg inning o f loop

// Wait f o r one second
c l o c k t t i c = c lock () ;
while (c l o ck ()− t i c < CLOCKS PER SEC) {}

t . i nc () ; // Increment at end o f loop
}
t . pop () ;

This produces the output:

0/10: 0:00:00 > -:--:--

1/10: 0:00:01 > 0:00:09

2/10: 0:00:02 > 0:00:08

3/10: 0:00:03 > 0:00:07

...

9/10: 0:00:09 > 0:00:01

10/10: 0:00:10 > 0:00:00

This output is in the form, “(# elapsed iterations)/(total # iterations): (time elapsed) > (ETC).”
To time multiple loops, one needs only push on multiple timers:

svlLoopTimer t ;
int i t r i a l s = 10 ;
t . push (i t r i a l s) ; // I n i t i a l i z e f i r s t loop
for (int i =0; i< i t r i a l s ; ++i) {

int j t r i a l s = 5 ;
t . push (j t r i a l s) ; // I n i t i a l i z e second loop
for (int j =0; j< j t r i a l s : ++j) {

t . printETC () ;

11

// Wait f o r one second
c l o c k t t i c = c lock () ;
while (c l o ck ()− t i c < CLOCKS PER SEC) {}
t . i nc () ;

}
t . pop () ; // Clear inner t imer .
t . i nc () ; // Increment outer t imer

}
t . pop () ;

The first few lines of output here are:

0/5: 0:00:00 > -:--:-- -- 0/10: 0:00:00 > -:--:--

1/5: 0:00:01 > 0:00:04 -- 0/10: 0:00:01 > 0:00:49

2/5: 0:00:02 > 0:00:03 -- 0/10: 0:00:02 > 0:00:48

The innermost loop’s elapsed time and ETC is printed first, followed by any other loops.
By default the timer assumes that each loop iteration will take the same amount of time when computing

ETC. If different behavior is desired, however, additional parameters can be passed to push(). If, for
example, each loop will take only 90% as much time as the previous loop, one can use push(n loops, 0.9,

GEOMETRIC), providing the GEOMETRIC parameter with numeric ratio 0.9. Then, if the first loop takes 1 unit
of time, the timer will correctly calculate ETC at 0.9+0.89+0.729+... for as many remaining iterations as
there are.

The complete options to push() and their results are given below:

Ratio type Assumed duration of loop i based on ratio f
GEOMETRIC f i · 100% of the first loop (f · 100% of previous loop).
ADDITIVE (1 + i · f) · 100% of the first loop.

The ratio f can be greater or less than one in the geometric case, and positive or negative in the additive
case. The default case uses GEOMETRIC with a ratio of 1.0, achieving loops of uniform duration.

2.1.4 Messages, Warnings and Errors

Messages, warnings and errors are managed via the svlLogger class. The SVL LOG() macro will automati-
cally write log messages to a file (if specified) and display them on the console. You can set the verbosity
level to control which messages get displayed. The verbosity levels are:

Verbosity Display Description

SVL FATAL -*- An unrecoverable error has occurred and the code will terminate.
SVL ERROR -E- A recoverable error has occurred, e.g., a missing file.
SVL WARNING -W- Something unexpected happened, e.g., a parameter is zero.
SVL MESSAGE --- Standard messages, e.g., application-level progress information.
SVL VERBOSE --- Verbose messages, e.g., image names and sizes during loading.
SVL DEBUG -D- Debugging messages, e.g., matrix inversion results, etc..

Applications can override the message displaying functions by registering callbacks with the svlLogger

class. This is useful for interfacing to Matlab or displaying errors in GUI dialog boxes. The following example
registers a callback for capturing errors and terminates if too many errors occur.

#inc lude ” sv lBase . h”

void errorMessageCal lback (const char ∗msg) {
stat ic int counter = 0 ;
std : : c e r r << msg << std : : endl ;

12

i f (++counter > 5) {
std : : c e r r << ” too many e r r o r messages ” << std : : endl ;
e x i t (0) ;

}
}

int main (int argc , char ∗argv [])
{

// s e t sv lLogger c a l l b a c k s
sv lLogger : : showErrorCal lback = errorMessageCal lback ;

for (int i = 0 ; i < 10 ; i++) {
SVL LOG(SVL LOG ERROR, ” e r r o r message number ” << i) ;

}

return 0 ;
}

Asserts

Functions should use the SVL ASSERT() or SVL ASSERT MSG() macros rather than the standard assert() to
allow applications such as Matlab to trap errors.

2.1.5 Configuration Manager

For many research projects it is useful to have a standard configuration for running experiments with only
a few parameters changing from one experiment to the next. The STAIR Vision Library supports this
through two main mechanisms—XML configuration and command line options. The general strategy is to
create an XML file with the standard configuration and then provide overrides for various settings on the
command line. The system is lightweight while still catering for most configuration needs. An example XML
configuration file is shown below. See Appendix B for all standard configuration options.

<s v l>
<sv lBase . s v lCodePro f i l e r enabled=’ ’ f a l s e ’ ’ />
<sv lBase . sv lLogger l ogLeve l = ‘ ‘message ’ ’

l o gF i l e = ‘ ‘ ’ ’ />
<sv lBase . svlThreadPool threads = ‘ ‘8 ’ ’ />
<svlPGM . sv lFactorOperat ions cacheIndexMapping= ‘ ‘ t rue ’ ’

useSharedIndexCache = ‘ ‘ f a l s e ’ ’ />
<svlML . sv lConfus ionMatr ix co lSep=‘‘	 ’ ’

rowBegin=‘‘	 ’ ’
rowEnd= ‘ ‘ ’ ’>

<myApplication attributeName = ‘ ‘ a t t r i bu t e va l u e ’ ’ />
<myArbitraryData>

1 2 3 4
</myArbitraryData>

</myApplication>
</ s v l>

Tip: Use & for &, < for <, > for >, and 	 for \t in XML configuration files.

The svlConfigurationManager class handles configuration of static parameters for the SVL libraries
and can be used for configuring individual applications or projects. The command line options -config and
-set will automatically invoke the configuration manager. To invoke it manually you can simply call the
svlConfigurationManager::configure() function.

Standard configuration parameters are defined by the triplet: module, name and value. In the XML con-
figuration file shown above the tags “svlBase.svlCodeProfiler”, “svlPGM.svlFactorOperations”, etc. define
the module and the node’s attributes define the name-value pairs. Each configurable SVL class is prepended

13

with its library name, e.g., the svlLogger class has module name “svlBase.svlLogger”. An application can
define its own module (XML node) with arbitrary name-value pairs. The structure of the application-specific
XML node can be arbitrary and it is up to the application developer to parse non-attribute content (such
as the myArbitraryData node in the example above). The -set command line option can only be used for
name-value pairs.

To register a configurable class with the SVL Configuration Manager, an application needs to create
a derived class from base svlConfigurableModule and override the setConfiguration() function. More
control can be achieved by also overriding the readConfiguration() function. To register the class, the
code simply needs to instantiate a global class member—the svlConfigurableModule constructor will handle
registration.

// de f i ne con f i gu ra t i on
class myAppConfig : public sv lConf igurableModule {

public :
stat ic int v ;

public :
myAppConfig () : sv lConf igurableModule (”myApplication ”) { }
˜myAppConfig () { }

void s e tCon f i gu ra t i on (const char ∗name , const char ∗ value) {
i f (! strcmp (name , ” attributeName”))

v = a t o i (va lue) ;
else SVL LOG(SVL LOG FATAL, ”unknown con f i gu r a t i on parameter ” << name) ;

}
} ;

// i n i t i a l i z e s t a t i c v a r i a b l e s
int myAppConfig : : v = 0 ;

// r e g i s t e r con f i gu ra t i on
myAppConfig gMyAppConfig ;

2.1.6 Unconstrained Optimization

The svlOptimizer provides a virtual base class for minimizing large-scale unconstrained optimization prob-
lems using the L-BFGS algorithm [11, 13]. Derived classes must override functions objective() and
gradient(). They should also implement the objectiveAndGradient() function for efficiency—the de-
fault is for this function to call the other two. Derived classes may also override the monitor() function.
The monitor function can assume that x contains the current estimate for the solution. Other functions
should use the input argument const double *x.

The following simple example optimizes the one-dimensional function f(x) = (x− 2)(x− 4).

class myObjective : public sv lOpt imizer
{

myObjective () : sv lOpt imizer (1) { }
˜myObjective () { }

double ob j e c t i v e (const double ∗x) {
return (x [0] − 2 . 0) ∗ (x [0] − 4 . 0) ;

}

double grad i en t (const double ∗x , double ∗df) {
return 2 .0 ∗ (x [0] − 3 . 0) ;

}
} ;

int main ()
{

myObjective objFunct ion ;

14

double f s t a r = objFunct ion . s o l v e (1000) ;
double x s t a r = objFunct ion [0] ;

cout << ” f (” << x s t a r << ”) = ” << f s t a r << endl ;
return 0 ;

}

2.1.7 Smart Pointers

Smart pointers are dynamically allocated objects that manage their own destruction. This allows an object
to be shared between different owners. When the last owner is finished using the object, i.e., the object
goes out of scope, the smart pointer will automatically delete the object. Smart pointers also avoid the need
for deep copies since each owner references the same object. The following code gives an example of smart
pointer usage:

class Object {
public :
sv lSmartPointer<char> s t r ;
Object () {

s t r = new char [1 1] ; s t r cpy (s t r , ” he l l owor ld ”) ; s t r [1 0] = ’ \0 ’ ;
}

} ;

int main ()
{

Object ∗o = new Object () ;
cout << (char ∗) o−>s t r << endl ;

sv lSmartPointer<char> s (o−>s t r) ;
delete o ;

cout << (char ∗) s << endl ;
}

Be aware that when modifying an object through a smart pointer, all other objects that share the smart
pointer will also be affected. Sometimes you will want to make a clone of the object instead:

sv lSmartPointer<Object> p1 (new Object ()) ;
sv lSmartPointer<Object> p2 (new Object (∗p1)) ;

2.1.8 Thread Pool

The svlThreadPool class is an abstraction for running threaded processes designed around the pthreads

library. When the thread pool is constructed, the user requests a certain number of threads. However, the
constructor will allocate only up to svlThreadPool::MAX THREADS concurrent threads (see Section 2.1.5 for
how to set this parameter from the command line).

The following code snippet provides an example of running threads:

void ∗myThreadFcn(void ∗ args , unsigned threadId)
{

cout << ” In thread ” << threadId << endl ;
return NULL;

}

int main ()
{

svlThreadPool threadPool (4) ;
threadPool . s t a r t () ;
for (int jobNumber = 0 ; jobNumber < 100 ; jobNumber++) {

15

threadPool . addJob (myThreadFcn , NULL) ;
}
threadPool . f i n i s h () ;

return 0 ;
}

Warning: Threads are not currently implemented for Windows. All threaded applications will
run in the main thread.

2.1.9 File Utilities

The SVL provides some useful platform independent file utilities for creating directories svlCreateDirectory(),
listing directory contents svlDirectoryListing(), checking for file existence svlFileExists(), reading
lines of a file into a vector of strings svlReadFile(), or counting the number of fields in a comma-, space-,
or tab-delimited file svlCountFields(). See the svlFileUtils.h header file for more information.

2.1.10 String Utilities

The svlStrUtils unit contains a number of useful string (character array) manipulation utilities. The
general templated toString<T>() function converts an arbitrary datatype into an STL string representation.
Specialized functions for many datatypes, e.g., OpenCV structures, have been implemented in the appropriate
libraries.

The function parseString() will convert from a white-space delimited string to a vector of tokens of a
given type, e.g.,

std : : s t r i n g s = std : : s t r i n g (” 1 .0 2 .0 3 .0 ”) ;
s td : : vector<double> v ;

par seSt r ing <double>(s , v) ;
cout << t oS t r i ng (v) << endl ;

The function parseNameValueString() will convert strings of the form “<name1>=<val1> <name2>=<val2>”
into an STL map.

The function padString() will left-pad a string up to a given size, e.g.,

int index = 10 ;
std : : s t r i n g f i l ename = padStr ing (t oS t r i ng (index) , 8 , ’ 0 ’) ;

The svlStrUtils unit also contains a number of functions for processing paths and file names.

Function Description

strBaseName Removes the directory and extension from a file path.
strFilename Removes the directory, leaving the filename, from a file path.
strDirectory Removes the filename from a file path.
strExtension Returns the file extension from a file path.
strReplaceExt Replaces the file extension with another one.
strWithoutExt Strips the file extension from a file path.
strFileIndex Extracts the index from a filename of the form: base<NNNNN>.ext.

2.1.11 Statistics Utilities

The svlStatUtils.h file provides a number of templated statistics utilities that operate on STL vectors.

16

Function Description

minElem Returns the smallest element in the vector.
maxElem Returns the largest element in the vector.
mean Returns the mean of values in the vector (or zero for empty vectors).
median Returns the median value in the vector (or zero for empty vectors).
mode Returns the most commonly occurring value in the vector.
variance Returns the variance of values in the vector.
stddev Returns the standard deviation of values in the vector.
argmin Returns the index of the (first) minimum element in the vector.
argmins Returns a vector of indices of the minimum elements in a vector of vectors.
argmax Returns the index of the (first) maximum element in the vector.
argmaxs Returns a vector of indices of the maximum elements in a vector of vectors.
excessKurtosis Returns the excess kurtosis of the values in a vector.
percentiles Returns a vector of the percentile rank of each sample, divided by 100. i.e., if the

third element is in the 99th percentile, the third element of the return value will
be 0.99.

range Returns an STL pair contains the minimum and maximum element in the vector.

In addition, the file implements the following useful functions.

containsInvalidEntries

Returns true if the vector contains NaN or inf values.

extractSubVector

Extracts a subvector from a vector given a list of indices. For example,

double data [] = {1 . 0 , 2 . 0 , 3 . 0 , 4 . 0 , 5 . 0 } ;
int index [] = {0 , 2 , 4} ;
vector<double> x (data , data + 5) ;
vector<int> i (index , index + 3) ;
vector<double> y = extractSubVector (x , i) ;

will return the vector y = [1.0, 3.0, 5.0].

removeOutliers

Trims a vector of values to remove the middle keepSize entries. For example to keep the middle 90-percentile
use:

vector<double> dataOut = removeOut l i e rs (dataIn , (int) (0 . 9 ∗ dataIn . s i z e ())) ;

powerSet

Computes the power set (excluding the empty set) of a given set of objects. For example, if x = {0, 1, 2}
then powerSet() will return P(x) = {{0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}.

logistic

Computes the logistic function y = 1
1+exp{−θT x}

.

entropy

Computes the entropy, H = −
∑

i pi log pi, of a discrete distribution. The distribution does not need to be
normalized (but must be non-negative).

17

expAndNormalize

Converts a vector of log-likelihoods to a normalized probability distribution by performing yi = 1
Z exp{xi−α}

where Z =
∑

i exp{xi − α} and α = maxj xj .

randomPermutation

Computes a random permutation of the integers in the range [0, n− 1].

successor and predecessor

Computes successor and predecessor discrete vectors such as would be produced by an odometer, but from
left-to-right ordering.

vector<int> x (3 , 0) ;
for (int i = 0 ; i < 1000 ; i++) {

cout << t oS t r i ng (x) << endl ;
s u c c e s s o r (x , 1 0) ;

}

huberFunction and huberDerivative

Computes the Huber function (or its derivative) where the Huber function is defined as hλ(x) = x2 for
−λ ≤ x ≤ λ and λ(2|x| − λ) otherwise.

bhattacharyyaDistance

Computes the Bhattacharyya distance between two discrete distributions, DB(p, q) = − log
∑

i

√
piqi. The

distributions do not need to be normalized.

2.1.12 Options Interface Class

The svlOptions base class provides a convenient and consistent mechanism for dynamically getting and
setting optional parameters for instantiated objects. Note that this is different from the configuration
manager (Section 2.1.5) which is used for setting default parameters. The class provides setOption() and
getOption() methods for different data-types (internally all data is stored as strings). In the constructor
for a class, all options should be declared using the declareOption() method. Derived classes can remove
options using the undeclareOption() method.

class myClass : public sv lOpt ions {
public :
myClass () : sv lOpt ions () {

dec lareOpt ion (” featureExponent ” , 1 . 0) ;
}

. . .
} ;

The following provides an example of setting a real-valued option. Trying to set an option that has not
been declared (or that has been undeclared) will result in an error.

int main ()
{

myClass myObject ;
myObject . setOption (” featureExponent ” , 2 . 0) ;

. . .
}

18

The option value can be retrieved using the getOption() method of the appropriate type.

double myClass : : f ea tureVa lue (double x)
{

return pow(x , this−>getOptionAsDouble (” featureExponent ”)) ;
}

Note that getting and setting options costs processing time so do not use them in tight loops; rather copy
the value into a temporary variable before entering the loop:

vector<double> myClass : : f e a tu reVa lue s (const vector<double>& x)
{

vector<double> y (x . s i z e ()) ;

double exponent = this−>getOptionAsDouble (” featureExponent ”) ;
for (unsigned i = 0 ; i < x . s i z e () ; i++) {

y [i] = pow(x [i] , exponent) ;
}
return y ;

}

2.1.13 Factory

The svlFactory class allows for the construction of objects whose type is not known until runtime. It is
a templated class– svlFactory<T> is capable of constructing all classes derived from type T, provided that
they have been appropriately registered with the factory.

The STAIR Vision Library instantiates svlFactory to make factories for the svlClassifier family
of classes and the svlFeatureExtractor class. Future releases of the library will most likely construct other
types of objects with factories as well.

Constructing objects from an existing factory

svlFactory<T> provides three methods for constructing an object whose type is not known until runtime.
The make() method takes a string argument that identifies which subclass of T should be constructed. This
could be used to implement, for example, an application that allows the user to specify the classification algo-
rithm to use on the command line. The following code demonstrates how to create an svlFeatureExtractor

from a string:

sv lFeatureExt rac to r ∗ ex t r a c t o r = sv lFeatureExtractorFactory () . make(”HaarFeatureExtractor ”) ;

(Note: svlFeatureExtractorFactory() is a function that returns a reference to a global variable of type
svlFactory<svlFeatureExtractor>.)

There are also two load() methods, one that takes a file path as its argument and another that accepts
an XML node. Both of these methods load the object stored in the file or XML node. This is different
from calling the load() method of a pre-existing object, because the factory can load the contents of the
file regardless of its type (so long as it is a subclass of T) while the object’s load method would only work if
the object were of exactly the same type as the object stored in the file.

The following code demonstrates how to load an svlClassifier of unknown type from a file, then check
its type:

s v l C l a s s i f i e r ∗ c l a s s i f i e r = s v lC l a s s i f i e r F a c t o r y () . load (” myC la s s i f i e r . dat”) ;

i f (c l a s s i f i e r)
{

cout << ” Su c c e s s f u l l y loaded a c l a s s i f i e r . ” << endl ;

i f (dynamic cast<s v lB o o s t e dC l a s s i f i e r ∗>(c l a s s i f i e r))
cout << ” I t i s a boosted c l a s s i f i e r . ” << endl ;

19

i f (dynamic cast<s v lMu l t iC l a s sLog i s t i c ∗>(c l a s s i f i e r))
cout << ” I t i s a mu l t i c l a s s l o g i s t i c c l a s s i f i e r . ” << endl ;

i f (dynamic cast<s v l L o g i s t i c ∗>(c l a s s i f i e r))
cout << ” I t i s a l o g i s t i c c l a s s i f i e r . ” << endl ;

i f (dynamic cast<s v lBo o s t e dC l a s s i f i e r S e t ∗>(c l a s s i f i e r))
cout << ” I t i s a boosted c l a s s i f i e r s e t . ” << endl ;

}

(Note: svlClassifierFactory() is a function that returns a reference to a global variable of type svlFactory<svlClassifier>
)

Registering a class to a factory

Before a factory can create a class, it must be registered to the factory. There are a variety of ways of
registering a class.

In the simplest case, the class has a no-argument constructor and is stored in an XML file that opens
with

<familyType=” s ub c l a s s i d ” . . . >

where “familyType” should be substituted with the name of the superclass whose factory should be used
(e.g., svlClassifier) and “subclass id” should be substituted with the string ID you want to use to identify
the subclass you are registering (e.g. “JOHN SMITH’S CUSTOM SVM”).

In this case, your class can be configured to be automatically registered when your application launches.
To do this, put

SVL AUTOREGISTER H (subc l a s s i d , familyType)

in the header file below the definition of your class. You also need to add a call to SVL AUTOREGISTER CPP()

in a .cpp file whose corresponding .o file is guaranteed to be linked to your application. Since .o files are
not linked if none of their symbols are referenced by the main application, this location must be chosen
carefully. If your new subclass is part of the STAIR Vision Library, then the only way to guarantee that
all applications that are built on SVL will be able to use your class is to put the macro call in the same file
as the definition of the parent class of the family (e.g., svlClassifier.cpp). If your new subclass is part
of your own application, then you are free to put the macro call in any .cpp file that you are sure will be
linked to your application. In either case, the call is

SVL AUTOREGISTER CPP(subc l a s s i d , familyType , yourSubc lass)

where “subclass id” and “familyType” are substituted as before, and “yourSubclass” should be substituted
with the name of your subclass.

If it is not possible to store your object in an XML file, then you will also need to write and register
a file checking function. When the factory attempts to load a file, it will first check if the file agrees with
the standard STAIR Vision Library XML file format. If it does not, the factory will then iteratively call
each registered file checking function on the file. A file checking function is simply a function that parses
the file and attempts to identify it as being a certain type of object. If the file can be positively identified,
the file checking function returns the string ID of the class contained in the file. Otherwise, the file checking
function returns the empty string. File checking functions should not report errors if they do not recognize
the format of the file– another file checking function might be able to identify the contents of the file, and
if no file checking function can do so, the factory will report an error. For an example of a file checking
function, see svlCvBoostFileChecker() in svlBoostedClassifier.cpp.

If you write your own file checking function, you will also need to register it. This can be accomplished
with the SVL AUTOREGISTER FILECHECKER H() and the SVL AUTOREGISTER FILECHECKER CPP(), which are
similar to the registration macros for subclasses.

20

If you cannot write your class to have a no-argument constructor, then the SVL AUTOREGISTER CPP()

macro will fail. In this case, instead of putting the call to the macro in your .cpp file, you should look at the
macro’s definition in svlFactory.h, then expand its contents in the appropriate .cpp file, replacing the call
to the no-argument constructor with some set of appropriate default arguments. Since the same thing could
be accomplished by adding default arguments to your class’s constructor’s declaration, this is not a use-case
that we have attempted to support with special case macros.

Lastly, it is also possible to manually register classes and file checking functions to a factory using the
factory’s registerType() and registerFileChecker() methods. The former will require you to define a
function that can create your subclass. Manual registration is mainly useful if you suspect that there is a
bug with the automatic registration, for instance, that the .cpp file with your SVL AUTOREGISTER CPP() calls
is being ignored by the linker.

Creating new factories

End users of the library are unlikely to need to create new instances of svlFactory, but if you are developing
the library itself you may find it necessary to do so. This must be done with care to ensure that auto-
registration works properly.

The auto-registration macros declare objects of type svlFactory<T>::autoreg. When these objects are
constructed, their constructors automatically call the registration methods of a factory object that is passed
to them by the macro. If the auto-registration objects are constructed before the factory, this will cause a
segmentation fault, since the factory will attempt to insert information about the classes being registered
into a map that hasn’t been initialized yet. In order to prevent this, it is necessary to route all accesses to
the factory object through a function that contains the factory as a static local variable. This ensures that
an attempt to access the factory will cause it to be constructed, thus preventing its premature use.

In order for the auto-registration macros to be able to locate the factory, the function returning the
reference to the factory must be named [familyType]Factory(). Likewise, for XML file parsing to fol-
low the conventions described in this documentation, the argument to the factory’s constructor must be
“[familyType]”.

2.2 svlPGM

Probabilistic graphical models are factored representations of probability distributions that include Bayesian
Networks (BNs), Markov random fields (MRFs) and conditional Markov random fields (CRFs). The models
use a graph-based representation—nodes representing random variables and edges representing probabilistic
relationships—from which they derive their name. In the SVL we only deal with discrete random variables
(i.e., finite domains). Given a set of random variables Y = {Y1, . . . , Yn} where each variable Yi has domain
dom (Yi), we can write the general form for a graphical model over Y given some features X as

P (Y | X) =
1

Z(X)

∏

c

Ψc(Yc;X) (2.1)

where Yc ⊆ Y is a subset of the variables (clique) and Z(X) (called the partition function) ensures that
the probability distribution sums to 1. Here the potentials or factors, Ψc(Yc;X), are functions that take an
assignment to the variables Yc and return a non-negative real number R+ indicating the model’s preference
for that assignment. Often it is more convenient to represent the model in log-space,

P (Y | X) =
1

Z(X)
exp {−E(Y;X)} . (2.2)

Here E(Y;X) = −∑

c ψc(Yc;X) is called the energy function (with ψc = log Ψc). Note that maximizing
probability (i.e., finding the MAP assignment) is equivalent to minimizing energy.

In addition to the library code described here, the STAIR Vision Library provides a number of C++
and Matlab applications for graphical model inference and learning (see Section 3).

21

2.2.1 Factors and Factor Operations

The svlFactor class implements a discrete (table) factor (or clique potential) for use in Bayesian Networks,
Markov random fields (MRFs) and conditional Markov random fields (CRFs). The factor assumes that
variables are index by integer. Variable values are indexed from zero to varCardinality(v) - 1. The
indexOf() and valueOf() functions can be used to access table entries. For faster access, the []-operator
can also be used. Entries are stored in a linear array and ordered by first-indexed variable so for the factor
ψ(X,Y) we would have psi[0] = ψ(0, 0), psi[1] = ψ(1, 0), ..., psi[psi.size() - 1] = ψ(|dom (X) | −
1, |dom (Y) | − 1).

Some optimizations have been incorporated for fast factor multiply and marginalization, but for really
fast operations use the derived svlFactorOperation classes which allow indices to be precomputed. This
is especially important for iterative algorithms such as message passing inference which perform repeated
operations on the same factors.

The following example constructs two factors over variables {X0,X1} and {X1,X2} and multiplies them
together to produce a factor over {X0,X1,X2}.

sv lFac to r ps i1 , p s i 2 ;

// de f i ne f a c t o r s
ps i 1 . addVariable (0 , 3) ; // X 0 has c a r d i n a l i t y 3
ps i 1 . addVariable (1 , 2) ; // X 1 has c a r d i n a l i t y 2
ps i 2 . addVariable (1 , 2) ; // X 1 has c a r d i n a l i t y 2
ps i 2 . addVariable (2 , 2) ; // X 2 has c a r d i n a l i t y 2

// popu la te d i r e c t l y , but we could a l s o use :
// ps i1 [ps i1 . indexOf (1 , <x 1 >, p s i1 . indexOf (0 , <x 0 >))] = <v>;
ps i 1 [0] = 0 . 5 ; p s i 1 [1] = 0 . 8 ; p s i 1 [2] = 0 . 1 ;
p s i 1 [3] = 0 . 0 ; p s i 1 [4] = 0 . 3 ; p s i 1 [5] = 0 . 9 ;
p s i 1 . wr i t e (cout) ;

p s i 2 [0] = 0 . 5 ; p s i 2 [1] = 0 . 7 ;
p s i 2 [2] = 0 . 1 ; p s i 2 [3] = 0 . 2 ;
p s i 2 . wr i t e (cout) ;

// mu l t i p l y f a c t o r s t o g e t h e r
sv lFac to r p s i 3 ;
svlFactorProductOp op1(&psi3 , &psi1 , &ps i 2) ;
op1 . execute () ;
p s i 3 . wr i t e (cout) ;

The available factor operations (derived from svlFactorOperation) are:

Operation Description

svlFactorAtomicOp Executes a sequence of factor operations as a single operation.
svlFactorProductOp Multiplies two or more factors together.
svlFactorDivideOp Divides the entries in one factor by corresponding entries from another.
svlFactorAdditionOp Adds two or more factors together.
svlFactorSubtractOp Subtracts the entries in the second factor from corresponding entries

in the first.
svlFactorWeightedSumOp Adds a weighted combination of two factors.
svlFactorMarginalizeOp Marginalizes one or more variables out of a factor.
svlFactorMaximizeOp Maximizes over one variable within a factor.
svlFactorNormalizeOp Normalizes the entries in a factor to sum to one. (Inline)
svlFactorLogNormalizeOp Subtracts the maximum entry in a factor from all entries. (Inline)

I/O File Format

Factors are serialized as XML objects with the following format:

22

<Factor>
<Vars> 1 2 </Vars>
<Cards>2 2 </Cards>
<Data> 0 .5 0 .7 0 .1 0 .2 </Data>

</Factor>

2.2.2 Cluster Graphs

Encapsulates a cluster graph (or clique graph/tree) for Bayesian networks and Markov random fields. This
is used to define the model for various inference algorithms (see Section 2.2.3). Briefly, a cluster graph is a
graph G = (V, E) where V are a set of clusters over variables and E are the set of edges between clusters. The
nodes v ∈ V are annotated with a factor over the variables in v, i.e., ψv(Yv), and the edges are annotated
with separators, i.e., for (u, v) ∈ E the separator set is Yuv ⊆ Yu ∪ Yv. A valid cluster graph G for a
graphical model must satisfy the following two properties:

• Family Preserving Property. For all factors in the model ψc(Yc) there must exists a least one node
v ∈ V such that Yc ⊆ Yv.

• Running Intersection Property. For any variable Yi and two nodes u, v ∈ V such that Yi ∈ Yu

and Yi ∈ Yv, then there must exist one and only one path between u and v in G such that for all w on
the path, Yi ∈ Yw.

Note that some inference algorithms (e.g., α-expansion) use the cluster graph representation, but do not
require the running intersection property to hold.

The following pseudo-code constructs a Bethe-approximation cluster graph for a graphical model.

int numVariables = . . . ;
vector<int> v a rCa r d i n a l i t i e s (numVariables) ;
. . .

sv lClusterGraph model (numVariables , v a rCa r d i n a l i t i e s) ;

// add s i n g l e t on (unary) p o t e n t i a l s
for (int i = 0 ; i < numVariables ; i++) {

s v lC l i que c = ge tS i ng l e t onVar i ab l e s (i) ;
sv lFac to r p s i = ge tS ing l e tonFac to r (i) ;
model . addClique (c , p s i) ;

}

// add higher−order p o t e n t i a l s
vector<pair<int , int> > edges ;
for (int i = 0 ; i < numHighOrderTerms ; i++) {

s v lC l i que c = getHighOrderVar iab les (i) ;
sv lFac to r p s i = getHighOrderFactor (i) ;
model . addClique (c , p s i) ;

for (s v lC l i que : : c o n s t i t e r a t o r c i = c . begin () ; c i != c . end () ; c i++) {
edges . push back (make pair (∗ c i , model . numCliques () − 1)) ;

}
}

// add edges f o r Bethe−approximation
model . connectGraph (edges) ;

I/O File Format

Cluster graphs are serialized as XML objects with the following format:

<ClusterGraph vars=” . . . ” nodes=” . . . ” edges=” . . . ” v e r s i on=”1”>
<VarCards>

23

<!−− va r i ab l e c a r d i n a l i t i e s −−>
</VarCards>
<Clique index=” . . . ” s i z e=” . . . ”>

<!−− l i s t o f c l i q u e v a r i a b l e s −−>
</Clique>
. . .

<Edges>
<!−− op t i ona l l i s t o f edges between c l i q u e s −−>

</Edges>

<Potent i a l s >
<Factor>

<!−− f a c t o r cor re spond ing to c l i q u e s −−>
</Factor>
. . .

</Potent i a l s >
</ClusterGraph>

2.2.3 Inference

Inference in graphical models involves computing marginals over variable or finding the most likely assignment
to variables (MAP inference). The SVL implements a number of variants of state-of-the-art message passing
and graph-cut-based inference algorithms via the svlMessagePassingInference, svlGraphCutsInference,
and svlAlphabetSOUPInference classes including:

• Synchronous or asynchronous sum-product message passing [15].

• Synchronous or asynchronous max-product message passing [15].

• Synchronous or asynchronous max-product message passing on log-space messages.

• Synchronous or asynchronous sum-product-divide message passing.

• Synchronous or asynchronous max-product-divide message passing.

• Synchronous or asynchronous max-product-divide message passing on log-space messages.

• Asynchronous max-product message passing on log-space messages (lazy variant).

• Residual sum-product belief propagation [3].

• General convergent message passing algorithm of Globerson and Jaakkola [5].

• Cluster pursuit algorithm of Sontag et al. [16].

• α-expansion algorithm [1].

• Max-product message-passing variant of the Alphabet SOUP algorithm [8].

An example for running sum-product inference on an existing cluster graph file is show below.

const char ∗ f i l ename = ” . . . ” ;

sv lClusterGraphs graph ;
graph . read (f i l ename) ;

sv lMes sagePas s ing In f e r ence i n f e r enc eOb j e c t (graph) ;
i n f e r enc eOb j e c t . i n f e r e n c e (SVL MP SUMPROD, 100) ;

for (int i = 0 ; i < graph . numCliques () ; i++) {
cout << ”Cl ique ” << i << ” : ” << t oS t r i ng (graph . ge tCl ique (i)) << ”\n” ;
cout << i n f e r en c eOb j e c t s [i] << ”\n” ;

}

24

2.2.4 Pairwise Log-Linear CRF Models

The svlPairwiseCRFModel and associated classes implement learning and inference algorithms for a log-
linear condition Markov random field (CRF) model with singleton (or unary) and pairwise potentials. All
variables must have the same cardinality (for mixed cardinality CRF models see Section 2.2.5). Formally,
we define the CRF over N variables Y as

P (Y | X) =
1

Z(X)
exp

{

∑

n

ψ1(Yn,Xn) +
∑

n,m

ψ2(Yn, Ym,Xnm)

}

(2.3)

where Xn are the singleton features, Xn,m are the pairwise features, and Z(X) is the (feature dependent)
partition (normalization) function. The singleton and pairwise potentials are defined as ψ1(yn, xn) = θT

yn
xn

and ψ2(yn, ym, xnm) = θT
yn,ym

xnm respectively. Here the subscript on the θ indicates that a separate set of
parameters (weights) exists for each assignment to the Yn or pair (Yn, Ym).

A pairwise CRF instance is defined by the assignment to its variables (possible unobserved), singleton
and pairwise features, and graph structure. The class svlPairwiseInstance encapsulates a pairwise CRF
instance.

The following example shows how to define a Potts model with singleton potentials of the form ψ(Yn =
k,Xn = x) = eT

k x, i.e., x is the prior unnormalized log-likelihood of Yn taking label k.

// i n i t i a l i z e model
svlPairwiseCRFWeights weights (K, K, 1) ;
vector<double> Xn(K) ;
for (int Yn = 0 ; Yn < K; Yn++) {

f i l l (Xn . begin () , Xn . end () , 0 . 0) ;
Xn [Yn] = 1 . 0 ;
weights . s ingletonAddWeighted (Yn, Xn) ;

}

vector<double> Xnm(1 , 1 . 0) ;
for (int Yn = 0 ; Yn < K; Yn++) {

for (int Ym = 0 ; Ym < K; Ym++) {
weights . pairwiseAddWeighted (Yn, Ym, Xnm, 1 . 0) ;

}
}

svlPairwiseCRFModel model (weights) ;

// eva lua t e on ins tance
sv lPairwiseCRFInstance in s t anc e ;
int varId = 0 ;
for (int i = 0 ; i < N; i++) {

for (int j = 0 ; j < M; j++) {
i n s t anc e .Yn . push back (−1);
i n s t anc e .Xn . push back (vector<double>(K, 0 . 0)) ;
for (int k = 0 ; k < K; k++) {

i n s t anc e .Xn . back () [k] = drand48 () ;
}
i f (i > 0) {

i n s t anc e . edges . push back (make pair (varId , varId − M)) ;
}
i f (j > 0) {

i n s t anc e . edges . push back (make pair (varId , varId − 1)) ;
}
varId += 1 ;

}
}

i n s t anc e .Xnm. r e s i z e (i n s t anc e . edges . s i z e () , Xnm) ;

vector<vector<double> > margina ls ;
model . i n f e r e n c e (ins tance , marg ina l s) ;

25

I/O File Format

Pairwise CRF models have XML format:

<cr fWeights version=”2” c l a s s e s=” . . . ” s i ng l e t onFea tu r e s=” . . . ” pa i rw i s eFea tu r e s=” . . . ” >
< !−− requ i red we igh t s f o r s i n g l e t on p o t e n t i a l s −−>
<s ing l e tonWeights>

. . .
</ s ing l e tonWeights>

< !−− op t i ona l we igh t s f o r pa i rw i se p o t e n t i a l s −−>
<pairwiseWeights>

. . .
</ pairwiseWeights>

< !−− op t i ona l mask b i t s −−>
<s ing letonMasks>

. . .
</ s ing letonMasks>

</ cr fWeights>

Pairwise CRF instances have XML format:

<c r f I n s t an c e nodes=” . . . ” edges=” . . . ” weight=” . . . ” >
< !−− edge l i s t between adjacent nodes o f the form N a N b −−>
<edges>

. . . .
</ edges>

< !−− s i n g l e t on f ea t u r e vec t o r s (one per node) −−>
<s i ng l e t onFea tu r e s>

. . .
</ s i ng l e t onFea tu r e s>

< !−− pa i rw i se f e a t u r e v ec t o r s (one per edge) −−>
<pa i rw i s eFea tu r e s>

. . .
</ pa i rw i s eFea tu r e s>

< !−− groundtruth assignments (one per node , i f known) −−>
<targetAss ignment>

. . . .
</ targetAss ignment>

</ c r f I n s t an c e>

2.2.5 General Log-Linear CRF Models

The svlGeneralCRF class encapsulates log-linear conditional Markov random field models over a set of dis-
crete random variables Y = {Y1, . . . , YN} given continuous random variables (or features) X and parameters
Θ. Each Yn can have a different cardinality, Kn ≥ 2. The Yn’s take assignments 0, . . . ,Kn − 1. Formally,
we have

P (Y | X; Θ) =
1

Z(X)
exp

{

M
∑

m=1

ψm(Ym,Xm; θ)

}

(2.4)

where the Ym ⊆ Y are cliques over variables and Xm is the corresponding subsets of features for the m-th
clique. The factors m specify log-linear functions, i.e.,

ψm(ym,xm; θ) = θ(ym)T xm(ym) (2.5)

26

where θ(ym) and x(ym) indicate the subset of parameters and features contributing to the factor when
Ym = ym.

Note that in many cases the structure of the ψm will repeat, e.g., pairwise CRFs. In addition, each
instance of a problem may have a different structure (number of variables, etc.), but share the same types
of factors and model parameters. Therefore we will make use of factor templates for describing how features
and parameters map to the various factor entries. Thus we have ψm = ψt(m) where t(m) ∈ {0, . . . , T − 1}
indexes a pre-specified template.

We can now specify the CRF in terms of two data structures: a model M = {Θ, ψt : t = 0, . . . , T − 1}
and an instance I = {yn, kn,ym,xm, tm : n = 0, . . . , N − 1;m = 0, . . . ,M − 1}. The model holds the weights
(parameters) and factor templates, while the instance describes the variables, cliques, features and assignment
of factors to cliques. Factor templates, ψt, define θ(ym) and xm(ym) for each assignment to ym by listing
the associated weight and features indices.

Special cases.

• A variable value of yn < 0 in I means unobserved or unknown.

• A feature index [xm(ym)]i < 0 in M means constant feature 1.

• A weight index [θ(ym)]i < 0 in M means constant weight 1 (i.e., don’t train).

Parameter Learning

Since learning in CRF models is computationally challenging, parameters are learned using the pseudo-
likelihood objective,

J(θ;D) =
∑

(x,y)∈D

∑

n

log P (yn | x,y \ Yn; θ) (2.6)

I/O File Format

General CRF models have XML format:

<crfModel version=”1” numWeights=” . . . ” numTemplates=” . . . ”>

<Weights>
< !−− c r f we igh t s −−>

</Weights>

<FactorTemplate>
< !−− c r f f a c t o r template −−>

</FactorTemplate>
. . .

</ crfModel>

General CRF instances have XML format:

<c r f I n s t an c e version=”1” numVars=” . . . ” numCliques=” . . . ”>
<Cards>

< !−− v a r i a b l e c a r d i n a l i t i e s −−>
</Cards>

<Clique templateIndex=” . . . ”>
< !−− c l i q u e v a r i a b l e s and f e a t u r e s −−>

</Cl ique>
. . .

</ c r f I n s t an c e>

27

2.3 svlML

The svlML library provides basic machine learning capability such as classifiers and probability distributions.
Currently, some of the classes utilize the OpenCV machine learning library code, but this dependency will
be removed in future releases.

2.3.1 Classifiers

Figure 2.1: SVL classifier class hierarchy.

The STAIR Vision Library implements a number of standard machine learning classifiers. The clas-
sifiers are trained discriminatively given a set of training M samples {x(m), y(m)}M

m=1 where x(m) ∈ R
n are

the features and y(m) ∈ {0, . . . ,K − 1} is the class label for the m-th training sample, respectively. Some
classifiers allow for the training examples to be weighted by some non-negative value, w(m) ≥ 0. In gen-
eral, the SVL considers a negative training label to be unknown and is not considered during training or
evaluation.

All classifiers in the SVL are derived from the svlClassifier base class. Individual classifiers may have
additional or specialized methods (for example, binary classifiers allow training from separate positive and
negative training sets). Classifier specific parameters, for example, number of boosting rounds, are controlled
through the svlOption interface. A standard classifier provides the following interface:

class s v l C l a s s i f i e r : public sv lOpt ions {
s v l C l a s s i f i e r () ;
s v l C l a s s i f i e r (unsigned n , unsigned k) ;
s v l C l a s s i f i e r (const s v l C l a s s i f i e r &c) ;
virtual ˜ s v l C l a s s i f i e r () ;

// access f unc t i ons
int numFeatures () const ;
int numClasses () const ;
bool t r a in ed () const ;

// i /o func t i ons
bool save (. . .) ;
bool load (. . .) ;

// t r a i n i n g func t i ons
double t r a i n (. . .) ;

// eva lua t i on func t i ons
void ge tC la s sSco r e s (. . .) const ;
void getMarg ina l s (. . .) const ;
int g e t C l a s s i f i c a t i o n (. . .) const ;
void g e t C l a s s i f i c a t i o n s (. . .) const ;

28

} ;

The load() method is used when it is known in advance that the file to be loaded is of the same derived
type as the object it is called on. When the type of the classifier stored in the file is not known at compile time,
svlClassifierFactor().load() should be used to allocate a new classifier object loaded from file instead.
Typically, objects derived from svlClassifier are stored in XML files with a root named “svlClassifier”,
but it is possible to define other file formats. For details on both these topics, see 2.1.13.

Most of the other methods are fairly self-explanatory.

Boosted Decision Tree Classifiers

The svlBoostedClassifier and svlBoostedClassifierSet encapsulate binary boosted decision tree clas-
sifiers based on real-valued feature vectors. Client code can control the boosting method (“GENTLE”,
“DISCRETE”, or “LOGIT”), number of boosting rounds, number of splits per decision tree, trim rate per
boosting round, and class pseudo counts.

Warning: The code currently wraps the OpenCV boosting implementation which limits the size
of the training sets and file I/O. The underlying implementation may change in future revisions.

Binary and Multi-class Logistic Classifiers

The svlLogistic class implements a binary logistic regression classifier,

P (Y = 0 | X = x) =
1

1 + exp(−θT x)
(2.7)

The classifier is trained via Newton’s method using a weighted L2 objective, i.e.,

θ⋆ = argmin
θ

∑

m

w(m)
∥

∥

∥
y(m) − P

(

y(m) | x(m); θ
)
∥

∥

∥

2

. (2.8)

The svlMultiClassLogistic class supersedes the svlLogistic class and implements a multiclass logistic
regression classifier,

P (Y = y | X = x) =

exp(θT
y x)

1+
P

K
k=1

exp(θT
k
x)

for 0 ≤ y < K − 1
1

1+
P

K
k=1

exp(θT
k
x)

for y = K − 1
(2.9)

The multi-class logistic is trained via LBFGS to maximizes the (weighted) likelihood objective

θ⋆ = argmax
θ

∑

m

w(m) log P
(

y(m) | x(m);θ
)

. (2.10)

2.3.2 Feature Whitening

The svlFeatureWhitener class learns the mean and variance of each feature in a set of training features
vectors. It then whitens the feature vectors by subtracting the mean and dividing by the variance of each
feature independently. Features with zero-variance (e.g., so-called bias terms) are unaffected. The means
and variances can be saved to disk so that they can be applied at test time.

A typical use for feature whitening is in conjunction with a logistic classifier:

int main (int argc , char ∗argv [])
{

vector<vector<double> > x ;
vector<int> y ;

// load t r a i n i n g data in to x and y

29

. . .

// t ra in c l a s s i f i e r wi th whitened f e a t u r e s
sv lFeatureWhitener whitener (x [0] . s i z e ()) ;
whitener . t r a i n (x) ;
whitener . eva luate (x) ;

s v lMu l t iC l a s sLog i s t i c c l a s s i f i e r (x [0] . s i z e () , argmax (y) + 1) ;
c l a s s i f i e r . t r a i n (x , y) ;

// load eva lua t i on data in to x and y
. . .

// eva lua t e c l a s s i f i e r and pr in t confus ion matrix
vector<int> y hat ;
whitener . eva luate (x) ;
c l a s s i f i e r . g e t C l a s s i f i c a t i o n s (x , y hat) ;

sv lConfus ionMatr ix con fus i on (c l a s s i f i e r . numClasses ()) ;
con fus i on . accumulate (y , y hat) ;
con fus i on . p r i n t (cout) ;

return 0 ;
}

2.3.3 Multi-variate Gaussians and Conditional Gaussians

The svlGaussian encapsulates a Gaussian distribution over continuous random variables x ∈ R
n:

P (x;µ,Σ) =
1

(2π)
n
2 det Σ

1

2

exp

{

−1

2
(x − µ)T Σ−1(x − µ)

}

(2.11)

The log-likelihood of a new data sample can be evaluated using the evaluate() or evaluateSingle()

functions. The distribution can be learned from sample data or sufficient statistics using the train()

methods. Random samples can be drawn from the distribution using the sample() methods.
The svlConditionalGaussian encapsulates a conditional Gaussian distribution. The class is optimized

to pre-compute the gain matrices to allow for fast conditioning on new input. The following code demon-
strates how to initialize a Gaussian distribution and then condition on a particular subset of the variables.

VectorXd mu(3) ;
mu << 1 . 0 , 2 . 0 , 3 . 0 ;
MatrixXd sigma (3 , 3) ;
sigma << 1 . 0 , 0 . 1 , 0 . 2 , 0 . 1 , 1 . 0 , −0.5 , 0 . 2 , −0.5 , 1 . 0 ;

sv lGauss ian gauss ian (mu, sigma) ;

cout << ”Mean :\n [\ t ” << gauss ian . mean () << ”\ t]\n” ;
cout << ”Variance :\n [\ t ” << gauss ian . covar iance () << ”\ t]\n” ;

// compute P(X 0 | X 1 = 1.9 , X 2 = 3.2)
vector<double> x (2) ;
vector<int> indx (2) ;

x [0] = 1 . 9 ; indx [0] = 1 ;
x [1] = 3 . 2 ; indx [1] = 2 ;

sv lCond i t i ona lGauss ian cond i t i ona lGaus s i an = gauss ian . conditionOn (indx) ;
sv lGauss ian gauss ian2 = cond i t i ona lGaus s i an . reduce (x) ;

cout << ”Mean :\n [\ t ” << gauss ian2 . mean () << ”\ t]\n” ;
cout << ”Variance :\n [\ t ” << gauss ian2 . covar iance () << ”\ t]\n” ;

30

// a l t e r n a t i v e approach produces cond i t i ona l d i s t r i b u t i o n with a s i n g l e c a l l
sv lGauss ian gauss ian3 = gauss ian . reduce (x , indx) ;

cout << ”Mean :\n [\ t ” << gauss ian3 . mean () << ”\ t]\n” ;
cout << ”Variance :\n [\ t ” << gauss ian3 . covar iance () << ”\ t]\n” ;

2.3.4 Confusion Matrices

svlConfusionMatrix is a utility class for computing and printing confusion matrices. A negative actu-
al/predicted class is considered unknown and not counted. The rows in the confusion matrix represent the
actual class and the columns represent the predicted class. The confusion matrix can be printed with either
rows or columns (or both) normalized.

Tip: You can change the row and column separators in the confusion matrix, e.g., for easy cut-
and-paste into LATEX tables, using the svlML.svlConfusionMatrix configuration parameters.

2.3.5 Disjoint Sets

Implements a forest of disjoint sets abstract data type. The elements are numbered from 0 to (size() -

1). Each element belongs to exactly one set. The sets have ID in the range [0, size()). To get the number
of elements of each set, call size(id) with a valid set ID.

int main (int argc , char ∗argv [])
{

// crea t e d i s j o i n t s e t s
const int n = 100 ;
s v lD i s j o i n t S e t s s e t s (n) ;

// randomly merge some s e t s
for (int i = 0 ; i < n ; i++) {

int s1 = s e t s . f i nd (rand () % n) ;
int s2 = s e t s . f i nd (rand () % n) ;
i f (s1 != s2) {

s e t s . j o i n (s1 , s2) ;
}

}

// show s e t s
vector<int> s = s e t s . g e tSe t Id s () ;
for (vector<int > : : c o n s t i t e r a t o r i t = s . begin () ; i t != s . end () ; i t++) {

cout << t oS t r i ng (s e t s . getMembers (∗ s)) << endl ;
}

return 0 ;
}

2.3.6 Vector-Quantization

The svlCodebook class implements a generic vector-quantization codebook. The codebook can be con-
structed externally and loaded using initialize() or learned from data using the learn() method. Vec-
tors can then be discretized using encode(); codewords can be decoded to a representative vector using
decode().

2.3.7 Evaluation

Once the classifiers are trained, there are some standard classes that provide useful evaluation methods.

31

Precision-recall curves

The svlPRcurve.h file implements the general PR curve structure. Given two vectors of classification
results (one from positive examples and one from negative), makePRcurve() will generate an svlPRcurve.
getHighestFscore(), getPRarea() and functions for reading svlPRcurve() from and writing it to a file
are available.

Mutual information

The svlClassifierResponseList is a structure for holding the probability output of a binary classifier. To
illustrate some of the functionality, the following code will create an svlClassifierResponseList given the
output of a classifier and perform some analysis.

int main (int argc , char ∗argv [])
{

vector<vector<double> > posExamples ;
vector<vector<double> > negExamples ;

// load t r a i n i n g data in to posExamples and negExamples
. . .

vector<double> posExamplesOutput ;
vector<double> negExamplesOutput ;

// run c l a s s i f i e r on posExamples and negExamples ,
// s t o r i n g the output in the vec t o r s above
. . .

s v lC l a s s i f i e rR e s p on s eL i s t r e sponse s ;

// i n s e r t the scores f o r p o s i t i v e and nega t i v e d e t e c t i on s
for (int i = 0 ; i < posExamplesOutput . s i z e () ; i++) {

i n s e r t S c o r e (responses , posExamplesOutput [i] , true) ;
}

for (int i = 0 ; i < negExamplesOutput . s i z e () ; i++) {
i n s e r t S c o r e (responses , negExamplesOutput [i] , fa l se) ;

}

// normal ize the we igh t s so the o v e r a l l c on t r i bu t i on o f p o s i t i v e
// and nega t i v e examples i s the same even i f the number o f examples
// i s d i f f e r e n t
normal i z eScore s (r e sponse s) ;

// p r i n t s out the summary o f the s to red responses , at c l a s s i f i c a t i o n
// t h r e s ho l d o f 0 .5
cout << summary(responses , 0 . 5) << endl ;

// outputs the PR curve
svlPRcurve curve ;
createPRcurve (responses , curve) ;
writePRcurve (‘ ‘ pr . txt ’ ’ , curve) ;

return 0 ;
}

The svlClassifierResponseList is very useful for feature selection since it also provides a way to
compute the mutual information between the class label and the feature value. Mutual information between
a discrete feature X and a class label C is defined as

I(X;C) =
∑

c∈C,x∈X

P (c, x) log
P (c, x)

P (c)P (x)

32

computeMI() operates on svlClassifierResponseList and performs this computation assuming a binary
classifier and given a threshold t which is used to convert the feature value to binary as well. The maximum
mutual information between a feature and the class label, as well as the threshold at which it is achieved,
can be computed with computeMaxMI().

The joint mutual information of two features given the class label is defined as

I(X,Y ;C) =
∑

c∈C,x∈X,y∈Y

P (c, x, y) log
P (c, x, y)

P (c)P (x, y)

and implemented in computeJointMI(). The joint mutual information computation assumes that both
features have been converted to binary as above using the optimal mutual information threshold. Further,
to speed up computation, the svlClassifierResponseCache structure is used; it can be obtained from
svlClassifierResponseList by calling thresholdResponsesForMaxMI(). To summarize, in order the
compute the mutual information between two features, one would do:

int main (int argc , char ∗argv [])
{

s v lC l a s s i f i e rR e s p on s eL i s t l i s t 1 ;
s v lC l a s s i f i e rR e s p on s eL i s t l i s t 2 ;

// load data in to the l i s t s us ing the output o f two d i f f e r e n t
// c l a s s i f i e r s , t ak ing care to keep the order o f examples the same
. . .

s v lC l a s s i f i e rRe spon s eCache cache1 = thresholdResponsesForMaxMI (l i s t 1) ;
s v lC l a s s i f i e rRe spon s eCache cache2 = thresholdResponsesForMaxMI (l i s t 2) ;

c e r r << computeJointMI (cache1 , cache2) ;

d e l e t eC l a s s i f i e rRe spon s eCache (cache1) ;
d e l e t eC l a s s i f i e rRe spon s eCache (cache2) ;

return 0 ;
}

2.4 svlVision

2.4.1 OpenCV Utilities

The svlOpenCVUtils.h file provide a number of useful conversion functions that wrap around the OpenCV

library.

33

Function Description

toString Converts a CvPoint, CvRect, CvSize, CvMat, IplImage or vector<IplImage*>
to an stl::string

toMatlabString Converts a CvMat to an stl::string that’s in Matlab-readable format
dump Writes the data from an IplImage or CvMat to stdout

readMatrix Reads the data from a text file into a pre-allocated CvMat

writeMatrix Writes the data from a CvMat into a text file
readMatrixAsIplImage Reads the matrix from a text file into an IplImage

writeMatrixAsIplImage Writes out an IplImage as a matrix to a text file
makeIplImage Converts a byte stream to an IplImage

makeByteStream Converts an IplImage to a byte stream
svlCreateMatrix Converts a 2-dimensional vector to a CvMat

svlCreateImages Creates a vector of IplImages
svlReleaseImages Frees memory for a vector of IplImages
svlCreateMatrices Creates a vector of CvMat matrices
svlReleaseMatrices Frees memory for a vector of CvMat matrices
combineImages Creates one big image from a vector of IplImages
eigenToCV Converts Eigen data types to OpenCV CvMats
cvToEigen Converts a CvMat to Eigen::MatrixXd

It also implements

captureOpenCVerrors

Redirects openCV errors to the svlLogger error handler, which then provides helpful debugging information
and terminates the program by calling the abort() function which can be trapped with a debugger. This
function should be called once at the beginning of each application.

2.4.2 Vision Utilities

The svlVisionUtils.h file provides a number of helpful utility functions, summarized in Table 2.2. It also
defines the equality operator on CvPoint and CvRect and the relational < operator on CvPoint.

svlColorType

This enum defines the type of color spaces that the svlImageLoader class discussed in 2.4.5 and the
svlChangeColorModel() function in Table 2.2 can support.

• SVL COLOR GRAY is a grayscale image
• SVL COLOR BGR is the standard format a color image is loaded in
• SVL COLOR BG corresponds to a two-channel image obtained from the one above by averaging together

the B and G channels and leaving R intact (similarly for SVL COLOR BR, SVL COLOR GR)
• SVL COLOR HSV is the standard HSV format
• SVL COLOR HS, SVL COLOR HV, SVL COLOR H correspond to only leaving the specified channels
• SVL COLOR YCrCb is the standard YCrCb format
• SVL COLOR CrCb corresponds to only leaving the specified channels of the image above
• SVL COLOR UNDEFINED is useful for non-standard images (e.g. depth images)
• SVL COLOR ERROR is useful as a potential return value from functions parsing the user input

2.4.3 Object detection storage types

When dealing with object detection and classification, the following classes defined in svlObjectList.h

might be useful.

34

Function Description

Simple arithmetic operations
svlAddSquared Computes a per-element sum of squares of two CvMat

svlSubtractMedian Normalizes a 32F IplImage based on its median
svlMin Finds the min element of a CvMat

svlMax Finds the max element of a CvMat

svlFindLocalMaxima Finds a list of elements each of which is maximal within a
w × h window of a cvMat

svlMeanSquaredError Finds the average squared difference between pixels in two CvMat

svlNGC Computes the normalized greyscale correlation of two CvMat

svlFloatCompare Returns true if two floats differ by ≥ 1% of the larger magnitude
svlIntersection Finds the intersection of two CvRect

svlContainsNanOrInf Checks the CvMat

svlImageUniform Returns true if all values in the 8U or 32F IplImage are the same
svlImageAlmostUniform Returns true if min and max values in the 8U IplImage differ

by ≥ 32, or in the 32F differ by ≥ 0.125
Scaling and resizing operations

scaleToRange Scales a CvArr given the min and max values
resizeInPlace Resizes an IplImage

cropInPlace Crops an IplImage

svlClipRect Clips a CvRect to a bounding box or IplImage
svlIncreaseToAspectRatio Increase the CvRect to match the aspect ratio
svlDecreaseToAspectRatio Decrease the CvRect to match the aspect ratio

Image type conversions
convertInPlace Performs in-place cvConvertScale() on an IplImage

create32Fimage Creates a new 32F IplImage from an 8U or 32F one
Color utilities

greyImage Converts an IplImage to grayscale
colorImage Converts a grayscale IplImage to 8U BGR

superSaturateImage Super-saturates a color IplImage
svlChangeColorModel Changes a BGR IplImage to another color (cf. svlColorType enum)
svlDeleteChannel Deletes the specified channel of a 3-channel IplImage
svlLeaveSingleChannel Leaves only a single channel of an IplImage

svlAverageColorChannels Given a 3-channel 8U IplImage and a channel i, averages together
the other two channels while leaving channel i intact

svlAverageChannels Averages together all channels of an 8U IplImage

3-d utilities
estimatePointNormals Estimates the point normals from 3d point cloud projection into image
estimatePointNormalsFast Same as above, but for fixed sized 3 × 3 window
estimatePlane Estimates the 3d planar fit to a set of points
svlRotatePointCloud Rotates a dense point cloud represented as three matrices.
svlTranslatePointCloud Translates a dense point cloud represented as three matrices.

Other utilities
svlConnectedComponents Renumbers the connected components (in place)
svlNearestNeighbourFill Fill zero points with value from nearest-neighbor
svlInsidePolygon Returns true if a given CvPoint is inside the given polygon
svlPolynomialFit Fits a polynomial to a set of CvPoint
svlLineFit Fits a line to a set of CvPoint

Table 2.2: A summary of functions in svlVisionUtils.h

35

svlObject2d

This class contains the x, y, w, h coordinates of the bounding box around the object, as well as its name, the
detection probability, and an index that can be used for external reference.

svlObject2dFrame

This is a std::vector<svlObject2d> usually corresponding to all objects detected within an image. There
are various useful functions for processing an svlObject2dFrame including reading and writing utilities for
XML files, scaling of all objects, filtering based on name or overlap within itself or with another svlObject2dFrame,
non-maximal suppression of detections, and sorting objects by detection probability.

svlObject2dSequence

This is a std::map<string, svlObject2dFrame>, and can be used to hold one list of objects per image
frame for the entire video or image sequence. The map is indexed by filename (or ID), or in the case of
videos by a (0-based) frame index. Again various functions that defined for reading, writing and scaling
an svlObject2dSequence, as well as for counting the objects, removing specified frames, filtering based on
overlap with objects from another svlObject2dSequence, doing non-maximal suppression, and computing
the average aspect ratio of all objects.

2.4.4 I/O file format

Most vision applications take as an input an XML file corresponding to a directory with a list of images to
analyze, e.g.

<ImageSequence
d i r = ”directoryName/”
version = ” 1 .0 ”>

<Image name=” image001 . jpg ”/>
<Image name=” image002 . jpg ”/>

</ ImageSequence>

The svlImageSequence class reads and writes these files and stores all the necessary information. It
provides useful access functions such as the operator[] which returns the name of the ith image stored, or
the function image() which loads and returns the ith IplImage.

Two other helpful functions in svlImageSequence.h are hasHomogeneousExtensions() which returns
true if all images in the image sequence have the same extension and getExtension().

The ground truth files are also represented in XML format:

<Object2dSequence version=” 1 .0 ”>
<Object2dFrame id=” image001”>

<Object name=”mug” x=” 368.604 ” y=” 385.592 ” w=” 76.3774 ” h=” 78.4834 ” pr=”1” />
<Object name=”cup” x=” 275.623 ” y=” 227.488 ” w=” 45.3836 ” h=” 83.0332 ” pr=”1” />
<Object name=”cup” x=” 197.031 ” y=” 230 .9 ” w=” 44.2767 ” h=” 54.5972 ” pr=”1” />

</Object2dFrame>
<Object2dFrame id=” image002”>

<Object name=”cup” x=” 325.434 ” y=” 201.327 ” w=” 36.5283 ” h=” 48 .91 ” pr=”1” />
</Object2dFrame>

</Object2dSequence>

They can be read using the svlObject2dSequence functions described above.

2.4.5 Loading images

The STAIR Vision Library object detector pipeline is set up to accept input data from a variety of
different sources, e.g. the grayscale image of a scene and a laser scan providing depth data for every pixel

36

of the image. The svlImageLoader class encapsulates most of the work associated with loading images in
such a variety of formats. It supports a variety of channels of input, the most common ones being

• INTENSITY corresponding to a grayscale image

• EDGE corresponding to first loading a grayscale image and then computing its gradient edge map.1

• DEPTH corresponding to loading a text file with depth values for every pixel

The user specifies how to load the channels from an image directory by specifying the appropriate
extensions, e.g. the grayscale images might be contained in .jpg files while depth map readings might come
from .depth.txt files. The base name of the file is used to match the images, so image001.jpg is assumed
to correspond to image001.txt. Further, the svlExtensionTree class appropriately handles the case where
extensions are substrings of each other, e.g. .jpg and .processed.jpg.

The list of channels is set through the configuration manager discussed in Section 2.1.5 using either of
the following two options (the former can also be used from the command line, using -config):

<s v l>
<s v lV i s i on . svlImageLoader channe l s=”INTENSITY . jpg DEPTH . depth . txt ” />

</ s v l>

<s v l>
<s v lV i s i on . svlImageLoader>

<channel type=”INTENSITY” ext=” . jpg ” />
<channel type=”DEPTH” ext=” . depth . txt ” />

</ sv lV i s i on . svlImageLoader>
</ s v l>

One other useful feature is when the useMask attribute of svlImageLoader is set (optionally with the
maskExtension specified), a binary mask corresponding to each image is loaded, using the same extension
swapping scheme as for other channels, and certain applications use it to treat a subset of pixels within the
image as unobserved.

Finally, the svlImageLoader class provides a variety of access functions, including

readDir

Uses the channel definitions to load all of the appropriate file paths for a directory.

readImageSeq

Loads in the imageSequence, strips off the extension from every filename and uses the appropriate channel
extensions instead.

readCommandLine

Reads in the list of file names, each one corresponding to either an image sequence (.xml extension) or an
image file; then reads the image sequences and stores all image names together for later access.

getAllFrames

Gets all of the multi-channel patches referred to by the file paths already loaded internally from a call to
one of the read functions.

getFrame

Gets a single specific frame; meant to be called only after calling read.

1Currently, a variety of other color spaces can be used for computing the gradient edge map. The channels in this case
would be specified as EDGE <color type>, e.g. EDGE HSV. Please refer to the textToColorType() and textToColorType() in
svlImageLoader.cpp for a complete list of channels supported for loading.

37

getSimpleImageFromFilename

Takes the name of a file, swaps the extension for the specified channel’s extension, and loads the single image
corresponding to this channel, resizing appropriately but without any color conversion or edge computation
post-processing.

Example

These functions often return a vector<IplImage*> per base file name, where each IplImage corresponds to
a different channel, loaded from the file name with the appropriate extension. The current object detection
pipeline expects this as an input, and extract features from all the available channels (cf. Section 2.4.8).
The following is an example of how the svlImageLoader can be used to load images.

int main (int argc , char ∗argv [])
{

// ge t the image sequence f i l ename
const char ∗ imageSeqFileame = . . .

svlImageLoader l oade r ;
l oade r . readImageSeq (imageSeqFilename) ;

for (int i = 0 ; i < l oade r . numFrames () ; i++) {
vector<IplImage ∗> image ;
bool su c c e s s = getFrame (i , image) ;

// check success , process mult i−channel image
. . .

}

return 0 ;
}

svlSoftEdgeMap

It is often useful to work with not only the intensity image but also to specifically focus on the edges in that
image. The svlSoftEdgeMap can computes the gradient magnitude image from an intensity image using
the Sobel operator for the directional derivatives. svlSoftEdgeMap can work with both grayscale and color
images, and it is used by the svlImageLoader to create an edge map when the EDGE channel is specified.

2.4.6 Building a training dataset

The svlTrainingDatasetBuilder, svlImageWindowExtractor and svlClipWriter classes are responsible
for building a training dataset of image patches that can be used for object classification. The user provides
an svlImageSequence of scenes and an svlObject2dSequence of corresponding groundtruth labellings to the
writeDataset() function of svlTrainingDatasetBuilder. A variety of options can be set through the com-
mand line, cf. Appendix B. Note that the object names can be set either as an attribute objects as described
in the Appendix, or individually, each an element object of svlVision.svlTrainingDatasetBuilder with
attribute name.

The positive examples are extracted from groundtruth labellings in one of three ways. For each groundtruth
bounding box, one can

• Take the patch contained in that bounding box

• Among all windows that would be considered by the sliding window detector (cf. Section 2.4.9), take
the window with the greatest overlap with this bounding box

• Take all sliding windows with significant (≥ 50%) overlap with this bounding box.

38

For negative examples, only patches that have ≤ 50% overlap with a positive groundtruth bounding box
are considered, and the following extraction schemes are possible:

• False positive detections extracted from a provided svlObject2dSequence file

• Random image patches from the provided scenes

• All windows that would’ve been considered by the sliding window detector

• Objects from the groundtruth file that are not specified as positive, e.g. to build a dataset for mug
classification, one can choose to explicitly include all other labeled objects in the negative set

Note that the current implementation ignores the EDGE channel, since EDGE maps can be computed on
the fly later from intensity images. Also, patches that are close to uniform in the INTENSITY channel are
ignored; no such checks are performed in any other channel.

The extracted patches are either written as individual image files into corresponding folders, one per each
positive object and one for all negative examples, or simply listed in an XML file.

2.4.7 Interest point detection

The STAIR Vision Library provides a standardized interface for detecting interest points in images. This
should make it easy to vary means of detecting interest points without modifying the surrounding code.

svlInterestPointDetector

The svlInterestPointDetector class is an abstract superclass that defines the interest point detection
interface. If you want your interest point detection code to be polymorphic, you should implement it using
pointers of this type.

svlHarrisCornerDetector

Currently, the only form of interest point detection actually implemented is Harris corner detection. This is
just a wrapper around OpenCV’s Harris corner detection.

2.4.8 Feature extraction

The first step in most computer vision algorithms is extracting informative features from the image. The
STAIR Vision Library provides a general framework for feature extraction, and implements a few useful
feature extraction methods.

General framework

The svlFeatureExtractor class defines the general framework for feature extraction. By defining different
subclasses of this abstract superclass, it is possible to define different types of features to extract.

Extracting features. Each feature extractor class produces a vector of feature values at a given window
location. Different extraction methods allow windows to be processed individually or in batch mode (set the
“sparse” argument to the extract() method to true in order to process windows individually), allowing
the extractor to take advantage of optimization strategies such as sharing one integral image of the whole
frame between all windows.

Input. Every feature extractor must be capable of receiving several channels of data as input, though
typically each feature extractor will only work on a small number of channels. Currently, images are the
only kind of data supported by the STAIR Vision Library, but it is possible to write your own feature
extractor subclass that supports arbitrary types of data channels by subclassing the svlDataFrame class.
The feature extractors work on a vector of pointers to svlDataFrame objects. All current implementations
convert these to svlImageFrame, which is a wrapper around IplImage.

For an example of a complicated setup, one might use a channel of visible light images, a channel of
edge images computed from the visible light images, a channel of “motion images” made by differencing

39

consecutive frames of visible light video, and a channel of depth maps created by projecting the output of
a range scanner into the image plane of the visible light camera. A patch dictionary might operate on the
visible light, edge, and depth channels, while a Haar feature extractor might operate on the motion channel.
See 2.4.5 for more information on loading multiple channels of data.

Factory. The svlFeatureExtractorFactory() function allows construction of feature extractors in
cases where the type is not known until runtime. See 2.1.13 for a code example. The svlCompositeFeatureExtractor,
derived off of svlFeatureExtractor allows multiple feature extractors to be combined into a single com-
posite detector feature extractor.

Haar features

One of the feature extractor types currently implemented are Haar features [14] in svlHaarFeatureExtractor.
Haar features are simple features based on the difference of the sum of intensity values of pixels that fall

into different rectangles. Figure 2.2 shows the feature templates specifying the locations of the rectangles for
the Haar features implemented in the STAIR Vision Library. To extract a Haar feature from an image
patch, imagine placing the template over that image patch and subtracting the sum of the values of all pixels
that lie in a black rectangle from the sum of the values of all pixels that lie in a white pixel. The feature
value is also normalized by dividing by the total intensity of the image patch.

Figure 2.3 demonstrates how a Haar feature can be computed efficiently given an integral image. Pre-
computing the integral image once and using it to compute several Haar features can avoid unnecessarily
re-computing several summations.

Figure 2.2: Some Haar feature templates.

Figure 2.3: Given an integral image I, this Haar feature may be computed as (I(E)− I(B)− I(D) + I(A)− (I(F)− I(E)−
I(C) + I(B)))/(I(W, H) − I(W, 0) − I(0, H) − I(0, 0)), where (0, 0) is the upper-left corner of this figure.

Fragment-based features

Another type of feature extraction, used for object detection by Torralba et al. [17], is implemented in
svlPatchDictionary.h and svlPatchDefinition.h. Briefly, a dictionary is built by extracting a set of

40

random patches from the training examples, and recording the location within the image that each patch
originated from. For each patch and for each training examples, the corresponding feature value is then
computed by finding the maximum normalized cross-correlation between the patch and the training image
within a small window around the original location of the patch.

Training examples The svlPatchDictionary class (which is a subclass of svlFeatureExtractor

relies on svlPatchDefinition to extract the features from sample images. Training examples for ob-
ject classification correspond to cropped images of the object of interest. Each training example is rep-
resented by a vector<IplImage*>, as described in section 2.4.5, with one IplImage per input chan-
nel type (e.g. intensity image, edge map, depth map, etc.) The images are all assumed to be of size
svlPathDictionary:: windowSize. For simplicity of notation for the rest of this discussion, let’s assume
the training images are all 32 × 40 pixels in size.

Building the dictionary. The buildDictionary() function in svlPatchDictionary takes a vector

of training examples. To build the patch dictionary, first for each training example, each input channel is
normalized by either its mean or median value. Currently, the median value is used only for depth images
which often contain outliers, e.g. reading at maximum range of the sensor. The mean is used for everything
else. Then patches of random size, varying from 4 pixels to half the window size in each dimension, are
extracted from random locations in each of the image channels. These patches from all of the training
examples are used to create a dictionary of features.

Feature storage. The svlPatchDefinition class is used to store the features using an
IplImage fragment template, a CvRect valid response region within the 32 × 40 image, and
a valid channel specifying which type of input image (e.g. intensity image, edge map, depth
map, etc.) this fragment was extracted from. The valid response region is currently defined to
be a 7 × 7 pixel region around the source location (within the bounds of the 32 × 40 training
image). The svlIntensityPatchDefinition and svlDepthPatchDefinition are the currently
implemented feature subclasses, although they are mostly there just for historical reasons and
currently implement only slightly different I/O.

Feature computation. Feature computation is implemented in the patchValueHelper()

function of the svlPatchDefinition class. For a particular feature with template T , given a
32 × 40 image window W (normalized to have the mean or median of 0, as discussed below), we
compute the feature value using normalized cross-correlation:

F (x, y) =

∑

x′,y′ [T (x′, y′) ×W (x+ x′, y + y′)]
√

∑

x′,y′ T (x′, y′)2 × ∑

x′,y′ W (x+ x′, y + y′)2
(2.12)

where x′, y′ range over the size of the template T. There are various optimizations employed to
make this computation more efficient, described in detail below. The feature value is

f = max
(x,y)∈validRegion

F (x, y)

Feature utilities. Besides the feature extraction code, the svlPatchDefinition class con-
tains a variety of useful I/O methods as well as a isCorrelatedWith() function which can later
be used to filter the patch dictionary and remove unwanted features. It returns true only if two
patches are (1) extracted from the same type of image (e.g. intensity, depth, etc.), (2) overlap
significantly in the regions they are considering within the 32×40 window, and (3) their templates
are strongly correlated with each other. If all 3 conditions are satisfied, these two features would
give very similar responses and there is no reason to keep both of them around in the dictionary.
The filterPatchDictionary application described in Section 3.5.1 relies on this function.

Feature computation pipeline. The extract() function of svlPatchDictionary performs the fea-
ture computation steps. As described above for the general svlFeatureExtractor class, the input consists
of an image I with one or more windows of interest within it. First, for each 32 × 40 window of interest,

41

a normalization constant is computed for each channel of input, using the median for depth images and
the mean for everything else. This computation is parallelized for efficiency. Then the calcFV() function
is called in parallel on each entry in the dictionary. It computes the corresponding feature value for each
window of interest. The calcFV() function is mainly used to manage the various optimization options and
make the appropriate function calls in svlPatchDefinition.

Optimizations. If the windows of interest are “sparse”, as is for example the case during training,
when the image I is not of an entire scene but of just one object of size 32× 40 and the only location of
interest is the 32 × 40 window at (0, 0), the patchValues() function of svlPatchDefinition is used to
compute the feature value at each window independently without any pre-computation. However, if the
windows of interest are densely packed within the supplied image I, as is the case when sliding window
object detection is performed (cf. Section 2.4.9), two optimizations described below are employed. The
feature value within each window is then computed with patchValue() of svlPatchDefinition, using
the precomputed response and integral images:

1. Within the calcFV() function, the responseImage() function of svlPatchDefinition is first called
to obtain the cross-correlation between the feature template T and the entire image I, i.e.

R(x, y) =
X

x′,y′

T (x′

, y
′) × I(x + x

′

, y + y
′)

Recall equation 2.12 and observe that the normalized window W is simply a part of the big image
I after subtracting the normalization constant cW . Thus

X

x′,y′

T (x′

, y
′) × W (x + x

′

, y + y
′) =

X

x′,y′

T (x′

, y
′) × (I(x̃ + x

′

, ỹ + y
′) − cW)

=

0

@

X

x′,y′

T (x′

, y
′) × I(x̃ + x

′

, ỹ + y
′)

1

A − cW

X

x′,y′

T (x′

, y
′)

= R(x̃, ỹ) + cW × templateSum

Since templateSum is precomputed for each feature and doesn’t depend on the current window
being analyzed, the numerator of equation 2.12 is significantly simplified.

2. At the beginning of the extract() function, even before the calcFV() function is called on each
dictionary entry, for each input image I, the integral images are computed for each channel:

imageSum(x, y) =
X

x′<x

X

y′<y

I(x′

, y
′)

imageSumSq(x, y) =
X

x′<x

X

y′<y

I(x′

, y
′)2

The is useful for two reasons. First, for channels where the normalization constant cW for each
window W is computed using the mean and not the median, the computation becomes trivial.
Letting (x1, y1) and (x2, y2) be the coordinates of the upper left and lower right corners of W

respectively, it is easy to see that

cW =
imageSum(x2, y2) − imageSum(x1, y2) − imageSum(x2, y1) + imageSum(x1, y1)

(x2 − x1 + 1)(y2 − y1 + 1)

Second, once cW is computed, in the feature computation step of equation 2.12, we have
X

x′,y′

W (x + x
′

, y + y
′)2 =

X

x′,y′

(I(x̃ + x
′

, ỹ + y
′) − cW)2

=
X

x′,y′

I(x̃ + x
′

, ỹ + y
′)2 − 2cW

X

x′,y′

I(x̃ + x
′

, ỹ + y
′) + c

2

W

= sumSq − 2cW × sum + c
2

W

where sumSq and sum can be computed as above using 4 values each from imageSumSq and
imageSum respectively.

42

2.4.9 Sliding window object detection

A common way to detect objects begins by building a binary classifier that takes as an input a small (say
32 × 40) rectangular image patch, and classifiers that image patch as either containing an object of interest
or not. Given a full-size image, most object detection algorithms then rely on the sliding window technique,
where this classifier is used to analyze every 32 × 40 sub-image of this larger image.

The svlSlidingWindowDetector encompasses this functionality by using an svlFeatureExtractor (cf.
Section 2.4.8) and a trained svlBinaryClassifier (cf. Section 2.3.1) to analyze every patch of an image.
Appendix B describes a variety of options. The svlSlidingWindowDiscarder class is used to quickly
filter out “uninteresting” image patches that should not even be considered by the classifier. The current
implementation simply discards patches that are close to uniform in the first channel (assumed to be the
intensity channel).

2.4.10 Detection evaluation

Once objects in a set of scenes have been detected and the corresponding svlObject2dSequence created,
the svlObjectDetectionAnalyzer class can be used to compare these detections with the groundtruth
bounding boxes. The svlObjectDetectionAnalyzer class works with just a single object name, while
the svlMultObjectsDetectionAnalyzer keeps track of multiple objects separately, and is able to perform
analysis on each object individually. The class interfaces are fairly straight-forward, and they wrap around the
svlPRcurve and svlClassifierResponseList described in section 2.3.7. See Appendix B for configuration
options.

2.4.11 Camera Models

The svlCameraIntrinics and svlCameraExtrinsics encapsulate standard camera models (including lens
distortion) and help transform points between camera and world coordinate systems. Briefly, a point in the
world coordinate system (x, y, z) projects into the (undistorted) camera plane via:

u
v
w

 = K
[

R t
]

x
y
z
1

(2.13)

where K ∈ R
3×3 is the camera calibration matrix, R is the rotation of the camera coordinate system from

the world coordinate system and t ∈ R
3 is the offset of the camera center (in world coordinates).

The svlImageProjector class encapsulates back projecting 3D points into an image plane. It is used by
the mrfDepthSmooth application.

2.4.12 3d

• Points in 2D and 3D are encapsulated by the svlPoint2d and svlPoint3d data types. These may
be deprecated in the future in favor of the Eigen::Vector2d and Eigen::Vector3d data types. The
class svlPointCouldData holds a 3D point cloud (including point locations in 3D, surface normals, and
point colors). This is the data structure used by the PointCloudViewer application (see Section 3.1.1).

• The svlSpinImage class can compute so-called spin-image features [10] from point cloud data. Refer
to the svlSpinImage.h file for details.

• It is often convenient to project data from different sensors into a single image plane. Furthermore,
since different sensors have different capabilities, it is desirable to obtain data at the highest possible
resolution. The svlSuperResolution class implements a super-resolution MRF [2] for exactly this
purpose. The mrfDepthSmooth application uses this class to smooth depth data projected from a
point cloud into an image plane.

43

2.4.13 Segmentation

The SVL has a number of classes which support computer vision algorithms that work over segmented images
(such as multi-class image segmentation). The svlSegImage class (derived from svlSegImageBase) holds
an image and its over segmentation (superpixel description). The segmentation should be numbered from 0
to K − 1. The class also contains groundtruth labels (evidence) for training and evaluation. Groundtruth
labels can be negative, indicating void (i.e., ignore during training and evaluation). The svlSegImageBase

class is also used by svlDepthSegImage for an over segmented image with depth (3D) information (or
any real-valued map over the image pixels). Images are assumed to be 8-bit colour (3-channel). Matrices
(segmentation and labels) are assumed to be 32-bit signed (integers).

Unlike svlSegImage, which holds an image and its single over-segmentation, the svlMultiSeg class holds
multiple segmentations for the same image. Each segmentation is represented by the svlImageSegmentation
class.

Features over segments can be computed using the svlRegionFeatures class. This class computes color,
texture, geometric and location features over each region in an image. The feature vectors (for each region)
include mean, standard deviation, skewness and kurtosis of features responses over the region. Options are
controlled via the standard svlOptions interface and include boolean options “noColor”, “noIntensity”,
“noTexture”, “noGeometry”, “noLocation” (all false by default), “includeStdev”, “includeSkewness”, and
“includeKurtosis” (all true by default).

The svlTextonFilterBank class operators on pixels rather than regions, but is useful for producing
features that can be used for multi-class image segmentation problems. The class produces a 17-dimensional
feature vector for each pixel based on the filter bank defined in [19].

2.4.14 svlConvolution

The svlConvolution class defines an interface for convolving an image with a large non-separable kernel
function (for separable kernels, using OpenCV’s cvFilter() function). Concrete instantiations for Gabor
filters (svlGaborConvolution) and Laplacian-of-Gaussian filters (svlLoGConvolution) are also provided.

Gabor filters are defined by

Gr(x, y) = exp

(

−X
2 + γ2Y 2

2σ2

)

cos

(

2π

λ
X

)

(2.14)

Gi(x, y) = exp

(

−X
2 + γ2Y 2

2σ2

)

cos

(

2π

λ
Y

)

(2.15)

where X = x cos(θ) + y sin(θ) and Y = −x sin(θ) + y cos(θ) with orientation θ (in radians), aspect ratio γ,
effective width σ and spatial frequency λ.

Laplacian-of-Gaussian filters are defined by

LoG(x, y) =
1

πσ4
(r2 − 1) exp(−r2) (2.16)

where r2 = x2+y2

2σ2 .
Filtering is performed by calling the filter() function. The caller must provide CV32F destination image

the same size as the source image. If the source image is not single channel, 32-bit it will be converted (wasting
some time). The image is being temporarily downsized to ensure height % 8 == 0 in order to be able to use
the OpenCV cvFilter2D() function; if argument padWithZeros is true, the image is instead temporarily
increased in size and padded with zeros. This changes the expected edge effects on the right/bottom parts
of the image, but is necessary for very small images (i.e., height less than 8 pixels).

2.5 svlCuda

The svlCuda library contains GPU-optimized code using the NVIDIA Cuda library. The library provides an
interface to GPU (hereafter “device”) memory, provides functions for performing mathematical operations

44

on the device, and contains applications which use Cuda behind the scenes without exposing device-side
memory to the user.

The major classes of the library and their functions are listed below:

Class Description

svlCudaMemHandler Manages device-side memory allocation, deallocation, trans-
fer, and some esoteric brands of access.

svlCudaMath Provides general mathematical functions, including addi-
tion, multiplication, min/max, and block-wise integration.

svlCudaConvolution Provides template matching functions.
svlCudaFilter Provides image filtering functions.
svlCudaDTree Provides a depth-3 decision tree for device-side evaluation.
svlCudaSlidingWindowDetector A Cuda of svlSlidingWindowDetector.

2.5.1 Data structures and allocation

The library provides device-side memory in three variants, defined in svlCudaCommon.h:

Type Description

svlCudaLine One-dimensional memory defined by a width.
svlCudaPitch Two-dimensional, padded memory defined by a width, height, and

pitch (the byte distance between successive rows on the device, hence
the name).

svlCudaPitch3d Three-dimensional, padded memory defined by a width, height, pitch,
and depth.

The svlCudaMemHandler class provides members for allocating and freeing all of these forms, and trans-
ferring data back and forth to the GPU. The allocation and deallocation functions are:

c l a s s svlCudaMemHandler {
. . .
stat ic svlCudaLine ∗ a l l o cL i n e (int w, const char ∗name = NULL) ;
stat ic svlCudaLine ∗ a l l o cP i t c h (int w, int h , const char ∗name = NULL) ;
stat ic svlCudaLine ∗ a l l o cP i t ch3d (int w, int h , int z , const char ∗name = NULL) ;
stat ic void f r e eL i n e (svlCudaLine ∗ &ln) ;
stat ic void f r e eP i t ch (svlCudaPitch3d∗ &p) ;
stat ic void f r e eP i t ch3d (svlCudaPitch3d∗ &p) ;
. . .

}

As seen above, all device memory can optionally be given a name. This is for debugging device-side
memory leaks. As the svlCudaMemHandler must be invoked to allocate and free all memory, it can optionally
be told to track those allocations, enabling it to print out all active allocations on demand. If any data
structure has been allocated with a name, that name will be displayed with it when it appears in this list.
An example use is given below:

svlCudaMemHandler ∗cm;
svlCudaPitch ∗untracked = cm−>a l l o cP i t c h (640 , 480) ;

svlCudaMemHandler : : s e tTrack ing (t rue) ; // Enables t r a ck ing o f a l l o c a t i o n s .

svlCudaPitch ∗ tracked unnamed = cm−>a l l o cP i t c h (640 , 480) ;
svlCudaPitch ∗ tracked named = cm−>a l l o cP i t c h (640 , 480 , ‘ ‘ named p i t ch ”) ;

svlCudaMemHandler : : p r i n tA l lA l l o c a t i o n s () ;

45

This produces the output:

All device allocations:

pitch @ 21a0000: 1,228,800 bytes

pitch @ 22d0000: 1,228,800 bytes "named pitch"

Total device allocation: 2 structures for 2,457,600 bytes

The first pitch is untracked; the second is tracked but has no display name in the allocations list; and the
final is tracked and named.

Tracking of course introduces overhead, so it should not be used when benchmarking code. Also, in the
above example, if the pitch untracked is freed while tracking is still enabled, an error will be reported as the
tracker did not have this pitch in its register. Tracking should be turned off before any untracked memory
is to be freed.

2.5.2 Memory transfer

Memory is transferred to and from the GPU via svlCudaMemHandler functions of the name
{line,pitch,pitch3d}{To,From}GPU. All pointers are treated as float* and so address four-byte data.
Transferring int and uchar data to the GPU requires pointer casts to float*s, but this type punning does
not affect the data transferred.

The transfer functions accept optional size parameters that will select a sub portion of the memory to
transfer. For example, if a line and a pitch have been allocated with space for 1000 floats and 640x480 floats,
respectively, then the calls:

// Transfer memory from src po in t e r to dev i ce .
svlCudaMemHandler : : lineToGPU(l i n e , src , 4 08) ; // width o f t r an s f e r
svlCudaMemHandler : : pitchToGPU(pitch , src , 320 , 240) ; // width and he i gh t o f t r an s f e r
// Transfer memory from dev i ce to de s t po in t e r .
svlCudaMemHandler : : lineFromGPU(dest , l i n e , 408) ;
svlCudaMemHandler : : pitchFromGPU(dest , p itch , 320 , 240) ;

will only transfer the first 408 bytes of the line, and only the upper quadrant of the pitch (2D memory is
stored in row-major order).

Regardless of how memory is sub-selected on the device, the result is always copied out linearly into the
destination pointer (and also from the source pointer). Thus, in the above example, the dest pointer would
need 320x240x4 bytes to store the memory returned from the pitchFromGPU call.

The functions Ipl{To,From}GPU are also provided to transfer IplImage structures to and from pitches.

2.5.3 Line integrals

svlCudaMath contains functions for computing cumulative sums of lines (also known as the “scan” algorithm).
In these functions, integration is not performed over the total size of the data structure but over a block
size, which is tiled over a desired range of the data structure. This block size must be a power of 2, and is
identified as the argument dim in all integration functions. The function has a maximum dim value of 1024,
dictated by the maximum number of threads (512 on most GPUs, and dim can be at most two times this
number).

The function to piece-wise integrate a line is:

void i n t e g r a l L i n e (const svlCudaLine ∗n , svlCudaLine ∗ integ , int w = −1,
int dim = 128 , bool do cumsum = f a l s e , int s t r i d e = −1);

The width argument w determines how many spaces to integrate over. If it is unspecified, the integration
operation is applied over the entire width of n. The function of the additional arguments is described below.

With its default arguments, a pixel of integ will be computed as:

46

integ[i] =

i−1
∑

j=⌊i/dim⌋

n[i]

I.e., each cumulative sum only proceeds back to the beginning of the current, dim-sized block.
Turning on do cumsum makes the function perform like Matlab’s cumsum operation, which will sum up

one more value in each pixel:

integ[i] =
i

∑

j=⌊i/dim⌋

n[i]

The argument stride specifies the distance between blocks that will be integrated. If, for example,
dim = 128 and stride = 200, then the values from 0..128 will be integrated, those from 128..200 left
unchanged, those from 200..328 integrated, and so on. Concretely,

integ[i] =

{

∑⌊i/stride⌋+dim−1
j=⌊i/stride⌋ n[i], if i < ⌊i/stride⌋ + dim

integ[i], o.w., retains value

Setting stride to be less than dim results in undefined behavior since each dim-sized integration is
computed by a separate block of threads, which, according to the Cuda manual, can be executed in any
order.

2.5.4 Integral images

The integral images function performs block-wise operations in both the row and column dimensions. The
block-wise constraint here actually helps militate against precision errors as integrating an entire image can
introduce significant numerical errors in the GPU’s native single-precision floating point.

The block integration function is given below:

void i n t e g r a lB l o ck (svlCudaPitch ∗pin , svlCudaPitch ∗ integ , svlCudaPitch ∗ tempint ,
svlCudaPitch ∗ i n t eg2 = NULL, svlCudaPitch ∗ tempint2 = NULL,
int img w = −1, int img h = −1, int dim = 128) ;

Only the integral image is required to be computed, with the computation of the integral-squared image
being optional. A temporary pitch is required to perform each operation as the integration is implemented
as a two-step (row-wise then column-wise) procedure. When computing both integral and integral-squared
images, a temporary pitch is required for both (a single temporary pitch cannot simply be re-used) because
the inner operations of both the integral and integral-squared procedures are conflated so as to reduce the
memory transfer of reading in the input pitch.

While the intuition behind block-wise integration is simple, the precise formula for its output is complex.
Traditionally integral images are one row and one column larger than their input images as the formula for
a pixel is integ(r, c) =

∑r−1
i=0

∑c−1
j=0 img(i, j). This we wanted to preserve with the Cuda version, but under

block-wise integration this becomes confusing: if the block size is 32, each sub-block requires a 33-by-33
output. But, with the above formula, the first row and column of the integral image will contain all zeros;
so likewise will the first row and column of each sub-block integration. Thus, in the block-wise integral
images, each sub-block writes its last, “dim+1”st row and column over the first row and column of the next
sub-block, which would have been zero otherwise. The formula for the block integral images is then:

integ(r, c) =

0, if r = 0 ∨ c = 0
∑r−1

i=⌊r/dim⌋

∑c−1
j=⌊c/dim⌋ img(i, j), if mod(r, dim) 6= 0 ∧mod(c, dim) 6= 0

∑r−1
i=⌊r/dim⌋−dim

∑c−1
j=⌊c/dim⌋ img(i, j), if mod(r, dim) = 0 ∧mod(c, dim) 6= 0

∑r−1
i=⌊r/dim⌋

∑c−1
j=⌊c/dim⌋−dim img(i, j), if mod(r, dim) 6= 0 ∧mod(c, dim) = 0

∑r−1
i=⌊r/dim⌋−dim

∑c−1
j=⌊c/dim⌋−dim img(i, j), if mod(r, dim) = 0 ∧mod(c, dim) = 0

47

When computing an integral image, one must first set the output pitches to 0 using the
svlCudaMemHandler::pitchSet(·, 0) command. This is because none of the sub-blocks of the integration
write their first rows and columns, which contain all zeros. Thus, if the first row and column of the integral
image are not set to zero beforehand, they will contain uninitialized values even after block integration.

2.5.5 Convolution functions

Convolution functions are provided in the svlCudaConvolution class. Despite their name, these functions
actually perform template matching rather than convolution, and so do not flip the kernel before computation.

The main convolution function is conv2d, which takes as input a pitch or a 3d pitch, and a template in
the form of a float* with a width and a height and stored in row-major order, or an IplImage*:

void conv2d (svlCudaPitch ∗p in , const f loat ∗patch , int pw, int ph ,
svlCudaPitch ∗p out , unsigned int opt ions = SVL CONV SAME,
int img w = −1, int img h = −1);

void conv2d (svlCudaPitch ∗p in , const IplImage ∗patch ,
svlCudaPitch ∗p out , unsigned int opt ions = SVL CONV SAME,
int img w = −1, int img h = −1);

This performs the Matlab-style filter2 operation, or the OpenCV cvMatchTemplate with the CV TM CCORR

argument. Concretely:

p out(r, c) =

patch h−1
∑

i=0

patch w−1
∑

j=0

p in(r + i, c+ j) · patch(i, j)

The function supports images of any size but only templates of size less than or equal to 16 in both
dimensions.

By default, the function performs Matlab ‘same’–style convolution, and so expects a return pitch pout
at least the same size as the input pitch, p in. If the option argument SVL CONV FULL is used instead,
however, it will return the Matlab ‘full’–style convolution result, and so will require an output pitch at least
of size (img w + patch w − 1, img h+ patch h− 1).

Another convolution function provided is:

void ccoeffNormed (svlCudaPitch ∗p in , const f loat ∗patch , int pw, int ph ,
svlCudaPitch ∗p out , int img w = −1, int img h = −1);

void ccoeffNormed (svlCudaPitch ∗p in , const IplImage ∗patch ,
svlCudaPitch ∗p out , int img w = −1, int img h = −1);

This computes the normalized correlation coefficient in the manner of OpenCV’s cvMatchTemplate with the
CV TM CCOEFF NORMED option, hence its name. Exactly,

p out(r, c) =

∑h−1,w−1
i=0,j=0 p in′(r + i, c+ j) · patch′(i, j)

√

(
∑h−1,w−1

i=0,j=0 p in′(r + i, c+ j)2
)(

∑h−1,w−1
i=0,j=0 patch′(i, j)2

)

where

patch′(r, c) = patch(r, c) − 1

w · h

h−1,w−1
∑

i=0,j=0

patch(i, j)

p in′(r + i, c+ j) = p in(r + i, c+ j) − 1

w · h

h−1,w−1
∑

i′=0,j′=0

p in(r + i′, c+ j′)

These convolution functions pad the patch before transferring it to the GPU, which incurs host-to-device
memory transfer overhead with each call. If one has a large number of templates, however, these can be
pre-padded and transferred to the GPU using the svlFinalPatchDictionary class in the svlCuda library.

48

Then there are versions of the convolution functions that can be called with CachedPatchs, negating memory
transfer overhead.

2.5.6 Sliding window detector

The Cuda sliding window detector ports all of the functionality of the svlSlidingWindowDetector in
svlVision. Instructions on how to instantiate it versus the regular sliding window detector are given
in the cudaVerify application.

2.5.7 Verification function

Because of the great intricacy of writing GPU code, a cudaVerify application is provided in the svl/apps/cuda
directory. This subjects a great number of the library functions to random numerical tests to ensure their
correctness. If interested in using the Cuda portion of the library, one should first compile and run this
function to ensure that all the verified functions are working properly.

Ideally all library functions should be tested in the verification application, but, as the library is still under
development, only a fraction of them are. All of the functions listed above, however, have been verified. Also,
each header file has its verified functions listed first and marked clearly, with older and un-verified functions
listed later. Just because a function has not been verified does not mean it contains bugs. All functions were
tested before being placed in the library, but the specific manner of testing in the cudaVerify application
was a late addition, and all of the old tests have not yet been ported over to this new method.

49

50

Chapter 3

SVL Applications and Scripts

3.1 GUI Applications

3.1.1 Point Cloud Viewer

The pointCloudViewer application allows you to visualize 3D point clouds. You can navigate around the
point cloud using the arrow keys (for moving in the xz-plane) and keys a and z (for up and down). You
can also zoom in and out and rotate by dragging the mouse (holding down the left and right buttons,
respectively). Points can be viewed in their true color (back-projection), or colored by depth, height, or
user-assigned weight. You can also load a triangulated mesh to view textured 3D surfaces over the point
cloud.

The default format for a point cloud (for File|Open...) is a 10-element (whitespace delimited) vector
per point (x, y, z, nx, ny, nz, r, g, b, w) where where (x, y, z) is the location of the point in space, (nx, nynz) is
the (surface) normal associated with the point, (r, g, b) is the color of the point (normalized between 0 and
1), and w is a weight associated with the point. Unused fields can be set to zero. In addition (x, y, z) points
can be imported using File|Import.... Here 3-element vectors will be read (you can change the data width
in the Options menu). When you import points, the points are added to the existing point cloud. Use the
Options menu to change the color of the imported points.

Tip: If you get lost while exploring your point cloud, hit the x key to take you home.

The pointCloudViewer will also render textured 3D meshes given a (separate) file of triangle indices.

3.1.2 Image Sequence Labeler

The imageSequenceLabeler application allows you to label (any view) the location of objects in images.
Usually objects are labeled by placing a bounding box around the object and annotating the box with the
object’s name. The imageSequenceLabeler will produce an XML file (see Section 2.4.3) which can be read
by the various object detection applications to train and evaluate object detector models.

Tip: Holding down the Shift key when resizing an object to make the bounding box square.

Tip: Press ’-’ or ’+’ to decrease/increase the size of the active bounding box.

Tip: Press the Insert key to copy all objects from the previous image to a current empty image.

51

3.1.3 Region Labeler

Applications such as multi-class image labeling—the assignment of classes to every pixel in an image—require
ground truth data for training and evaluation. The regionLabeler tool lets you generate this ground truth
data by labeling every pixel in an image with a class label, e.g., sky, building, road. The tool is configured
by loading a set of region labels from an XML file, e.g.,

<r e g i o nDe f i n i t i o n s version=”1”>
<r eg i on id=”0” name=”background” c o l o r=”0 0 0”/>
<r eg i on id=”1” name=” foreground ” c o l o r=”255 0 0”/>

</ r e g i o nDe f i n i t i o n s>

The region labels can be loaded using the File|Region Definitions... menu option, or as a command
line argument, e.g.,

${CODEBASE}/ bin / r eg i onLabe l e r −d ${CODEBASE} s v l / s c r i p t s /msrcRegions . xml &

After loading an image, you can then use paint-like tools to color regions in the image. The figures below
show three different views (image, overlay, and segments) from the tool.

Figure 3.1: regionLabeler image, overlay and segment views.

The underlying labels are stored in text format as a matrix, the same size as the image, where each
element is an integer indicating the pixel class. A negative value indicates unknown or void.

Tip: A useful trick for labeling images is to use the paint brush to trace the outline of a contiguous
region and then holding the CTRL key, click inside the region. This will flood-fill the region with
the current class label.

Use tab to iterate through the labels, d to iterate through the drawing modes, and v to iterate through
the viewing modes. Holding down shift iterates in the other direction.

3.2 Machine Learning Applications

3.2.1 Classifiers

The machine learning applications trainClassifier and evalClassifier provide file-level interfaces to the
SVL multi-class logistic and boosted decision tree classifiers. The trainClassifier application lets you
train a from labeled training instances. The program takes as input a file containing all a set of training
feature vectors (one per row) and a file containing the corresponding target labels (integers starting from
0). The boosted decision tree classifier learns one-versus-all binary classifiers for each class. Negative target
labels (e.g., -1) are considered unknown and will not be used for training (or evaluation).

52

Novel data instances can be classified using the evalClassifier application. If ground truth labels are
available, the code can produce a confusion matrix and overall accuracy for the learned model. Negative
ground truth entries indicate unknown and are ignored during evaluation.

Example input data can be found in the tests/input directory. The following demonstrates how to
train and test a classifier by generating 5 random random partitions of the data for training, and testing on
the hold out set.

${CODEBASE}/ s v l / s c r i p t s / genera teCros sVa l idat i onFo lds . p l −f 5 \
${CODEBASE}/ t e s t s / input / i r i s . data . txt ${CODEBASE}/ t e s t s / input / i r i s . l a b e l s . txt

f o r each i (‘ seq 0 4 ‘)
${CODEBASE}/ bin / t r a i n C l a s s i f i e r −c LOGISTIC −o model . ${ i } \

i r i s . data . txt . ${ i } . t r a i n i r i s . l a b e l s . txt . ${ i } . t r a i n > /dev/ nu l l
${CODEBASE}/ bin / e v a l C l a s s i f i e r − l i r i s . l a b e l s . txt . ${ i } . test model . ${ i } \

i r i s . data . txt . ${ i } . test | grep accuracy
end

3.2.2 Precision-recall curves

The analyzePRcurve is a quick application for finding the area and the highest F-score of a precision-recall
curve stored in a file. See Section 2.3.7 for more information about working with svlPRcurves.

3.3 Matlab (mex) Applications

The STAIR Vision Library provides some Matlab applications that wrap the core machine learning and
probabilistic graphical models libraries. These applications are not compiled by default: to build them under
Linux you should add the line BUILD MEX APPS = 1 to your make.local file.

Warning: mex applications are not yet supported under Windows.

Tip: To add SVL applications to Matlab’s search path run the addSVLPaths.m script.

3.3.1 Probabilistic Graphical Model Inference

mexFactorGraphInference provides a Matlab interface for running general Graphical Model inference algo-
rithms on factor graphs. The following provides an example using the Rosetta protein design dataset [20].

% add STAIR Vision Library to Matlab path
run (’ s v l / s c r i p t s /addSVLPaths ’) ;

% load Rosetta pro t i en des ign problem d e f i n i t i o n
load (’ 1bx7 . dee . mat ’) ;

nVar iab le s = length (Ei) ;
varCards = [] ; for i = 1 : nVar iab le s ; varCards (i) = length (Ei{ i }) ; end ;
maxCard = max(varCards) ;

[i , j] = find (adjMatrix) ;
pa i rw i s eC l i que s = [i , j] ;
p a i rw i s eC l i que s = pa i rw i s eC l i que s (i < j , :) ;
nPa i rw i seCl iques = length (pa i rw i s eC l i que s) ;

% bu i l d f a c t o r s
f a c t o r s = repmat (s t r u c t (’ vars ’ , [] , ’ cards ’ , [] , ’ data ’ , []) , . . .

nVar iab le s + nPairwiseCl iques , 1) ;

for i = 1 : nVar iables ,

53

f a c t o r s (i) . vars = i − 1 ;
f a c t o r s (i) . cards = varCards (i) ;
f a c t o r s (i) . data = exp(−Ei{ i }) ;

end ;

for i = 1 : nPairwiseCl iques ,
phi = Ei j . c e l l s {Ei j . indMat (pa i rw i s eC l i que s (i , 1) , pa i rw i s eC l i que s (i , 2)) } ;
f a c t o r s (i + nVar iab le s) . vars = pa i rw i s eC l i que s (i , :) − 1 ;
f a c t o r s (i + nVar iab le s) . cards = varCards (pa i rw i s eC l i que s (i , :)) ;
f a c t o r s (i + nVar iab le s) . data = exp(−phi (:)) ;

end ;

% run in f e r ence
opt ions = s t r u c t (’ in fAlgor i thm ’ , ’ASYNCMAXPRODDIV’ , ’ maxIte rat ions ’ , 1000 , ’ verbose ’ , 1) ;
output = mexFactorGraphInference (f a c t o r s , opt ions) ;
mapAssignment = [output (1 : nVar iab le s) . va lue] + 1

3.3.2 General CRF Learning and Inference

The following code builds a templated-MRF model over binary variables with (one) singleton and (two
different) pairwise terms. There are no features in this model.

% cons t ruc t CRF model
model . weights = log ([1 . 0 0 .5 0 .9 0 .1 0 .2 0 . 8]) ;

model . templates (1) . cards = [2] ;
model . templates (1) . e n t r i e s (1) . wi = [0] ;
model . templates (1) . e n t r i e s (2) . wi = [1] ;
[model . templates (1) . e n t r i e s (1 : 2) . x i] = dea l (−1);

model . templates (2) . cards = [2 2] ;
model . templates (2) . e n t r i e s (1) . wi = [2] ;
model . templates (2) . e n t r i e s (2) . wi = [3] ;
model . templates (2) . e n t r i e s (3) . wi = [3] ;
model . templates (2) . e n t r i e s (4) . wi = [2] ;
[model . templates (2) . e n t r i e s (1 : 4) . x i] = dea l (−1);

model . templates (3) . cards = [2 2] ;
model . templates (3) . e n t r i e s (1) . wi = [4] ;
model . templates (3) . e n t r i e s (2) . wi = [5] ;
model . templates (3) . e n t r i e s (3) . wi = [5] ;
model . templates (3) . e n t r i e s (4) . wi = [4] ;
[model . templates (3) . e n t r i e s (1 : 4) . x i] = dea l (−1);

The following code builds a large grid-structured MRF instance for the above model.

% cons t ruc t CRF ins tance
nRows = 160 ;
nCols = 120 ;
nVars = nRows ∗ nCols ;

i n s t anc e . cards = 2 ∗ ones (nVars , 1) ;
i n s t anc e . va lue s = [] ;
for i = 1 : nVars ,

i n s t anc e . c l i q u e s (i) .Cm = [i − 1] ;
i n s t anc e . c l i q u e s (i) .Tm = 0 ;

end ;

k = 1 ;
for i = 1 : nRows ,

for j = 1 : nCols ,
v = nCols ∗ (i − 1) + j ;
i f (i < nRows) ,

i n s t anc e . c l i q u e s (nVars + k) .Cm = [v − 1 , v + nCols − 1] ;

54

i n s t anc e . c l i q u e s (nVars + k) .Tm = 1 + (rand (1) > 0 . 9) ;
k = k + 1 ;

end ;
i f (j < nCols) ,

i n s t anc e . c l i q u e s (nVars + k) .Cm = [v − 1 , v] ;
i n s t anc e . c l i q u e s (nVars + k) .Tm = 1 + (rand (1) > 0 . 9) ;
k = k + 1 ;

end ;
end ;

end ;

% no f e a t u r e s
[i n s t anc e . c l i q u e s (:) .Xm] = dea l ([]) ;

The following code runs inference on the above CRF instance.

% run in f e r ence
t ic ;
output = mexCRFInfer (model , in s tance , s t r u c t (’ maxIte rat ions ’ , 1 000)) ;
toc ;
output . marginal

3.3.3 Classifier Training and Evaluation

The mexTrainClassifier and mexEvalClassifier Matlab applications let you train and evaluate multi-
class logistic or boosted decision tree classifiers. The applications takes as input Matlab 2D matrix containing
all a set of training (or test) feature vectors (one per row) and a matrix containing the corresponding target
labels (integers starting from 0). The weights vector weights the data instances, and has to be of the same
length as the number of rows in data. In the example below, if we had a weights vector, it would be of length
150. Regularization of the weights can be controlled through options.lambda.

The code below demonstrates typical usage for training and evaluating classifiers. It should be run from
the base SVL directory.

run (’ s v l / s c r i p t s /addSVLPaths ’) ;

l a b e l s = dlmread(’ t e s t s / input / i r i s . l a b e l s . txt ’) ;
data = dlmread(’ t e s t s / input / i r i s . data . txt ’) ;

opt ions = s t r u c t (’ maxIte rat ions ’ , 1000 , ’ nClas se s ’ , 3 , ’ lambda ’ , 1 . 0 e−6);
parameters = mexTra inC la s s i f i e r (data , l ab e l s , [] , opt i on s) ;

output = mexEva lC la s s i f i e r (parameters , data) ;
[con f idence , p r ed i c t ed] = max(output , [] , 2) ;
p r ed i c t ed = pred i c t ed − 1 ;
accuracy = sum(p r ed i c t ed == l a b e l s) / length (l a b e l s)

3.4 Test Applications

A number of test applications (in svl/apps/test) are provided for testing different functionality of the
library. The source code for these tests is a useful resource for learning how to use the code. These
applications, in addition to some standard applications, are the basis of the regression tests in the tests

directory. The regression tests compare the output from various applications with pre-computed output. A
difference indicates a failed test.

Warning: Some of the regression tests are sensitive to numerical precision and will fail on some
systems (depending on architecture and compiler version). This known issue will be fixed in later
releases of the code.

55

To run the regression tests simply execute the command runTests.pl test.xml from the tests direc-
tory. You will need to have Perl installed to run the tests. Executing runTests.pl without command line
arguments will list some test options.

3.5 Computer Vision Applications

3.5.1 Object Detection pipeline

Object detection in the STAIR Vision Library is implemented based on the work of Torralba et al. [17],
briefly described in Section 2.4.8. The separate applications used in the pipeline are described below, followed
by scripts which combine some of them in a useful way.

buildTrainingImageDataset

Used to build the training dataset for the object classifier. Given a set of labeled scenes and the name of
the object of interest, cropped positive and negative training examples are extracted. Most of the function-
ality is encompassed in the svlTrainingDatasetBuilder class of the vision library; see Section 2.4.6 and
Appendix B for details. The -parallel flag is used for distributing jobs on the cluster.

buildPatchDictionary

Given the cropped positive images of the object of interest, often obtained from the buildTrainingImageDataset
application, builds a dictionary of features as discussed in Section 2.4.8 (building the dictionary para-
graph).

buildPatchResponseCache

Given a set of training images and the feature dictionary, computes the feature vector for each training
example as described in Section 2.4.8. The output is either a set of text files, one per input image, in
the output directory, or, if the -binary flag is set, a single binary file with all the feature vectors. The
svl/lib/vision/svlCacheOutputUtils.h contains the functions for reading and writing the feature vectors
from files that are reused by different applications.

filterPatchDictionary

Trims the patch dictionary down to a more manageable size, eliminating features that are not very informative
on the training set. The input is a patch dictionary and the feature vectors of the training examples,
precomputed as described above. There are two types of filtering currently supported:

1. The first method iterates over the features, repeatedly selecting a feature with the highest classification
F-score that hasn’t already been selected and discarding all features that correspond to patches that
are “too correlated” with it. The correlation code is implemented in the isCorrelatedWith() method
of the svlPatchDefinition class described in Section 2.4.8 (feature utilities paragraph). The cross-
correlation threshold for two patches to be considered parallel is set with the -cc flag (0.9 by default),
and the algorithm stops adding features once all the F-score fall below the -F threshold (0.75 by
default).

2. The second method uses the mutual information between the features and the class labels (i.e. positive
or negative example), as described in Section 2.3.7. It does not take into consideration the fact that
the features are patch-based; it just considers their values and attempts to choose the most informative
features that way. The algorithm was presented for object detection in [18]. This method is turned on
with the -MI flag along with a threshold for the lowest acceptable increase in mutual information for
a new feature to be added (default: 0).

56

The easiest way to control the size of the final dictionary generated is with the -minSize and -maxSize

command line arguments, which override the thresholds passed to -F and -MI.

trainObjectDetector

Trains a boosted classifier given the cached training example feature vectors. Note that if you used
filterPatchDictionary to trim down the dictionary size, you will have to re-cache the examples again using
buildPatchResponseCache with the new dictionary to get the desired speed-up. The trainObjectDetector
application can optionally perform cross-validation to determine the optimal number of boosting rounds to
use (set with the -cv or -cvn flags). For more details about boosted classifiers, refer to Section 2.3.1.

Warning: The code currently wraps the OpenCV boosting implementation which lim-
its the size of the training sets. Refer to the scripts mentioned below, namely
svl/lib/trainObjectDetector.pl and svl/lib/fullyTrainObjectDetector.pl for ways to
work around it.

trainClassifierPipeline

Encompasses the buildPatchDictionary, buildPatchResponseCache, and trainObjectDetector from
above, and is useful for running small randomized object classification trials. Given some positive and
negative training images along with the -numTrials to run and the -numPos and -numNeg examples to use
in each trial, it will repeatedly randomly select a training set of that size from the provided images, build
a dictionary of features, train a classifier, and evaluate on the remaining images. This application is not
currently optimized to filter the dictionary, and thus can be quite slow and memory-inefficient; however, it
is very useful for running multiple trials with small datasets.

Tip: This application is not recommended for use with large datasets.

classifyImages

Given a dictionary to use for feature extraction, a trained classifier, and a set of images, runs the sliding
window object detection and outputs the svlObject2dSequence of detections to a file. See Section 2.4.9 for
details about the sliding windows algorithm.

scoreDetections

Given pairs of object detection and groundtruth files, evaluates the detections against the labeled objects.
See Section 2.4.10 for details about the svlObjectDetectionAnalyzer class. The application can optionally
print out a precision-recall curve for each object of interest.

Scripts

The main pipeline is provided for convenience in the script svl/scripts/trainObjectDetector.pl. Given
positive and negative training image examples it will train a binary classifier for the object of interest using
the buildPatchDictionary, buildPatchResponseCache, and trainObjectDetector applications. It does
so in two stages to avoid memory overflow when the number of training examples is too large. First, it runs
through the pipeline and trains a boosted detector with just a subset of the training examples but with a full
dictionary. Then it trims the dictionary using the svl/scripts/trimDictionary.pl script to only consider
the features that were chosen by the boosting algorithm, and re-runs the pipeline with the full dataset.

The svl/scripts/fullyTrainObjectDetector.pl provides even more functionality, including building
the training dataset with buildTrainingImageDataset, multiple ways of filtering the dictionary includ-
ing filterPatchDictionary, evaluating the object detector on both the training and test images with
classifyImages and scoreDetections, and retraining the classifier with false positive detections.

57

3.5.2 Object Detection utilities

combineDetections

Combines detection results from different object classifiers. The application is currently not fully general; it
is recommended you look at the source code before using.

combineDictionaries

Combines multiple patch dictionaries into one. Each input dictionary must specify a single channel from
which its features were extracted.

computeDetectionStatistics

Given a file of object detections and a corresponding image sequence, outputs for each type of object the
number of detections, the average ratio, the minimum size of a detection, etc. It is useful for quickly getting
the feel for a new labeled dataset or to sanity-check the output of classifyImages.

dir2imageSeq

Takes an image directory and converts all the images to an svlImageSequence object, which is then written
to a file. Most object detection applications expect an image sequence as input.

extractorCat

Concatenates feature extractor definitions. For example, given a patch dictionary file and a file describing a
set of HAAR features, extractorCat makes a new file that describes an svlCompositeFeatureExtractor that
extracts both the patch response features and the HAAR features.

summarizeExtractor

Prints the contents of a feature extractor definition. For example,

[[11360 intensity patches, 4968 depth patches][1 Haar features]]

One use of this application is to determine which features were selected by boosting, by comparing the
output of summarizeExtractor before and after running trimFeatureExtractor. This can also be useful
for debugging. For instance, if buildPatchDictionary rejects several of one kind of patch, then that channel
of your data might not be formatted correctly.

removeUnusedFrames

Removed unused frames from a groundtruth file based on the image sequence file. This is useful if a
groundtruth file contains object labels for a very large dataset, but only a small subset of images is currently
being considered. Careful, the groundtruth file is modified in place.

trimFeatureExtractor

Removes unused features from a feature extractor description file. This is analogous to trimDictionary.pl

but works on all types of feature extractors, not just the patch dictionary. This application requires the
latest svn copy of OpenCV and will only work correctly if the line

OPENCV DEVEL=1

is set in the make.local file at compile time.

58

visualizeDetections

Displays images with detections superimposed. Optionally creates an HTML page displaying all such images
in a table. This can be useful for identifying the kinds of mistakes that a classifier makes.

visualizePatchDictionary

Displays all the features from a patch dictionary. After training the boosted classifier, it is useful to verify
that the chosen features visually seem reasonable for the object of interest.

3.5.3 Multi-class Image Segmentation

Multi-class image segmentation (or pixel labeling) aims to label every pixel in an image with one of a number
of classes (e.g., grass, sky, water, etc). Since classifying every pixel can be computationally expensive, many
state-of-the-art methods first over-segment the image into superpixels (or small coherent regions) and classify
each region. The SVL implementation is a slight variant of the baseline method described in [7] and was also
used in [9].1 The following figure shows an example of an image, its over-segmentation, and region labels.

Figure 3.2: Multi-class image segmentation examples.

The basic method proceeds as follows:

• First, we extract appearance (color and texture), geometry and location features for each superpixel
region.

• We then learn boosted classifiers over these features for each region class.

• Finally, we learn a CRF or logistic model using the output of the boosted classifiers as features.

• A step-by-step guide to the process is provided below.

Figure 3.3: Multi-class image segmentation pipeline.

1The relative location extension described the these works is not implemented in this version of the code.

59

Data Preparation

The multi-class image segmentation algorithms that we describe take as input an image (<base>.jpg) and
corresponding over-segmentation (<base>.seg) and ground-truth pixel labels (<base>.txt). The images are
usually resized to approximately the same dimensions (e.g., 320-by-240). Over-segmentation and groundtruth
labeling are described below.

Groundtruth Labeling: The groundtruth file (<base>.txt) corresponding to an image is a text file
containing one number (integer) per pixel and arranged in a matrix the same size as the image. The integers
correspond to different class labels and are zero-based. You can use the regionLabeler application to generate
or view groundtruth files.

Over-Segmentation: The over-segmentation file (<base>.seg) corresponding to an image is a text
file containing one number (integer) per pixel and arranged in a matrix the same size as the image. The
integers correspond to different superpixels and are zero-based. Free online code such as that provided by
Greg Mori [12] or Pedro Felzenszwalb [4] can be used for this purpose. Note that in our models each pixel
is assigned to one and only one superpixel.

Extracting Region Features

Once the image regions/superpixels have been defined, we extract appearance (color and texture), geometry
and location based features for each superpixel. These are cached in features files (<base>.features.txt)
which contain one feature vector per superpixel. If the features are to be used directly as input to the
logistic/CRF multi-class segmentation model, then a bias term (constant feature) can be appended which
helps to model prior class preferences.

During this step we also extract the groundtruth label for each superpixel. This is done by finding the
maximum occurring pixel label within each superpixel. The labels are written to corresponding labels file
(<base>.labels.txt). This can be skipped if groundtruth labels are not available (such as when using a
previously trained multi-class segmentation model to label new images).

The following command processes all .jpg (and corresponding .seg) files in $IMAGEDIR and output
feature and label files to $OUTPUTDIR.

bin / segImageExtractFeatures −v −o $OUTPUTDIR $IMAGEDIR

Building Boosted Region Classifiers

Performance can be greatly improved if learn a boosted classifier for each class instead of using the raw
appearance, geometry and location features described above. In this step we learn a one-versus-all classifier
for each groundtruth label using the cached superpixel features and labels from the previous step. Once the
classifiers are learned new feature files (<base>.boosted.txt) are created containing the output score for
each of the learned classifiers on each superpixel in an image. Bias terms are also included so that these
features files can be used directly by the logistic/CRF models.

bin / segImageTrainBoostedFeatures −v −f e a t u r e sD i r $OUTPUTDIR −o ${OUTPUTDIR}/demo \
−rounds 200 − s p l i t s 2 $TRAININGLIST

bin / segImageEvalBoostedFeatures −v −f e a t u r e sD i r $OUTPUTDIR − i ${OUTPUTDIR}/demo \
−i n c ludeB ia s $NUMCLASSES $ALLIMAGESLIST

$ALLIMAGESLIST is the name of the file containing a list (one per line) of base names (image file names
without the .jpg extension) to be processed. The file can be created using the following shell commands:

f o r each i ($IMAGEDIR/∗ . jpg)
echo $ i : r >> $ALLIMAGESLIST

end

60

Learning the Multi-class Image Segmentation Model

Training involves learning the parameters of the logistic or CRF model. The logistic model assumes that each
superpixel is independent and learns a multi-class logistic classifier based on the (raw or boosted) features.
The CRF model adds a pairwise term between neighboring superpixels which acts to smooth the predicted
labels.

bin / segImageTrainModel −v −o ${OUTPUTDIR}/demo . c r f . model \
−imgDir $IMAGEDIR −f e a t u r e sD i r $OUTPUTDIR \
−model ”CRF” −regNodes 1 .0 e−9 −regEdges 1 .0 e−2 $TRAININGLIST

The regularization parameters (regNodes and regEdges) should be set by cross-validation on the training
set.

Evaluating the Multi-class Image Segmentation Model

After training, the accuracy of a model can be evaluated by comparing predicted labels against groundtruth
labels on a hold out set of data (i.e., data that was not used during the training process). The model can
also be used to label new images that will be used as input for some other vision task.

bin / segImageEvalModel −imgDir $IMAGEDIR −f e a t u r e sD i r $OUTPUTDIR \
−model ”CRF” ${OUTPUTDIR}/demo . c r f . model $EVALLIST

3.5.4 Video Processing Utilities

A few very basic utilities are provide for dealing with video data. The dumpVideoFrames application will
extract frames from a video file and save them as images. Going in the other direction, images2video takes
a directory of images files and create an AVI video. The images are loaded in lexigraphical order. Under
Windows you will be prompted for the codec to use.

3.5.5 Depth Superresolution

The mrfDepthSmooth application produces superresolution depth maps by projection a point cloud into an
image and applying a superresolution smoothing MRF [2, 6]. Concretely, let the image pixel intensities be
{xi,j | (i, j) ∈ I}, the laser depth measurements be {zi,j | (i, j) ∈ L} and the reconstructed/inferred depth for
every pixel be {yi,j | (i, j) ∈ I} where I indexes the image pixels and L ⊆ I indexes the laser measurements
(projected onto the image plane). Two MRF potential functions are defined—the first penalizes discrepancy
between measured and reconstructed depths, while the second encodes a preference for smoothness:

Φij(y, z) = h(yi,j − zi,j ;λ) (3.1)

Ψij(x,y) = wv
ijh(2yi,j − yi,j−1 − yi,j+1;λ) + wh

ijh(2yi,j − yi−1,j − yi+1,j ;λ) (3.2)

where h(x;λ) is the Huber penalty function, and wv
ij = exp{−c‖xi,j−1−xi,j+1‖2} and wh

ij = exp{−c‖xi−1,j−
xi+1,j‖2} are weighting factors indicating how unwilling we are to allow smoothing to occur across vertical
and horizontal edges in the image as in [2]. The super-resolution MRF as

p(y | x, z) =
1

η(x, z)
exp

−k
∑

(i,j)∈L

Φij −
∑

(i,j)∈I

Ψij

(3.3)

where k specifies the trade-off between measurement reconstruction and smoothness, and η(x, z) is the
normalization constant (partition function).

The following command line shows typical usage:

61

s e t CAMERAPARAMETERS = . . .
s e t BASENAME = . . .
bin /mrfDepthSmooth −camera ${CAMERAPARAMETERS} −r e s c a l e 0 . 5 \

−o ${BASENAME} . r e con s t ruc t ed ${BASENAME} . jpg ${BASENAME} . tx t

62

Chapter 4

Projects

4.1 Building Your Own Projects

Projects using the SVL are typical developed in subdirectory under the projects directory. The following
is a prototype for a project Makefile for Linux. Application source code (i.e., .cpp files with a main()

function) should be listed in APP SRC, other source code such as shared classes that are linked into multiple
applications should be listed in OTHER SRC.

STAIR VISION PROJECT MAKEFILE
Stephen Gould <sgou ld@stanford . edu>

LASIK PATH := $ (s h e l l pwd) / . . / . .

USE OPENCV = 1
USE EIGEN = 1
USE WX = 0

−i n c lude $ (LASIK PATH)/make .mk

###

APP SRC =

OTHER SRC =

###

APP PROG NAMES = $ (APP SRC : . cpp=)
APP OBJ = $ (APP SRC : . cpp=.o)
OTHER OBJ = $ (OTHER SRC : . cpp=.o)

.PHONY: c l ean

.PRECIOUS: $ (APP OBJ) $ (OTHER OBJ)

a l l : depend ${ addpre f ix ${BIN PATH}/ , $ (APP PROG NAMES)}

$ (BIN PATH)/%: %.o $ (OTHER OBJ) $ (LIBSVL)
${CCC} $ ∗ . o −o $ (@: . o=) $ (OTHER OBJ) $ (LIBSVL) $ (LFLAGS)

$ (LIBSVL) :
@echo ”∗∗ YOU NEED TO MAKE THE SVL LIBRARIES FIRST ∗∗”
fa l se

. cpp . o :
${CCC} ${CFLAGS} −c $< −o $@

63

depend :
g++ ${CFLAGS} −MM ${APP SRC} ${OTHER SRC} >depend

c l ean :
−rm $ (APP OBJ)
−rm $ (OTHER OBJ)
−rm ${ addpre f ix ${BIN PATH}/ , $ (APP PROG NAMES)}
−rm depend

−i n c lude depend

Under Windows you can set up a new project by following these instructions:

• Create a Microsoft Visual Studio solution and add one Visual Studio project for each application. The
projects should be created as Visual C++ | General | Empty Project types.

• Add your source files to the appropriate projects.

• For each project, select Project | Properties (Alt-F7) and set the following options:

– Output Directory: ..\..\bin
– Additional Library Directories: ..\..\bin; "C:\Program Files\OpenCV\lib"; "C:\Program

Files\OpenCV\otherlibs\highgui"
– Additional Dependencies: svlBase.lib svlML.lib svlPGM.lib svlVision.lib xmlParser.lib

lbfgs.lib cv.lib cxcore.lib highgui.lib ml.lib kernel32.lib user32.lib

– Additional Include Directories: ..\..\include; ..\..\external; ..\..\external\eigen;
"C:\Program Files\OpenCV\cv\include"; "C:\Program Files\OpenCV\cxcore\include";
"C:\Program Files\OpenCV\otherlibs\highgui"; "C:\Program Files\OpenCV\ml\include"

64

Appendix A

Coding Guidelines

Software is written for people, not for machines.

The key to a successful (large) programming project, like any other project, involves planning, man-
agement, and testing. The amount of time, effort and emphasis placed on each of these three components
depends on the size of the project and experience of the people involved. Consistency in design and im-
plementation is also key to success and is what we will address in this document by outlining some (fairly
standard) coding conventions. These conventions will make the project more manageable over time especially
when many different people are involved.

It is absolutely guaranteed that some users will not like the style guidelines, and that others will even hate
them. Everyone has their own style which they prefer to use on their own projects. But even though this
is so, please understand that your team-mates, as well as yourself, will benefit greatly from the uniformity
which they offer.

Finally, since the STAIR Vision Library is designed to be platform-independent, it is essential that
you make don’t implement any platform specific functionality. Following these guidelines will help reduce
the amount of incompatibility introduced by developing in multiple environments. Also, before writing a
new class or function, check to see whether one already exists that does what you want, or nearly what you
want. Can that function be generalized to meet your needs?

A.1 Source Control

• Always use a source/revision control system. Some good packages include svn (free) and Perforce
(commercial). In this project we use svn.

• Check-in all code and configuration files necessary for rebuilding a project from a clean environment.
Do not check-in files that can be regenerated.

• In direct contradiction to the above, it is sometimes useful to check-in (non-standard) external packages
that the project requires.

• Don’t forget to add new source and header files before doing a commit.

• The latest code checked into the repository is assumed to be correct. Always make sure you merge
your code with the latest revision before checking in. If you’re working on something experimental
then create a separate branch which you can merge later.

• Always make sure your code compiles and passes any regression tests before checking-in. Remember if
you break something it’s likely to affect a lot of other people.

• Check-in code regularly. Don’t be afraid to check-in small changes.

• Add comments when you check-in code. This will help people understand what you were trying to do
when they check-out your code and it doesn’t work.

65

A.2 Structure

• Always include a header comment at the top of each file. The header should include the name of the
project, name of the file, sometimes a copyright notice, and most importantly your name and email
address.

• Group the declaration of public and private members. Separate the declaration of methods from
variables.

• Likewise, group common header files together, starting from standard headers (e.g., stl) through to
project specific headers.

• Declare constructors and destructors before other methods.

• Declare like-functions together.

• Always implement functions in the same order in which they are declared in header files or in the
prototype section at the top of the file.

• Code should be implemented in .cpp files not .h files. Exceptions are templated and short inline
functions.

• Name a file the same as the class that it implements. It is okay to implement multiple classes in the
same file if they logically belong together. In this case find a filename the is appropriate to the group
of classes.

A.3 Variable and Object Naming

• Use all-caps for constants and macros.

• All variables should be named starting with a lowercase letter.

• Prepend an underscore to private data members.

• Prepend ’b’ to boolean types, ’g’ to global types.

• Descriptive variable names are strongly preferred to compactified names. Exceptions are allowed for
standard technical equations. For example, to evaluate a quadratic equation it is acceptable to write
y = a * x * x + b * x + c;.

• Single letter variables should be restricted to either loop iterators (preferably i, j, or k), or terms in
very local computations (i.e., it is okay to use ’x’ in a computation only if the scope of ’x’ is less than
a few dozen lines of code at the most).

• All STAIR Vision Library classes should begin with svl.

A.4 Comments

• It is a waste of time to write software without comments! Your comments don’t need to be
lengthy, but they should be informative.

• Make sure you update your comments whenever you change your code.

A.5 Portability and Maintainability

• Never use variable or object names that could be keywords under different systems (e.g. min, max, win,
file).

• Use standard libraries (available on all platforms)—in particular, the stl. Don’t reinvent the wheel.

• On a similar note, use standard file formats (e.g., XML). Put version numbers in parameter/model
files so that you can read them back even if you change the format later.

• Keep object interfaces short and simple, it will make it much easier for other people to learn and use.

• When composing stl datatypes make sure you put a space between the > characters, for example
vector<vector<double> >. Some compilers will (correctly) interpret >> as an operator and will
generate an error.

66

• Some compilers like to have a blank line at the end of all source files. If you’re working in multiple
environments then it is good practice to do this.

• Set your editor to replace tabs with spaces.

• Use svlCompatibility.h to define symbols that are available on one platform but not another.

A.6 Performance

• Don’t copy large data structures around. Rather pass by reference (&) or by pointer (*).

• Use const whenever you can.

• Avoid allocating and deallocating memory in tight loops—rather allocate all the memory you need
outside of the loop, but don’t forget to deallocate the memory eventually.

• Don’t use printf’s (or output stream operators) in tight loops.

• Use reserve to allocate memory to vectors and other stl datatypes before populating.

A.7 Miscellaneous

• Avoid using #define when you can use a const variable or enum instead.

• Use structures, unions and classes to keep related variables together.

• Limit the use of global and static variables.

• Enclose conditionally executed code in braces (e.g., after an if or for statement) even if the code is only
a simple statement. This will prevent bugs later on when you modify the code.

A.8 Testing

• Write and use regression tests.

• Make sure your code compiles without any compiler warnings.

• If you discover a (non-trivial) bug, first write a simple test that exposes the bug, before debugging.
Then add the test to your regression test suite.

• Use lots of assert()’s. You can always compile them out for speed later.

• Run you code while watching system memory (Task Manager under Windows or top under Linux) to
identify memory leaks.

• If you have a bug, first think about where in the design the bug could be, before jumping into the code.

67

68

Appendix B

Configuration

The following table specifies the standard configuration attributes that are available in the STAIR Vision
Library. For many application you can use the option -config by itself on the command line to get a list
of the registered modules.

Module Attribute Description

svlBase.svlCodeProfiler enabled Enable code profiling.
svlBase.svlLogger logLevel Set the log verbosity level. Can be “ER-

ROR”, “WARNING”, “MESSAGE”
(default), “VERBOSE” or “DEBUG”.

logFile Append messages to a log file with the
given filename.

svlBase.svlThreadPool threads Sets the maximum number of threads
allowed. A value of 0 will cause all
multi-threaded code to run in the main
thread.

svlML.svlBoostedClassifier boostMethod Sets the boosting method. Can be
“GENTLE” (default), “DISCRETE”
or “LOGIT”.

boostingRounds Number of rounds of boosting.
trimRate Rate at which least weighted samples

are ignored.
numSplits Number of splits in each weak learner’s

decision tree.
pseudoCounts Pseudo-counts for each class.
quietTraining Training verbosity.

svlML.svlConfusionMatrix colSep String to place between columns in the
confusion matrix, e.g., “</td><td>”.

rowBegin String to place at the start of each row,
e.g., “<tr><td>”.

rowEnd String to place at the end of each row,
e.g., “<td></tr>”.

svlML.svlLogistic maxIterations Sets the maximum number of iterations
during training.

eps Sets the training convergence threshold.

svlPGM.svlFactorOperations cacheIndexMapping Cache factor index mappings for oper-
ators (faster but uses more memory).

69

Module Attribute Description

useSharedIndexCache Share cached indices (significant mem-
ory reduction for regular MRFs).

svlVision.svlImageLoader channels Single string of space-separated
channel-extension pairs

e.g. ‘‘INTENSITY .jpg EDGE .jpg’’

or ‘‘INTENSITY - EDGE -’’

with defaultExtension (default)

defaultExtension Default: .jpg
resizeWidth Resizes each image after loading
resizeHeight Resizes each image after loading
depthMapWidth Required if using depth maps
depthMapHeight Required if using depth maps
useMask Mask out a region of each loaded image

specified in the file named
[imageBaseName][maskExtension]

maskExtension Default: .occ
ignoreExtensions Loader ignores files with these exten-

sions, e.g. ‘‘.txt .bmp’’

svlVision.svlObjectDetectionAnalyzer areaRatio Amount of overlap with the
groundtruth for a detection to be
considered positive (default: 0.5)

useNonmax Suppresses non-maximal detections
(default: true)

includeAllFrames Includes all frames from the
groundtruth files, even the ones not
present in the detection file (default:
false)

svlVision.svlSlidingWindowDetector deltaX Shift in pixels in the x-direction be-
tween successive windows (default: 4)

deltaY Shift in pixels in the y-direction be-
tween successive windows (default: 4)

deltaScale The change in scales between successive
levels (default: 1.2)

threshold The minimum probability required for
a detection to be returned (default: 0.5)

svlVision.svlTrainingDatasetBuilder objects String of space-separated object names
to be considered positive, e.g. ‘‘mug

monitor’’

allWindows Returns all sliding windows as (positive
or negative) examples (default: false)

Related to positive examples:
skipPos Skip positive examples (default: false)
posBestWindow Returns the best sliding window for

each positive detection (default: false;
incompatible with allWindows)

Related to negative examples:
skipNeg Skip negative examples (default: false)
falsePositivesOnly Only includes false positives from

detectionsFilename (default: false)
detectionsFilename svlObject2dSequence file with object

detections

70

Module Attribute Description

threshold Threshold at which a detection from
detectionsFilename is considered
positive (default: 0.0)

includeOtherObjects Include all objects from the
groundtruth file whose names don’t
match objects as negative examples
(default: false)

numNegs Total number of negative examples to
produce per scene (default: 100)

negHeight Desired height of negative examples
(default: 32)

negAspectRatio Desired aspect ratio (w/h) of negative
examples (default: 1)

Related to writing out examples:
baseDir Base directory to write to (default: .)
useWinRefs Write the example references in

baseDir/references.xml rather than
outputting individual training image
files

createDirs Create output directories within
baseDir, one with negSubdirName,
and one per positive object with the
object name (default: false)

negSubdirName Name of the subdirectory for negative
examples (default: negative)

posPrefix Prefix for final name of positive images
negPrefix Prefix for final name of negative images
includeFlipped Include horizontally flipped examples

(default: false)
resizeWidth Resize examples before writing
resizeHeight Resize examples before writing

71

72

Appendix C

License

Copyright (c) 2007-2009, Stephen Gould

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

* Neither the name of Stanford University nor the

names of its contributors may be used to endorse or promote products

derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ‘‘AS IS’’ AND ANY

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

73

74

Bibliography

[1] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimization via graph cuts.
In ICCV, 1999. 24

[2] J. Diebel and S. Thrun. An application of markov random fields to range sensing. In NIPS. 2006. 43,
61

[3] Gal Elidan, Ian McGraw, and Daphne Koller. Residual belief propagation: Informed scheduling for
asynchronous message passing. In UAI, 2006. 24

[4] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient graph-based image segmentation. IJCV,
2004. 60

[5] Amir Globerson and Tommi Jaakkola. Fixing max-product: Convergent message passing algorithms
for MAP LP-relaxations. In NIPS, 2007. 24

[6] Stephen Gould, Paul Baumstarck, Morgan Quigley, Andrew Y. Ng, and Daphne Koller. Integrating
visual and range data for robotic object detection. In ECCV Workshop on Multi-camera and Multi-
modal Sensor Fusion Algorithms and Applications (M2SFA2), 2008. 61

[7] Stephen Gould, Jim Rodgers, David Cohen, Gal Elidan, and Daphne Koller. Multi-class segmentation
with relative location prior. IJCV, 80(3):300–316, 2008. 59

[8] Stephen Gould, Fernando Amat, and Daphne Koller. Alphabet SOUP: A framework for approximate
energy minimization. In CVPR, 2009. 24

[9] Geremy Heitz, Stephen Gould, Ashutosh Saxena, and Daphne Koller. Cascaded classification models:
Combining models for holistic scene understanding. In NIPS, 2008. 59

[10] Andrew Johnson and Martial Hebert. Using spin images for efficient object recognition in cluttered 3D
scenes, 21(1):433–449, May 1999. 43

[11] D.C. Liu and J. Nocedal. On the limited memory method for large scale optimization. In Mathematical
Programming B, volume 45, pages 503–528, 1989. 14

[12] Greg Mori, Xiaofeng Ren, Alexei A. Efros, and Jitendra Malik. Recovering human body configurations:
combining segmentation and recognition. In CVPR, 2004. 60

[13] J. Nocedal. Updating quasi-newton matrices with limited storage. In Mathematics of Computation,
volume 35, pages 773–782, 1980. 14

[14] Oren Papageorgiou and Poggio. A general framework for object detection. In ICCV, 1998. 40

[15] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988. 24

[16] D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and Y. Weiss. Tightening LP relaxations for map
using message passing. In UAI, 2008. 24

75

[17] A. Torralba, K.P. Murphy, and W.T. Freeman. Sharing features: efficient boosting procedures for
multiclass object detection. In CVPR, 2004. 40, 56

[18] M. Vidal-Naquet and S. Ullman. Object recognition with informative features and linear classification.
In ICCV, 2003. 56

[19] J. Winn, A. Criminisi, and T. Minka. Categorization by learned universal visual dictionary. In ICCV,
2005. 44

[20] C. Yanover, T. Meltzer, and Y. Weiss. Linear programming relaxations and belief propagation—an
empirical study. JMLR, 2006. 53

76

