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Overview

« Robust object recognition is a long standing goal of
computer vision.

 This is especially difficult in a robotic setting where
the objects of interest are small (e.g. 32 x 32 pixels)
and ill framed.

 3-d contextual information can significantly improve
object recognition accuracy.

« Our work is part of the ongoing STAIR (STanford
Artificial Intelligence Robot) project which has the
long-term goal of integrating techniques from all
areas of Al to build a useful home/office assistant
robot.

Super-resolution sensor fusion

« Super-resolution MRF [Diebel, 2006] used to infer
depth value for every image pixel:
« singleton potential encodes our preference for
matching laser measurements;
« pairwise potential encodes our preference for
planar surfaces.

 Algorithm can be stopped at anytime and later
resumed from previous iteration.

« Use camera intrinsic parameters to reconstruct
dense point cloud, and SVD over local neighborhood
to estimate surface normal vectors.

3d features

« Compute 3-d features over candidate windows (in
iImage plane) by projecting window into 3-d scene.

« Features include statistics on height above ground,
support (vertical or horizontal), and size of object.

« Other features: surface variation (computed as
variance over normal vector direction) and distance
to dominant planes.
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« Laser scan lines are combined with odometry and
pan information to form a sparse point cloud.

« Dominant planes are extracted from sparse point
cloud using region-growing algorithm.

« Super-resolution MRF infers 3-d location (dense
point cloud) and direction of normal vector for every
pixel in the image.

» Object detectors combine 2-d and 3-d cues for better
object recognition.

 Architecture supports efficient multicore processing.
« “Anytime” implementation of core algorithms allows

us to meet hard real-time constraints for robotic
systems.

Dominant plane extraction

 Plane clustering based on greedy, region-growing
algorithm with smoothness constraint [Rabbani,
2006].

 Extracted planes used to initialize super-resolution
MRF and for 3-d feature calculation.

(a) Compute normal vectors (b) Grow region over neighbors  (c) Use neighbors with low
using neighborhood with similar normal vectors residual to expand region

3d-augmented object detectors

« Use features to reduce computation required by
patch-based 2-d detectors, I.e. attention
mechanism.

« For example, flat/planar regions are unlikely to be
objects and can be discounted before performing
expensive patch response calculations.

« Augment feature vector with log-odds ratio from 2-d
sliding-window classifier.
« Advantage of this approach is that 2-d classifier
can be trained separately.

« Learned logistic model gives probability of object
given image and laser data for given location and
scale.

2-d object detectors

« We use a sliding-window object detector to compute
object probabilities given image data only:

« Features are based on localized patch responses
from pre-trained dictionary and applied to image at
multiple scales [Torralba, 2007].

» Gentle-boost [Friedman, 1998] classifier applied
to each window.

Experimental results
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