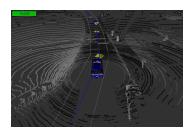
Online, semi-supervised learning for long-term interaction with object recognition systems

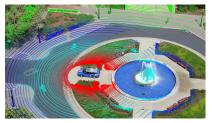
Alex Teichman and Sebastian Thrun

Department of Computer Science Stanford University

July 12, 2012

The big picture





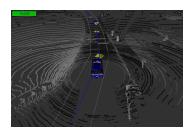
- What is the desired user interface for object recognition?
- Want autonomy with the option for user input.
- Online, active, semi-supervised learning

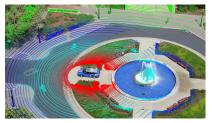
э

Image: A math a math

Alex Teichman and Sebastian Thrun Online, semi-supervised learning // RSS2012

The big picture

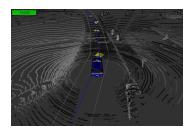


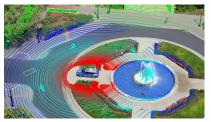


- What is the desired user interface for object recognition?
- Want autonomy with the option for user input.
 - Online, active, semi-supervised learning

э

The big picture





- What is the desired user interface for object recognition?
- Want autonomy with the option for user input.
- Online, active, semi-supervised learning

Alex Teichman and Sebastian Thrun Online, semi-supervised learning // RSS2012

< □ > < 同 >

Number of tracks							
Set	Car	Pedestrian	Bicyclist	Background	All		
Training	904	205	187	6585	7881		
Testing	847	112	140	4936	6035		
Total	1751	317	327	11,521	13,916		
		Numb	er of frames				
Set	Car	Pedestrian	Bicyclist	Background	All		
Training	92,255	32,281	31,165	532,760	688,461		
Testing	59,173	22,203	25,410	530,917	637,703		
Total	151,428	54,484	56,575	1.063.677	1,326,16		

Table 1. Breakdown of the dataset by class. Tracks were collected from busy streets and intersections.

- Rigorous evaluation and comparison
- Experimental setup

- Occasional user interaction
- Infinite unlabeled data stream

<ロト <部ト < 注ト < 注ト

3

Number of tracks						
Set	Car	Pedestrian	Bicyclist	Background	All	
Training	904	205	187	6585	7881	
Testing	847	112	140	4936	603.5	
Total	1751	317	327	11,521	13,916	
		Numb	er of frames			
Set	Car	Pedestrian	Bicyclist	Background	All	
Training	92,255	32,281	31,165	532,760	688,461	
Testing	59,173	22,203	25,410	530,917	637,703	
Total	151,428	54,484	56,575	1.063.677	1,326,16	

Table 1. Breakdown of the dataset by class. Tracks were collected from busy streets and intersections.

Rigorous evaluation and comparison

Experimental setup

Occasional user interaction

Infinite unlabeled data stream

Image: A mathematical states and a mathem

-∢ ≣ →

э

Number of tracks							
Set	Car	Pedestrian	Bicyclist	Background	All		
Training	904	205	187	6585	7881		
Testing	847	112	140	4936	603.5		
Total	1751	317	327	11,521	13,916		
		Numb	er of frames				
Set	Car	Pedestrian	Bicyclist	Background	All		
Training	92,255	32,281	31,165	532,760	688,461		
Testing	59,173	22,203	25,410	530,917	637,703		
Total	151,428	54,484	56,575	1.063.677	1,326,16		

Table 1. Breakdown of the dataset by class. Tracks were collected from busy streets and intersections.

Experimental setup

Occasional user interaction

Image: Image:

-∢ ≣ →

э

Infinite unlabeled data stream

Table 1. Breakdown of the dataset by class. Tracks were collected from busy streets and intersections.	

Number of tracks						
Set	Car	Pedestrian	Bicyclist	Background	All	
Training	904	205	187	6585	7881	
Testing	847	112	140	4936	6035	
Total	1751	317	327	11,521	13,916	
		Numb	er of frames			
Set	Car	Pedestrian	Bicyclist	Background	All	
Training	92,255	32,281	31,165	532,760	688,461	
Testing	59,173	22,203	25,410	530,917	637,703	
Total	151,428	54,484	56,575	1,063,677	1,326,164	

0

Rigorous evaluation and comparison

Experimental setup

Occasional user interaction

< □ > < 同 >

Infinite unlabeled data stream

Number of tracks						
Set	Car	Pedestrian	Bicyclist	Background	All	
Training	904	205	187	6585	7881	
Testing	847	112	140	4936	6035	
Total	1751	317	327	11,521	13,916	
		Numb	er of frames			
Set	Car	Pedestrian	Bicyclist	Background	All	
Training	92,255	32,281	31,165	532,760	688,461	
Testing	59,173	22,203	25,410	530,917	637,703	
Total	151,428	54,484	56,575	1.063.677	1,326,16	

Table 1. Breakdown of the dataset by class. Tracks were collected from busy streets and intersections.

Rigorous evaluation and comparison

Experimental setup

- Occasional user interaction
- Infinite unlabeled data stream

< A >

Number of tracks						
Set	Car	Pedestrian	Bicyclist	Background	All	
Training	904	205	187	6585	7881	
Testing	847	112	140	4936	6035	
Total	1751	317	327	11,521	13,916	
		Numb	er of frames			
Set	Car	Pedestrian	Bicyclist	Background	All	
Training	92,255	32,281	31,165	532,760	688,461	
Testing	59,173	22,203	25,410	530,917	637,703	
Total	151,428	54,484	56,575	1.063.677	1,326,16	

Table 1. Breakdown of the dataset by class. Tracks were collected from busy streets and intersections.

Rigorous evaluation and comparison

Experimental setup

- Occasional user interaction
- Infinite unlabeled data stream

< A >

Number of tracks						
Set	Car	Pedestrian	Bicyclist	Background	All	
Training	904	205	187	6585	7881	
Testing	847	112	140	4936	603.5	
Total	1751	317	327	11,521	13,916	
		Numb	er of frames			
Set	Car	Pedestrian	Bicyclist	Background	All	
Training	92,255	32,281	31,165	532,760	688,461	
Testing	59,173	22,203	25,410	530,917	637,703	
Total	151,428	54,484	56,575	1.063.677	1,326,164	

Table 1. Breakdown of the dataset by class. Tracks were collected from busy streets and intersections.

- Rigorous evaluation and comparison
- Experimental setup

- Occasional user interaction
- Infinite unlabeled data stream

< A >

Object recognition approaches - sliding window & tracking-by-detection

Spinello and Arras

Spinello, Stachniss, and Burgard

Object recognition approaches - semantic segmentation

Douillard et al.

Combining sliding windows and semantic segmentation: Lai et al.

Object recognition approaches - keypoint matching

Solutions in Perception Challenge

Collet et al.

Problem decomposition

Segmentation — Tracking — Track classification

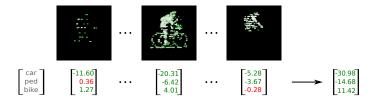
Problem decomposition

Segmentation — Tracking — Track classification

-

Problem decomposition

Segmentation — Tracking — Track classification



(▲ 문) (▲ 문)

3

Descriptors

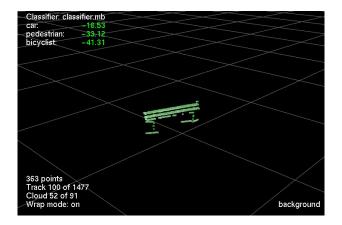
- Oriented bounding box size
- Spin images
- HOG descriptors computed on virtual orthographic camera images

• 29 different descriptor spaces

< 同 ▶

• $x \in \mathbb{R}^{\sim 4000}$

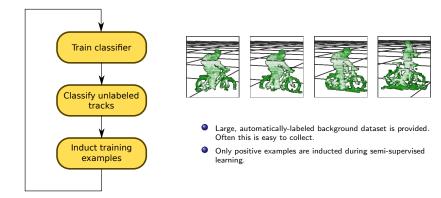
Tracks



<ロ> <同> <同> < 同> < 同>

3

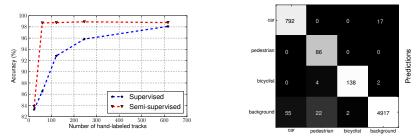
Tracking-based semi-supervised learning



< □ > < 同 >

≪ ≣ ⊁

Tracking-based semi-supervised learning

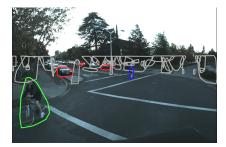


Labels

Unsupervised method given millions of additional unlabeled examples.

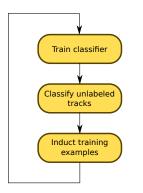
Track classification accuracy is reported. (This does not include segmentation and tracking errors.)

Tracking-based semi-supervised learning



- Three hand-labeled training examples of each class + millions of unlabeled examples used to generate these results.
- Outlines are tracked objects. Track classifications are computed offline.
- White outlines are tracked objects classified as neither person, bicyclist, or car.

Offline to online



Algorithm 1 Tracking-based semi-supervised learning τ is a confidence threshold chosen by hand S is a small set of seed tracks, labeled by hand U is a large set of unlabeled tracks \mathbb{B} is a large set of background tracks W is a working set, initially empty $\mathbb{W} := \mathbb{S} \cup \mathbb{B}$ repeat Train frame classifier C on W $W := S \cup \mathbb{B}$ for $u \in \mathbb{U}$ do Classify track u using \mathbb{C} c := confidence(u)l := classification(u)if $c \geq \tau$ and $l \neq$ "background" then Add u to \mathbb{W} with label lend if end for

<ロ> <同> <同> < 同> < 同>

3

Alex Teichman and Sebastian Thrun Online, semi-supervised learning // RSS2012

until converged

Modularity

Segmentation

Tracking

- Connected components
- Background subtraction
- Kalman filters
- Boosting

Classification

 Logistic regression, stochastic gradient descent

- Discriminative segmentation and tracking

WAFR2012

Parametric

- Fast to train and evaluate
- Easy to incrementally train

$$x \in \mathbb{R}^{n}, y \in \{-1, +1\}$$
$$\mathbb{P}(y|x) = \frac{1}{1 + \exp(-yw^{T}x)}$$
$$\max_{w} \prod_{m} \mathbb{P}(y^{(m)}|x^{(m)})$$

- M might be giant, or you might not have access to them all at one time.
- Stochastic gradient descent: take gradient steps using just small subsets of the data.
- ... but this fails badly if applied without thinking.

▲ 同 ▶ → ● 三

- Parametric
- Fast to train and evaluate
- Easy to incrementally train

$$x \in \mathbb{R}^{n}, y \in \{-1, +1\}$$
$$\mathbb{P}(y|x) = \frac{1}{1 + \exp(-yw^{T}x)}$$
$$\max_{w} \lim_{w} \prod_{m} \mathbb{P}(y^{(m)}|x^{(m)})$$
$$\min_{w} \lim_{w} \sum_{m=1}^{M} \log(1 + \exp(-y^{(m)}w))$$

- M might be giant, or you might not have access to them all at one time.
- Stochastic gradient descent: take gradient steps using just small subsets of the data.
- ... but this fails badly if applied without thinking.

- ∢ ⊒ →

Image: A math a math

- Parametric
- Fast to train and evaluate
- Easy to incrementally train

$$x \in \mathbb{R}^n, y \in \{-1, +1\}$$
$$\mathbb{P}(y|x) = \frac{1}{1 + \exp(-yw^T x)}$$

$$\begin{array}{ll} \underset{w}{\text{maximize}} & \prod_{m} \mathbb{P}(y^{(m)}|x^{(m)}) \\ \\ \underset{w}{\text{minimize}} & \sum_{m=1}^{M} \log(1 + \exp(-y^{(m)}w^{T}x^{(m)})) \end{array}$$

- M might be giant, or you might not have access to them all at one time.
- Stochastic gradient descent: take gradient steps using just small subsets of the data.
- ... but this fails badly if applied without thinking.

Image: A mathematical states and a mathem

- Parametric
- Fast to train and evaluate
- Easy to incrementally train

$$x \in \mathbb{R}^n, y \in \{-1, +1\}$$
$$\mathbb{P}(y|x) = \frac{1}{1 + \exp(-yw^T x)}$$

$$\begin{array}{ll} \underset{w}{\text{maximize}} & \prod_{m} \mathbb{P}(y^{(m)}|x^{(m)}) \\ \\ \underset{w}{\text{minimize}} & \sum_{m=1}^{M} \log(1 + \exp(-y^{(m)}w^{T}x^{(m)})) \end{array}$$

- M might be giant, or you might not have access to them all at one time.
- Stochastic gradient descent: take gradient steps using just small subsets of the data.
- ... but this fails badly if applied without thinking.

Image: A mathematical states and a mathem

- Parametric
- Fast to train and evaluate
- Easy to incrementally train

$$egin{aligned} &x\in \mathbb{R}^n, y\in\{-1,+1\} \ &\mathbb{P}(y|x)=rac{1}{1+\exp(-yw^Tx)} \end{aligned}$$

$$\begin{array}{ll} \underset{w}{\text{maximize}} & \prod_{m} \mathbb{P}(y^{(m)} | x^{(m)}) \\ \\ \underset{w}{\text{minimize}} & \sum_{m=1}^{M} \log(1 + \exp(-y^{(m)} w^{T} x^{(m)})) \end{array}$$

- M might be giant, or you might not have access to them all at one time.
- Stochastic gradient descent: take gradient steps using just small subsets of the data.
- ... but this fails badly if applied without thinking.

< 1 → <

-

- Parametric
- Fast to train and evaluate
- Easy to incrementally train

$$x \in \mathbb{R}^n, y \in \{-1, +1\}$$

 $\mathbb{P}(y|x) = rac{1}{1 + \exp(-yw^T x)}$

$$\begin{array}{ll} \underset{w}{\text{maximize}} & \prod_{m} \mathbb{P}(y^{(m)} | x^{(m)}) \\ \\ \underset{w}{\text{minimize}} & \sum_{m=1}^{M} \log(1 + \exp(-y^{(m)} w^{T} x^{(m)})) \end{array}$$

- M might be giant, or you might not have access to them all at one time.
- Stochastic gradient descent: take gradient steps using just small subsets of the data.
- ... but this fails badly if applied without thinking.

э

< A >

- Parametric
- Fast to train and evaluate
- Easy to incrementally train

$$x \in \mathbb{R}^n, y \in \{-1, +1\}$$
$$\mathbb{P}(y|x) = \frac{1}{1 + \exp(-yw^T x)}$$

$$\begin{array}{ll} \underset{w}{\text{maximize}} & \prod_{m} \mathbb{P}(y^{(m)}|x^{(m)}) \\ \\ \underset{w}{\text{minimize}} & \sum_{m=1}^{M} \log(1 + \exp(-y^{(m)}w^{T}x^{(m)})) \end{array}$$

- M might be giant, or you might not have access to them all at one time.
- Stochastic gradient descent: take gradient steps using just small subsets of the data.
- ... but this fails badly if applied without thinking.

э

< A >

- Parametric
- Fast to train and evaluate
- Easy to incrementally train

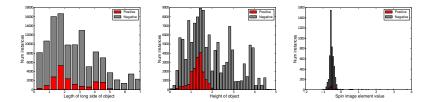
$$x \in \mathbb{R}^n, y \in \{-1, +1\}$$
$$\mathbb{P}(y|x) = \frac{1}{1 + \exp(-yw^T x)}$$

$$\begin{array}{ll} \underset{w}{\text{maximize}} & \prod_{m} \mathbb{P}(y^{(m)} | x^{(m)}) \\ \\ \underset{w}{\text{minimize}} & \sum_{m=1}^{M} \log(1 + \exp(-y^{(m)} w^{T} x^{(m)})) \end{array}$$

- M might be giant, or you might not have access to them all at one time.
- Stochastic gradient descent: take gradient steps using just small subsets of the data.
- ... but this fails badly if applied without thinking.

Linear models

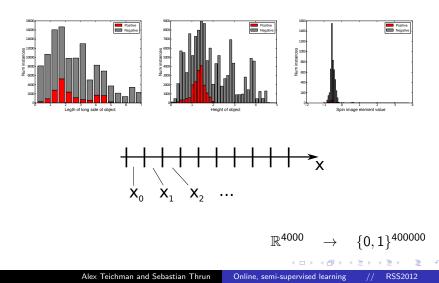
$$\log \frac{\mathbb{P}(Y=1|x)}{\mathbb{P}(Y=-1|x)} \approx w^T x$$



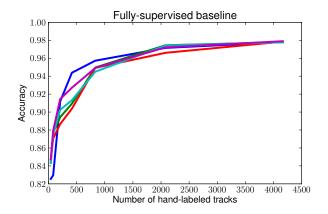
문 🛌 문

< 同 ▶

Feature transform

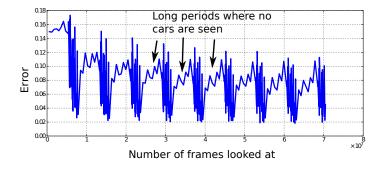


Supervised performance



Linear model reaches a maximum of 94.0%, fully-supervised boosting 98.7%.

Prediction stability



Fully-supervised, looping through ~ 7M training examples.

Can't do semi-supervised learning if you forget about objects after not seeing them for a while!

Training buffers

• D_S is the stream of examples seen so far.

- D_C is a new chunk of data.
- Want to maintain D_B , a fixed-size buffer of examples which is representative of D_S .
- Resample from D_B and D_C proportionally, relative to how much of the total stream they represent.

A B > A B >

Training buffers

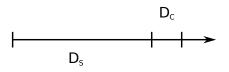
- D_S is the stream of examples seen so far.
- D_C is a new chunk of data.
- Want to maintain D_B , a fixed-size buffer of examples which is representative of D_S .
- Resample from D_B and D_C proportionally, relative to how much of the total stream they represent.

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Training buffers

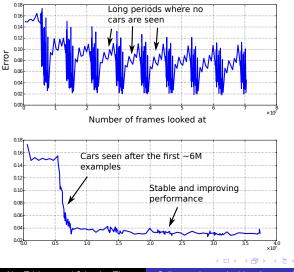
- D_S is the stream of examples seen so far.
- D_C is a new chunk of data.
- Want to maintain D_B , a fixed-size buffer of examples which is representative of D_S .
- Resample from *D_B* and *D_C* proportionally, relative to how much of the total stream they represent.

Training buffers



- D_S is the stream of examples seen so far.
- D_C is a new chunk of data.
- Want to maintain D_B , a fixed-size buffer of examples which is representative of D_S .
- Resample from D_B and D_C proportionally, relative to how much of the total stream they represent.

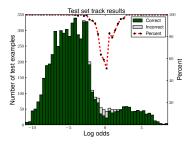
Training buffers



Alex Teichman and Sebastian Thrun Online, semi-supervised learning // RSS2012

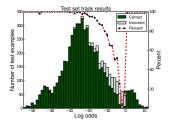
3

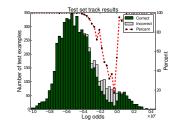
Confidence thresholds



 Need to decide when to induct new tracks as positive examples of objects.

Variable confidences

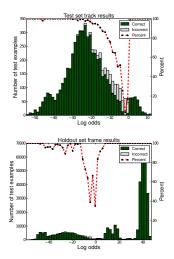


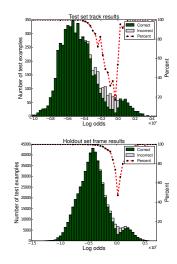


Э

э

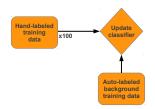
Confidence threshold learning





RSS2012

Algorithm sketch



æ

ハロ・ハ ミモ ハ モ ハ

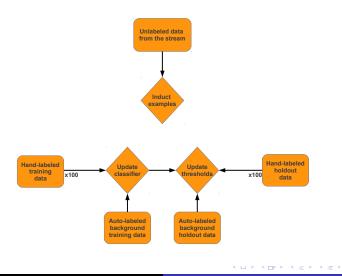
Algorithm sketch

Alex Teichman and Sebastian Thrun Online, semi-supervised learning // RSS2012

æ

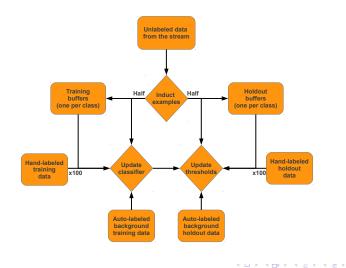
ヘロア ヘロアア ヘビア ヘビア

Algorithm sketch



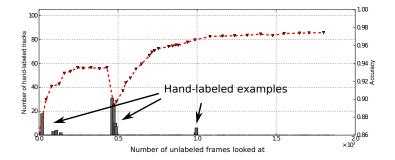
æ

Algorithm sketch



æ

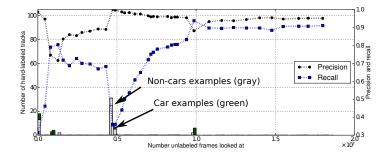
Online tracking-based semi-supervised learning



~8M unique unlabeled examples.

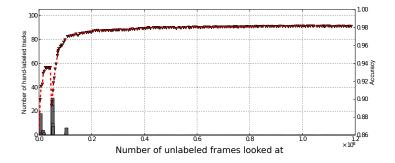
Additional hand-labeled examples can break it out of local minima.

Online tracking-based semi-supervised learning



Given lots of negative examples, recall initially drops, then recovers; overall accuracy improves.

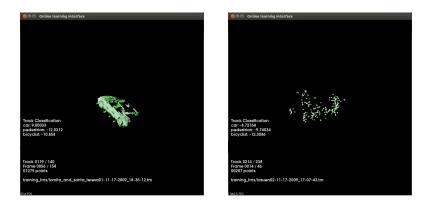
Online tracking-based semi-supervised learning



Results after running for ~1 week. Total hand-labeled tracks: 108, vs ~4000 needed for good performance in fully-supervised case.

Max accuracy when training on automatically-labeled background and all hand-labeled tracks: 90.1%.

Annotating

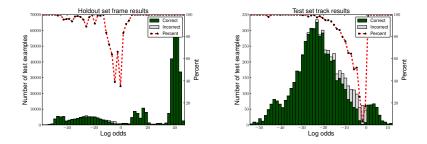


Alex Teichman and Sebastian Thrun Online, semi-supervised learning // RSS2012

<ロ> <同> <同> < 同> < 同>

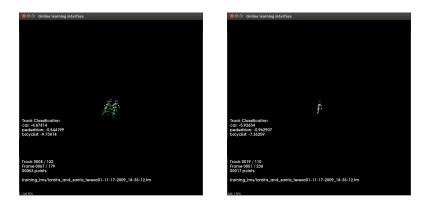
э

Annotating



The holdout set can tell you where to look for incorrect examples.

Annotating

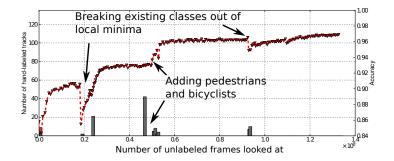


Alex Teichman and Sebastian Thrun Online, semi-supervised learning // RSS2012

<ロ> <同> <同> < 同> < 同>

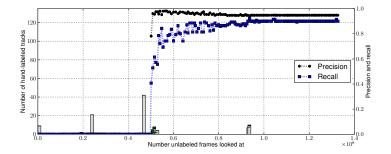
э

Adding classes later



Max accuracy when training on automatically-labeled background and all hand-labeled tracks: 90.8%.

Adding classes later



Memory fragmentation

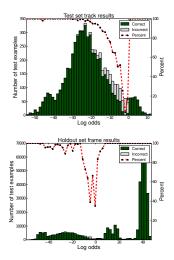
- Combined training buffer rather than one per class
- Stochastic gradient constant step size
- Not weighting the hand-labeled data

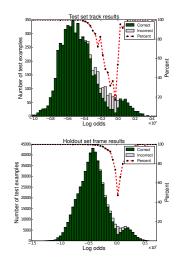
- Memory fragmentation
- Combined training buffer rather than one per class
- Stochastic gradient constant step size
- Not weighting the hand-labeled data

- Memory fragmentation
- Combined training buffer rather than one per class
- Stochastic gradient constant step size
- Not weighting the hand-labeled data

- Memory fragmentation
- Combined training buffer rather than one per class
- Stochastic gradient constant step size
- Not weighting the hand-labeled data

Future work: dual induction





*) Q (

Future work

Segmentation	h
--------------	---

Tracking

Classification

- Connected components
- Background subtraction
- Kalman filters
- Boosting
- Logistic regression, stochastic gradient descent

- Discriminative segmentation and tracking

