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The big picture

What is the desired user
interface for object
recognition?

Want autonomy with the
option for user input.

Online, active,
semi-supervised learning
...
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Static train/test framework

Rigorous evaluation and comparison

Experimental setup

Occasional user interaction

Infinite unlabeled data stream

We don’t want to overfit to this framework!
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Object recognition approaches - sliding window &
tracking-by-detection

Spinello and Arras

Spinello, Stachniss, and Burgard

Alex Teichman and Sebastian Thrun Online, semi-supervised learning // RSS2012



Motivation
Algorithm

Experiments

Object recognition approaches - semantic segmentation

Douillard et al.

Combining sliding windows and semantic segmentation: Lai et al.
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Object recognition approaches - keypoint matching

Solutions in Perception Challenge

Collet et al.
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Segmentation — Tracking — Track classification
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Problem decomposition

Segmentation — Tracking — Track classification
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Descriptors

Oriented bounding box size

Spin images

HOG descriptors computed on virtual
orthographic camera images

29 different descriptor spaces

x ∈ R∼4000
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Tracks
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Tracking-based semi-supervised learning

Train classifier

Classify unlabeled 
tracks

Induct training
examples

Large, automatically-labeled background dataset is provided.
Often this is easy to collect.

Only positive examples are inducted during semi-supervised
learning.
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Tracking-based semi-supervised learning
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Unsupervised method given millions of additional unlabeled examples.

Track classification accuracy is reported. (This does not include segmentation and tracking errors.)
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Tracking-based semi-supervised learning

Three hand-labeled training examples of each class + millions of unlabeled examples used to generate
these results.

Outlines are tracked objects. Track classifications are computed offline.

White outlines are tracked objects classified as neither person, bicyclist, or car.
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Offline to online

Train classifier

Classify unlabeled 
tracks

Induct training
examples
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Modularity

- Connected components
- Background subtraction

Segmentation

- Kalman filters

Tracking

- Boosting
- Logistic regression, 
    stochastic gradient descent

Classification

- Discriminative segmentation
    and tracking

WAFR2012
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Logistic regression & stochastic gradient descent

Parametric

Fast to train and evaluate

Easy to incrementally train

x ∈ Rn, y ∈ {−1,+1}

P(y |x) =
1

1 + exp(−ywT x)

maximize
w

∏
m

P(y (m)|x (m))

minimize
w

M∑
m=1

log(1 + exp(−y (m)wT x (m)))

M might be giant, or you might not have access
to them all at one time.

Stochastic gradient descent: take gradient steps
using just small subsets of the data.

... but this fails badly if applied without thinking.
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Linear models

log
P(Y = 1|x)

P(Y = −1|x)
≈ wT x
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Feature transform
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Supervised performance
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Linear model reaches a maximum of 94.0%, fully-supervised boosting 98.7%.
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Prediction stability
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Fully-supervised, looping through ∼ 7M training examples.

Can’t do semi-supervised learning if you forget about objects after not seeing them for a while!
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Training buffers

DS

DC

DS is the stream of examples seen so far.

DC is a new chunk of data.

Want to maintain DB , a fixed-size buffer of examples which is
representative of DS .

Resample from DB and DC proportionally, relative to how much of
the total stream they represent.
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Training buffers

0 1 2 3 4 5 6 7 8
×107

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Number of frames looked at

E
rr

o
r

Long periods where no 
cars are seen

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
×107

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Cars seen after the first ~6M
examples

Stable and improving
performance

Alex Teichman and Sebastian Thrun Online, semi-supervised learning // RSS2012



Motivation
Algorithm

Experiments

Confidence thresholds
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Need to decide when to
induct new tracks as
positive examples of objects.
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Variable confidences
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Confidence threshold learning
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Online tracking-based semi-supervised learning
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Hand-labeled examples

Additional hand-labeled examples can break it out of local minima.

∼8M unique unlabeled examples.
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Online tracking-based semi-supervised learning
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Given lots of negative examples, recall initially drops, then recovers; overall accuracy improves.
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Online tracking-based semi-supervised learning
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Results after running for ∼1 week. Total hand-labeled tracks: 108, vs ∼4000 needed for good
performance in fully-supervised case.

Max accuracy when training on automatically-labeled background and all hand-labeled tracks: 90.1%.

Alex Teichman and Sebastian Thrun Online, semi-supervised learning // RSS2012



Motivation
Algorithm

Experiments

Annotating
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Annotating
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The holdout set can tell you where to look for incorrect examples.
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Adding classes later
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local minima
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Max accuracy when training on automatically-labeled background and all hand-labeled tracks: 90.8%.
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Adding classes later
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Causes of failure while developing this

Memory fragmentation

Combined training buffer rather than one per class

Stochastic gradient constant step size

Not weighting the hand-labeled data
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Future work: dual induction
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Future work

- Connected components
- Background subtraction

Segmentation

- Kalman filters

Tracking

- Boosting
- Logistic regression, 
    stochastic gradient descent

Classification

- Discriminative segmentation
    and tracking
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