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The big picture

Alex Teichman and Sebastian Thrun

@ What is the desired user
interface for object
recognition?

@ Want autonomy with the
option for user input.

@ Online, active,

semi-supervised learning
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Motivation

Static train/test framework

Table 1. Breakdown of the dataset by class. Tracks were collected from busy streets and intersections.

Number of tracks

Set Car Pedestrian Bicyelist Background All
Training 904 205 187 6585 7881
Testing 847 12 140 4936 6035
Total 1751 317 327 11,521 13916

Number of frames

Set Car Pedestrian Bicyclist Background All
Training 31,165 532,760 688.461
Testing 25,410 0,917 637,703
Total 151,428 56,575 1,063,677 1,326,164
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Motivation

Static train/test framework

Table 1. Breakdown of the dataset by class. Tracks were collected from busy streets and intersections.

Number of tracks

Set Car Pedestrian Bicyelist Background All
Training 904 205 187 6585 7881
Testing 847 12 140 4936 6035
Total 1751 317 327 11,521 13916

Number of frames

Set Car Pedestrian Bicyclist Background All
Training 31,165 532,760 688.461
Testing 25,410 530,917 637,703
Total 1,063,677
(] Rigorous evaluation and comparison @ Occasional user interaction
@ Experimental setup @ Infinite unlabeled data stream

We don’t want to overfit to this framework!
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Motivation

Object recognition approaches - sliding window &
tracking-by-detection

Spinello and Arras

Spinello, Stachniss, and Burgard
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Motivation

Object recognition approaches - semantic segmentation

Douillard et al.

Combining sliding windows and semantic segmentation: Lai et al.
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Motivation

Object recognition approaches - keypoint matching

Solutions in Perception Challenge

Collet et al.
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Motivation

Problem decomposition

Segmentation
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Motivation

Problem decomposition

Tracking
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Motivation

Problem decomposition

car -11.60
ped 0.36
bike 1.27

Alex Teichman and Sebastian Thrun

Track classification

-30.98
—> |-14.68
11.42

Online, semi-supervised learning
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Motivation

Descriptors

Oriented bounding box size
@ Spin images

@ HOG descriptors computed on virtual
orthographic camera images

Alex Teichman and Sebastian Thrun

@ 29 different descriptor spaces

® x € R™400
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Motivation

Tracks

Classifier: classifiermb
car: —1653
pedestrian: —3312
bicyclist: -41.31

363 points

Track 100-of 1477

Cloud 52 of 91

Wrap mode: on background
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Motivation

Tracking-based semi-supervised learning

Train classifier

Classify unlabeled
tracks

@ Large, automatically-labeled background dataset is provided.
Often this is easy to collect.

Induct training
examples

@ Only positive examples are inducted during semi-supervised
learning.
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Motivation

Tracking-based semi-supervised learning
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@ Unsupervised method given millions of additional unlabeled examples.

@ Track classification accuracy is reported. (This does not include segmentation and tracking errors.)
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Motivation

Tracking-based semi-supervised learning

@ Three hand-labeled training examples of each class 4 millions of unlabeled examples used to generate
these results.

@ Outlines are tracked objects. Track classifications are computed offline.

@ White outlines are tracked objects classified as neither person, bicyclist, or car.
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Algorithm

Offline to online

Algorithm 1 Tracking-based semi-supervised learning

7 is a confidence threshold chosen by hand

S is a small set of seed tracks, labeled by hand
U is a large set of unlabeled tracks

B is a large set of background tracks

W is a working set, initially empty

Train classifier

W.=SuB
repeat
Train frame classifier C on W
W:=SuB
for u e Udo
Classify track u using C
¢ := confidence( «)
[ := classification( u)
if ¢ = 7 and / # “background” then
Add u to W with label /
end if
end for
until converged

Classify unlabeled
tracks

Induct training
examples
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Algorithm

Modularity

Segmentation Tracking Classification
- Connected components - Kalman filters - Boosting
- Background subtraction - Logistic regression,

stochastic gradient descent

- Discriminative segmentation
and tracking

WAFR2012
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Algorithm

Logistic regression & stochastic gradient descent

@ Parametric
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Logistic regression & stochastic gradient descent

@ Parametric
@ Fast to train and evaluate

@ Easy to incrementally train
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Algorithm

Logistic regression & stochastic gradient descent

@ Parametric
@ Fast to train and evaluate

@ Easy to incrementally train

xeR"ye{-1,+1}
1 @ M might be giant, or you might not have access
P(y[x)

= W to them all at one time.
maximize H P(y(m)|x(m))

M
minimize Z log(1 + exp(—y™w T x(M))

m=1

Alex Teichman and Sebastian Thrun Online, semi-supervised learning // RSS2012



Algorithm

Logistic regression & stochastic gradient descent

@ Parametric
@ Fast to train and evaluate

@ Easy to incrementally train

xeR"ye{-1,+1}
1 @ M might be giant, or you might not have access
P(y[x)

= 1—_,_ to them all at one time.
+ exp(—yW X) @ Stochastic gradient descent: take gradient steps

using just small subsets of the data.
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Algorithm

Logistic regression & stochastic gradient descent

@ Parametric
@ Fast to train and evaluate

@ Easy to incrementally train

xeR"ye{-1,+1}

1
P =
) = T et ™)

max‘iNmize H P(y(™|x(m)

M
minimize Z log(1 + exp(—y™w T x(M))

m=1

M might be giant, or you might not have access
to them all at one time.

Stochastic gradient descent: take gradient steps
using just small subsets of the data.

... but this fails badly if applied without thinking.
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Algorithm

Linear models
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Algorithm

Feature transform
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Algorithm

Supervised performance

100 Fully-supervised baseline

0.98
0.96
0.94
0.92

Accuracy

0.90
0.88
0.86
0.84

0'820 500 1000 1500 2000 2500 3000 3500 4000 4500

Number of hand-labeled tracks

Linear model reaches a maximum of 94.0%, fully-supervised boosting 98.7%.
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Algorithm

Prediction stability

Lohg periods where no
cars are seen

Wil
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-
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@ Fully-supervised, looping through ~ 7M training examples.

@ Can't do semi-supervised learning if you forget about objects after not seeing them for a while!
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Algorithm

Training buffers

Ds

@ Ds is the stream of examples seen so far.
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Algorithm

Training buffers

@ Ds is the stream of examples seen so far.
@ D¢ is a new chunk of data.

@ Want to maintain Dg, a fixed-size buffer of examples which is
representative of Ds.

@ Resample from Dg and D¢ proportionally, relative to how much of
the total stream they represent.
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Training buffers

Algorithm

Long periods where no
0.16
cars are seen
0.14;
012 ‘ J
L 010
g 0.08
w 0.06
004
0.02
0.00 1 2 3 4 5 6 7
%10’
Number of frames looked at
01
0 Cars seen after the first ~6M
o examples
012}
o1 Stable and.improving
ol performance
0.06)
0.04}
%0 05 10 15 20 25 30 35 20
x10"
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Algorithm

Confidence thresholds

Test set track results
< 100

ot

EEm Correct
=3 Incorrect

= = Percent
0

@ Need to decide when to
§ induct new tracks as
B positive examples of objects.

Number of test examples

0
Log odds
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Algorithm

Variable confidences

Test set track results

Test set track results

N
0 EY
8 ® 8
=1 =1
2 20 Lk
g g
2 “z R £
g 4 8 8
5 150 oL 51 &
8 8
£ 100] £ 1
5 5
z 0 z
50|
= —— =04 =0z
Log odds Log odds
n Thrun nline, sem //




Algorithm

Confidence threshold learning

Test set track results Test set track results

.
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Experiments

Algorithm sketch

R )
Hand-labeled /Updata N
trainin, L )
o 9 x100 wassnﬁe/r/
< y 4

Auto-labeled
background
training data
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Experiments

Algorithm sketch

i Y // N // Y
Hand-labeled /" Update N // Update N Hand-labeled
training 700 “_classifier - " thresholds - x10 holdout
data Q y Q y data

Q y \ 4 4
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Auto-labeled Auto-labeled
background background
training data holdout data

Q
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Experiments

Algorithm sketch

Unlabeled data
from the stream
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Experiments

Algorithm sketch

Unlabeled data
from the stream

A
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Experiments

Online tracking-based semi-supervised learning
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@ Additional hand-labeled examples can break it out of local minima.

@ ~8M unique unlabeled examples.
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Experiments

Online tracking-based semi-supervised learning

Number of hand-labeled tracks
Precision and recall

8o 05 10 15 263
Number unlabeled frames looked at x10"

@ Given lots of negative examples, recall initially drops, then recovers; overall accuracy improves.
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Experiments

Online tracking-based semi-supervised learning
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@ Results after running for ~1 week. Total hand-labeled tracks: 108, vs ~4000 needed for good
performance in fully-supervised case.
@ Max accuracy when training on automatically-labeled background and all hand-labeled tracks: 90.1%.

RSS2012
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Experiments

Annotating

©©® online learning Interface Online learning interface

Track Classification Track Classification
car:9.00033 car. -8.72168

edestrian: -12.0312 N pedesfrian: -9.74034
bicyclist: -10.858 bicyclist: -12.3086

Track 0119 / 140 Track 0214 /238
Frame 0056 / 154 Frame 0014 /46
01279 points. 00207 points.

training_tms/lomita_and_santa_feresa01-11-17-2009_18-35-12.m \g_tms/lasuen02-11-17-2009_17-07-43.4m
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Experiments

Annotating

. Holdout set frame results
= e =

100 5

Test set track results
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@ The holdout set can tell you where to look for incorrect examples.

hman and Sebastian Thrun
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Experiments

Annotating

©©® online learning Interface ©©® online learning Interface

Track Classification Track Classification
car:-4.87814 car. -5.92634

pedesirian: -0.544199 pedesfrian: -0962907
bicyclist: -9.73818 bicyclist: -7.35259

Track 0008 / 132 Track 0019 /110
Frame 0067 / 179 Frame 0051 /238
00063 points. 00017 points.

training_tms/lomita_and_santa_feresa01-11-17-2009_18-35-12.m training_tms/lomita_and_santa_feresa01-11-17-2009_18-35-124m
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Experiments

Adding classes later

0 0 0 100
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@ Max accuracy when training on automatically-labeled background and all hand-labeled tracks: 90.8%.
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Experiments

Adding classes later
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Experiments

Causes of failure while developing this

@ Memory fragmentation
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Experiments

Causes of failure while developing this

@ Memory fragmentation
@ Combined training buffer rather than one per class

@ Stochastic gradient constant step size
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Experiments

Causes of failure while developing this

Memory fragmentation

Combined training buffer rather than one per class
Stochastic gradient constant step size

Not weighting the hand-labeled data
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Experiments

Future work: dual induction

Test set track results Test set track results
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Experiments

Future work

Segmentation Tracking Classification
- Connected components - Kalman filters - Boosting
- Background subtraction - Logistic regression,

stochastic gradient descent

- Discriminative segmentation
and tracking
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