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Abstract

We study the aggregation of multiple counterfactual queries
when evaluating action policies in a contextual bandit sce-
nario with batched data. This problem is commonly encoun-
tered since personalized treatments often lead to changes to
multiple outcome variables. To reason with heterogeneous
queries, we propose a class of loss functions composed of
policy estimators built from a causal graph. Applying a model
architecture inspired by deep learning, the base parameterized
model can be jointly trained for the combination of queries.
The trained model makes inference decisions on each data
instance to maximize the desired aggregated counterfactual
changes. Our method decomposes treatment into the binary
treatment decision and action policy. This allows for policy
learning on complex action spaces, including a blend of con-
tinuous and discrete treatments. We demonstrate the practical
significance of our methodology by applying it to real-world
data, and our method outperform benchmarks on two publicly
available datasets.

Introduction

Algorithm driven decisions personalized to individuals is
an important application of artificial intelligence systems.
In search engines, online advertising, and recommendation
systems, individual context is used as input for personal-
ization models to rank web-pages, show advertisements,
and suggest content. Contextual bandits algorithms have
seen rising popularity to solve these problems by evaluat-
ing the desired counterfactual changes (Li et al. 2010) (Chu
et al. 2011) (Li et al. 2015) (Swaminathan and Joachims
2015a) (Su et al. 2019), and utilizing action-reward observa-
tions (Joachims, Swaminathan, and de Rijke 2018) to learn
policy models.

We call to attention a common class of problems where
personalized treatment interventions lead to counterfactual
changes to more than one outcome variable. These problems
are ubiquitous when trading-off cost with reward. Personal-
ized treatment policy in an online advertising campaign may
lead to holistic growth in product sales, but will also cause
an increment in spending. The collective result of the cam-
paign may be measured by the cost effectiveness.
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At the heart of this problem is counterfactual
queries (Pearl 2014) (Koller and Friedman 2009) and
the aggregation of queries for counterfactual reasoning.
For the advertising campaign, cost effectiveness can be
measured by the aggregation of counterfactual increase
in sales divided by the counterfactual increase in cost. In
previous studies, the direct method (DM) (Rubin 1974) is
applied to estimate counterfactual queries of an outcome
variable, supported by doubly robust estimation (Bang
and Robins 2005), and inverse propensity scoring (IPS)
to work with selection bias (Austin and Stuart 2015;
Imai and Van Dyk 2004). Off-policy evaluation (OPE) for
contextual bandits also evaluates the single counterfactual
query with flexible policy functions (Li et al. 2010) (Kallus
and Zhou 2018) (Demirer et al. 2019). In both approaches,
models are built to first evaluate the counterfactual query
for each outcome variable. To aggregate multiple counter-
factual queries, model predictions are greedily combined.
The combination of multiple machine learning models
could increase the bias of the overall problem (Beygelzimer
and Langford 2009). From an optimization perspective, the
approach could result in local minima compared with a joint
optimization algorithm.

In recent times, deep learning methods (LeCun, Ben-
gio, and Hinton 2015) (Bengio, Courville, and Vincent
2012) (Krizhevsky, Sutskever, and Hinton 2012) have been
proven effective when optimizing objectives through a hi-
erarchy of learning units. We use this perspective to con-
struct a policy learning algorithm that optimizes for the de-
sired overall counterfactual results with aggregated queries.
Rather than using counterfactual estimators to greedily max-
imize single outcomes, we apply parameterized models to
represent effectiveness for individuals and treatment ac-
tions. These effectiveness measures are used to build esti-
mators (Su et al. 2019) with conditional probability rules
according to the causal graph. The aggregated objective for
counterfactual reasoning can be formed with estimators with
differentiable operators. Eventually, gradient methods are
used to find optimal parameters in the base models for best
action policies personalized to individuals.

Continuous action policies have been studied through the
generalized propensity score approach (Imai and Van Dyk



2004) (Kreif et al. 2015), with semi-parametric mod-
els (Athey and Wager 2017) (Demirer et al. 2019), and us-
ing kernel functions (Kallus and Zhou 2018). We build on
the works in off-policy evaluation to enable learning of both
discrete and continuous policies for aggregated counterfac-
tual queries. This paper presents a formulation that considers
treatment decision, and action policy as different latent vari-
ables. We utilize the causal graph rules to seamlessly inte-
grate policy learning into the model structure. The method-
ology then allows the optimization of aggregated counter-
factual arguments across the portfolio of individuals, in a
complex action space that includes continuous treatments.

As part of the action policy learning, our algorithm uti-
lizes not only standard covariates but also covariates of meta
selections. These selections affect the type of treatment indi-
viduals receive, such as web-pages recommended to users.
We build on literature on relevance ranking (Huang et al.
2013), and structure the relevance of meta selection with in-
dividual into the action policy for joint learning.

Balancing estimators through inverse propensity scoring
is a cornerstone method for correcting data bias (Austin and
Stuart 2015). Balancing algorithms are also incorporated for
policy evaluation models (Kallus 2018). Our method sup-
ports balancing of biased data for aggregated counterfactual
arguments with multiple queries by incorporating inverse
propensity scoring in the model structure.

Finally, we present evidence that our algorithms have
practical significance. The methods are applied on two real-
world datasets where success metrics with aggregated coun-
terfactual queries can be directly measured. We compare the
aggregated counterfactual learning algorithms with prior art.
It is shown that leveraging policy learning with aggregated
counterfactual queries, the proposed methods outperforms
previous algorithms significantly in key desired metrics and
in a statistically significant manner.

Problem Setup and Notation

We first present the algorithmic setup of the problem as
represented in the scenario of contextual bandits learning
from logged feedback (Li et al. 2015) (Swaminathan and
Joachims 2015a) (Kallus and Zhou 2018) (Kallus 2018).
Given observation for an individual with covariates x € X.
Treatment intervention' that can be given to this individual
is represented by the boolean variable 7'. The action pol-
icy m governs the treatment, and represents a function map-
ping from the covariates x to p = 7(x), where p represents
the policy action, which can be a multinomial choice p =
{1,2,..., K} or a continuous variable, e.g. p ~ N (u,0?).
The overall policy can be a collection of independent action
policies, e.g. 1 = {m1, 72, ...}. For the no-treatment indi-
viduals, there is no action taken on them and 7" = 0. Note
no action is taken, even though p = 7(x) could indicate the
best action that could be taken on this individual.

The outcome for this individual is denoted Y, so logged
data is in the form of {z(*) T p(® Y} ¢ D, This data

'Our problem setting assumes the relationship between assign-
ment and treatment is deterministic, i.e. treatment is given with
probability 1 if assigned.

is assumed to be i.i.d. distributed. From this logged data,
the algorithm learns the optimal policy 7, which in turn de-
termines the optimal policy action p(*) given the individual
covariates. This paper considers learning from the data in
batches rather than in an online fashion.

In contextual bandit settings, the algorithm’s goal is to
maximize reward which can be the outcome variable, such
as the click-rate of a web-page (Chu et al. 2011) (Kallus and
Zhou 2018). Here, the optimal policy is 7* = arg max v,.

vr = Ex(Yx) €))

A counterfactual query considers changes an intervention
treatment incurs in an outcome variable (Koller and Fried-
man 2009). This can be quantified by the expected value of
difference between the outcome variable given and not given
the intervention. 7y () = Err=1(Y|z) — Ex 1=0(Y|z).
This notation is in accordance with definition of the treat-
ment effect function (Holland 1986) (Kiinzel et al. 2017).
The functional form is used by policy learners such as
off-policy evaluation (OPE) (Wang, Agarwal, and Dudik
2017) (Demirer et al. 2019), and for treatment effect estima-
tion algorithms (Kiinzel et al. 2017) (Nie and Wager 2017):

VUp = ETr,T:l(Y|-T) — Ew’T:()(YlCE) = Ty(l‘) (2)

For off-policy evaluation, the function is fitted to the logged
data {z() T p® Y} ¢ D, then can be used to esti-
mate the treatment effect given covariates of an individual
and the policy function. For our methods, we make the un-
confoundedness assumption, Yr—q, Yr—; L T|x, same as
previous works (Nie and Wager 2017).

Instead of using a single counterfactual query for off-
policy evaluation with a contextual bandits model, we pro-
pose the paradigm to form counterfactual reasoning by ag-
gregating multiple queries. In the case where 7y, > 0, and
Ty, > 0%, the aggregated query as effectiveness for the ex-
ample of the advertising campaign, can be formed by assign-
ing Y, to be the sales, and Y} to be the cost. The aggregated
query is defined as:

o — TY, _ Eﬂ',T:l(Ya‘(E) - E‘IT,T:O(Y(I|‘/'E)
"1ty Erroi(Vlz) — Erreo(Ys|z)

3)

The counterfactual reasoning is that w,: represents the cost
effectiveness (incremental reward Y, over incremental cost
Y}) if the system switches to using action policy 7. The goal
of the learning algorithm is to find the optimal policy that
maximizes the cost effectiveness, thus 7* = arg maxw;.

This optimization will result in an optimal policy model to
determine the treatment actions p = w(z) per individual
that leads to the highest cost-effectiveness out of all possible
campaign strategies. Counterfactual queries could be aggre-
gated as long as the operators are differentiable, an example
1SWyr = Ty, Ty,.

Our approach is different from single-objective contex-
tual bandit policy learning (Chu et al. 2011) (Li et al.

“Division is a differentiable operator given both numerator and
denominator are positive.



2010) (Swaminathan and Joachims 2015a) since we reason
with aggregate counterfactual queries and optimize the pol-
icy jointly. This is also true compared with off-policy eval-
uation (OPE) with a single counterfactual query. Instead of
evaluating change across on-off policies, our method learns
the optimal policy per individual across the batched data for
the aggregated counterfactual objective.

Existing Approaches and Related Work

While initially presented in the causal and counterfactual
inference literature (Pearl 2009; 2014; Koller and Fried-
man 2009), the efficient estimation of counterfactual queries
is well studied both from the contextual bandits with
logged feedback (Swaminathan and Joachims 2015a; 2015b;
Kallus and Zhou 2018; Kallus 2018; Su et al. 2019), and
causal inference perspective, commonly know as the ‘di-
rect method’ for estimating treatment effects. (Rubin 1974;
Shalit, Johansson, and Sontag 2017; Kiinzel et al. 2017;
Nie and Wager 2017; Athey and Wager 2017).

The literature for learning contextual bandits on logged
feedback studies the learning principles (Dudik, Langford,
and Li 2011; Wang, Agarwal, and Dudik 2017; Swami-
nathan and Joachims 2015a; 2015b), and constructs ro-
bust policy estimators (Su et al. 2019) for strong general-
ization performance. Policy evaluation and learning is ap-
proached extensively with learning generic continuous poli-
cies (Kallus and Zhou 2018), discrete action and neural net-
work policy models (Joachims, Swaminathan, and de Rijke
2018) and effective semi-parametric policy models (Demirer
et al. 2019).

The direct methods (DM) in causal inference uncovers
a range of algorithms from the treatment effect estima-
tion paradigm (Rubin 1974), to inverse propensity scor-
ing (IPS) (Lunceford and Davidian 2004; Austin and Stu-
art 2015; Imai and Van Dyk 2004; Glynn, Schneeweiss,
and Stiirmer 2006; Wooldridge 2007; Curtis et al. 2007), to
doubly robust estimation methods which combines DM and
IPS (Bang and Robins 2005; Dudik, Langford, and Li 2011;
Funk et al. 2011). The generalization of propensity score
can be used to deal with discrete and continuous treat-
ments (Imai and Van Dyk 2004). The DM method could
be supplemented with generalized propensity score, and Su-
per Learner to improve model selection (Kreif et al. 2015).
The studies gave rise to generalizations of powerful statis-
tical methods, named meta-learners (Kiinzel et al. 2017).
This area has also seen application of effective regression-
tree, decision-tree based methods (Wager and Athey 2018;
Athey and Imbens 2016) together with detailed studies on
tree-based policy learners (Athey and Wager 2017).

We take note the important areas of contextual bandits
applications. This research area focus on efficient algo-
rithms (Chu et al. 2011; Li et al. 2010; 2015), and calls
to light the practical considerations in industry (Bottou et
al. 2013), with relation to traffic and A/B experiments (Xie,
Chen, and Shi 2018) commonly used in web services.

Different from prior approaches, our proposed meth-
ods focus on the counterfactual reasoning and optimiza-
tion when aggregating multiple counterfactual queries. This
is especially important in applications where cost-reward

trade-off exists. Building on prior art, our method also de-
tails the policy learning algorithms to individually determine
the best treatment. To the best of our knowledge, this paper
presents a novel discussion and perform experiments to il-
lustrate the algorithm for aggregated counterfactual queries.

It’s worth discussing application of deep learning methods
for contextual bandits such as (Joachims, Swaminathan, and
de Rijke 2018) (Riquelme, Tucker, and Snoek 2018), balanc-
ing the representation space (Shalit, Johansson, and Sontag
2017) and adapting recurrent networks to study the effects of
sequential treatments (Lim 2018). In this work, we leverage
deep learning architectures, perspectives and methodology.
This will be presented in detail in the next section.

Gating Networks for Measuring Effectiveness

We start with a central task for our approach: represent and
parameterize the measure for effectiveness with a neural
model architecture. This effectiveness is correlated with the
cost effectiveness in our example, yet it is defined on the in-
dividual level. Each individual in the logged data, irrespec-
tive of their treatment 7" values, should be mapped into an
ordinal effectiveness measure, thus can be ranked as higher
or lower. Concretely, we define this measure w to correlating
with the base policy model 7p: w(?) = my(z(?)). We use the
softmax function to build a pair of gating networks for the
treated and no-treatment groups of individuals:

() exp(w®) G _ exp(w)
P T Y rep(w®) T Cexp(w®)
“4)
As the 7y base policy is a functional mapping from co-
variates, it is defined as a parameterized representation, e.g.
mo(z) = tanh(87x) or mo(x) = fo(x) where f is a func-
tional mapping defined by a neural network. This is our
base parameterized model. The pair of gating networks bor-
rows their neural architecture from multinomial logistic re-
gression (Bohning 1992), or neural architecture for mixture
of experts (Shazeer et al. 2017; Jordan and Jacobs 1994).
Leveraging these gating networks, it’s possible to express
the expectations in equation 3 while retaining the paramet-
ric policy model.

Eﬂ-T 1 Y|.I‘

Err—o(Y|r) = ZP

> rr v
&)
In the next section, we aggregate counterfactual queries
for the learning objective function, which enables learning
of the parameters 6.

Aggregating Counterfactual Queries for Policy
Learning

With representations in equation 5, the aggregated counter-

factual query w, in equation 3 is expanded with the effec-

tiveness measures p(*). The numerator and denominator are

also confined by the soft ReL.U rectifier units o,.. This en-

sures the objective is differentiable.

_ or(Xpey p(l) Y(Z) S Op(J) Y(J)) ©

or(Xr= pzz):1yb(z) - 2X1r=0 pgz):oyb(j))
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The form of aggregated counterfactual queries given in
equation 6 is a learning objective for individualized action
policy. The objective function can be formed by considering
all data points {z(), T p() Y} € D with (T = 1) and
without (T = 0) treatment in the training set. To learn the
policy, we use gradient methods to find optimal parameters
0" = argmaxws,.

0

From (Lunceford and Davidian 2004) and causal statis-
tics, the expected value of outcome of any instance
can be written as following equations. E. r—1(Y|z)

Eﬂ(yzal)T>va,T:0(Y|x) = EW(%) where e(x

is the propensity function defined as e(x) = E(T
1]z). It can be learned then applied on covariates com-
monly applied with inverse propensity scoring (IPS) meth-
ods (Imai and Van Dyk 2004; Glynn, Schneeweiss, and
Stiirmer 2006). The aggregated query objective becomes the
following equation. The detailed derivation is presented in
the supplementary materials.

&

o (e Y — (1 -

UT(GZT 1 peT(;r)lY() (1-

&) Sr_ 22 YD)

&) o v, )
@)

The ¢é in this equation is the example average of E(T =
1), and propensity function e(x) is pre-trained, then evalu-
ated on the data-set to produce scalars in equation 7. Our
method support the use of inverse propensity scoring to deal
with dataset bias.

Wr =

Learning Policies on Complex Action Spaces

The effectiveness measure p(i) can be interpreted to be a
probability since the gating network architecture normal-
izes the measure with ) ., p(l) =1, 71, pg)zo = 1.
Also, we illustrate the derivation from causal statistics in the
supplementary materials, showing the equivalent probabil-
ity quantity of p) = P(X = z0|r,20)) = P(X =
z(D|p()). Further, in the causal graphical model across
P(X,p,T,Y), the impact of T to Y was detailed in equa-
tion 6, while a directed edge exists from p to Y. Leveraging
the conditional probability rules in the causal graph, we can
unravel the relationship between policy action and the effec-
tiveness of the individual using the Bayes rule.

G _ _ POV PE)
>, P(pW ]z P(z)

®)

The policy action p(¥) can be decomposed into multiple
action spaces p(") = (pe, pm ). We assume p, p, are inde-
pendent given the covariates x(%).

P(p91a) = PP a)  ©)

With this decomposition, 7y could be defined as the in-
trinsic treatment policy function for an individual, related
to the quantity P(z(")); To incorporate action policies, the
form of 7y can be chose as a sigmoid compressed version

of arbitrary differentiable function.’. 7. is the continuous
policy function for intensity of the treatment, relating to the
quantity P( pﬁ” |z(*)); while 7, is the meta selection policy
function for discrete treatment choices, relating to the quan-
tity P (pé’? |z(?)). As with 7, the parameterization of 7. and
T could be a flexible mapping from covariates defined by a
neural network, e.g. w.(z) = fp, (), mm(x) = fo,, x. Here,
the policy model parameters 6., 6,,, can be jointly learned.

Continuous policy model 7.. Prior approaches for
continuous policy learning applies generalizations of the
propensity score (Imai and Van Dyk 2004; Kreif et al.
2015) for evaluation of counterfactual queries of treatment
effect, or use infinitesimal nudges with application of re-
gression trees (Athey and Wager 2017). Others apply ker-
nel functions, semi-parametric forms with off-policy eval-
uation (Kallus and Zhou 2018; Demirer et al. 2019). Our
method directly uses the relationship in equation 8 to struc-
ture the continuous policy function into the model architec-
ture.

We could consider likelihood P(p.|z()) to be estimated
from a distribution with with a continuous scope that can be
parameterized by 7. (2("):

P(p ") o< D(pe|me(z?)) (10)
x o(p)(1 = a(p™)) = he(p)) (A1)

Here p() = p — m.(z(). In this formulation, the policy
model determines hyper-parameters of the continuous distri-
bution, which then determines the likelihood of any contin-
uous action value. The distribution here is chosen as a bell-
shaped form, the derivative of the sigmoid. Given 7. (z),
the distribution is distinct per individual, and offers mea-
sure for the goodness of policy values. For example, when
7. denotes the mean of a bell-shaped distribution, the policy
model 7. (x) should give the optimal treatment intensity for
the individual. During training, if the data deviates from this
optimal value, its likelihood would be penalized with respect
to the amount of deviation. This is shown in Figure 1. The
likelihood function can also be defined with other distribu-
tions, such as the Befa distribution®.

Likelihood I
penalty

Actual policy Optimal policy

Figure 1: Penalty of a sub-optimal policy.

Meta-selection policy model 7,,,. Meta-selection is when
we have a selection of choices to treat the individual, such as
matching a user with a web-page. We utilize a helper policy

3With sigmoid non-linearity, the outputs are positive and are
well-controlled above 0, below 1.0, useful for normalization with
partition functions.

“This is detailed further in the supplementary materials.



function 7, to characterize P(p,,|z(?)). Here we offer the
opportunity to extend the covariates x to include the meta-
selection © = (z,,Z,) SO &, is the covariates of the indi-
vidual, and x,,, is covariates of the meta selection. The rela-

tionship between P(pm|at:gi)7 xg,ﬁ)) and 7, is as follows.

P(pmlx(()i)7‘r’£7il)) X ﬁm(mgi)ax%)) (12)
The meta selection policy model can be specified as
T (z) = argmaxi,,(z). The input covariates () =

m

(:c((f), x%)) are projected with a neural network to an em-
bedding space: e, = fo(x(oz)), en = fm (LL%)) The embed-
ding space can be learned while policy functions are learned.
The algorithm for matching here is related to ranking models
such as (Huang et al. 2013). We formulate the helper policy
function as the cosine distance across two embeddings plus
one.

ﬁm(m("’),aﬁ(”) =1+cos(¢p) =1+ _€o-Cm (13)

oo leo - eml|
Normalization in the neural architecture. The policy
functions need to be normalized to ensure the effectiveness
measures are aligned with the probabilistic quantities they
represent. We do this using a deep learning model architec-
ture with Tensorflow (Abadi et al. 2016).

Concretely, having ensured the policy functions are pos-
itive and bounded, we sum the scores together to form the
partition function then encode normalization operations in
the model architecture. This is done for across data instances
in respective treatment and no-treatment groups. The nor-
malization is done three times, first for normalizing A, in
equation 10 and 7,,, when combined in equation 9; the sec-
ond is the combination in equation 8; finally the third nor-
malization is performed with the softmax gating functions.

Objective for aggregated counterfactual queries. Sum-
ming up the parameterized policy model, matching model,
and normalization, we can use the overall objective func-
tion® to optimize for parameters in all policy functions,
namely 7, 7., and 7,,. All operators are differentiable so
we use gradient based numerical optimizers to solve for
the policy parameters which maximizes the combined ag-
gregated counterfactual queries. In practice, we apply im-
proved gradient optimizers such as Adagrad (Duchi, Hazan,
and Singer 2011) to find best policy parameters.

Empirical Experiments

Benchmark Models

We benchmark our method with off-policy evaluation and
treatment effect estimation algorithms. The compared meth-
ods from prior work estimates multiple outcomes with sepa-
rate models. In this context, two mainstream methodologies
are meta-learners (Kiinzel et al. 2017) (Nie and Wager 2017)
and causal trees and forests (Wager and Athey 2018). We
compare with the most representative algorithm in literature,
the quasi-oracle estimation algorithm, and causal forests.

Quasi-oracle estimation. We use linear regression® as
the base estimator. Since the experiment treatments are

SDetailed in the supplementary materials
8SKLearn’s ridge regression with zero regularization.

randomly given, we use constant treatment percentage as
propensity. We use the the model to learn the reward incre-
mentality across treatment and control with an conditional
average treatment effect function 7 for each outcome dimen-
sion. Each sample in the test set is evaluated for the counter-
factual query, and eventual metric is computed by combining
the counterfactual query of all outcomes. For instance, in the
case of maximizing Equation 3, we would train an estimator
for each of the a, b dimensions, then for each sample in the
dataset, we compute the predictions for each of 7,, 73, then
compute score s = 7%(z) /7°(z) for evaluation.

Causal Forest. We leverage the generalized random for-
est (grf) library in R (Wager and Athey 2018) (GRF ).
For details, we apply causal forest with 50 trees, 0.2 as
alpha, 3 as the minimum node size, and 0.5 as the sam-
ple fraction. We train multiple forests, then apply the ra-
tio of counterfactual queries to rank individuals. For hyper-
parameters, we perform search on deciles for parame-
ters num_trees, min.node.size, and at 0.05 intervals for
alpha, sample.fraction parameters. We also leverage the
tune.parameters option for the grf package, eventually, we
found best parameters through best performance on valida-
tion set’.

Aggregated Ranking Model (Simplified CT Model). We
use a simple parameterization for aggregated counterfac-
tual queries as a benchmark model. We use a scoring func-
tion similar to logistic regression, i.e. o(w’z + b), without
continuous or meta-selection policies. The model is trained
without weight regularization. We use the Adam optimizer
with learning rate 0.01 and default beta values. We compute
gradients for entire batch of data for optimization. For hyper-
parameter selection, we take the best validation set perfor-
mance out of 6 random initializations.

Continuous Treatment Policy Matching Model (CTPM).
We implement our deep learning based models with Ten-
sorflow (Abadi et al. 2016). The model architecture utilizes
deep learning to build aggregated counterfactual queries as
objectives, and continuous policy model for choosing ac-
tions. We use two-layer neural networks with the same num-
ber of first-layer units in meta-selection and continuous pol-
icy models ®. Adam optimizer used learning rate 0.01, de-
fault beta values. We run the same number of iterations as
simple CT model®. We take best validation set performance
out of 6 random intitializations.

Datasets

Ponpare Data The Ponpare dataset is a public dataset
from a coupons website (Ponpare ). The dataset is well-
suited to evaluate our proposed methodology since it of-
fers multiple outcome variables, such as purchase and cost
ground-truth, as well as the continuous discount levels of
the coupons. The sessions also matches user with coupon as

"Best parameters we experimented: num_trees= 50, alpha=
0.2, min.node.size= 3, sample. fraction= 0.5

$Number of hidden units is determined by validation results, 15
units for Ponpare dataset and 8 units for USCensus.

Due to variance-bias trade-off across datasets, both CTPM and
simple CT models are run for 2500 iterations for Ponpare dataset
and 650 iterations for USCensus



meta-selection. We leverage the open-source feature engi-
neering code provided by (Pon-Features ). The causal infer-
ence scenario focuses on estimating the combined benefits
when we offer a continuous and variable discount percent-
age given a user-coupon match. We pre-filter the sessions
where customers are below the age of 45. Due to dispropor-
tion of positive and negative samples, we subsample 4.0%
of sample of sessions that do not result in purchase. The
eventual dataset is around 130, 822 samples, we utilize dis-
count level as the continuous treatment policy, and use the
median of the level to segment out sessions into treatment
and control groups, indicated by binary variable 7', Discount
level is subsequently used as continuous policy p.. For this
dataset, we apply the aggregated counterfactual queries ob-
jective and minimize :—T ~+ ATy, This is slightly changed from
equation 3 with 7, as treatment effect for absolute discount
amount with reference to cost, 7,- the purchase boolean vari-
able with reference to benefit, and 7,,, the geographical dis-
tance from user to the product location for the coupon as ex-
tra cost related to delivery or travel. The A variable is chosen
to be fixed at 0.1 across all models with the goal of adding
distance factor into the objective.

US Census 1990 The US Census (1990) Dataset (Asun-
cion & Newman, 2007 (usc ) contains data for people in
the census. Each sample contains a number of personal fea-
tures (native language, education...). The features are pre-
screened for confounding variables, we left out dimensions
such as other types of income, marital status, age and an-
cestry. This reduces features to d = 46 dimensions. Before
constructing experiment data, we first filter with several con-
straints. We select people with one or more children (‘iFer-
til’ > 2)'% born in the U.S. (“iCitizen’ = 0) and less than 50
years old (‘dAge’ < 5), resulting in a dataset with 225, 814
samples. We select ‘treatment’ label as whether the person
works more hours than the median of everyone else, and se-
lect the income (‘dIncomel’) as the gain dimension of out-
come for 7, then the number of children (‘iFertil’) multi-
plied by —1.0 as the cost dimension for estimating 7.. The
hypothetical meaning of this experiment is to measure the
cost effectiveness, and evaluate who in the dataset is effec-
tive to work more hours. We apply optimization problem to
maximize 7., (7, — A7) as comparison with Ponpare Dataset
with 7, as treatment effect in income, 7. as treatment effect
in negative value of number of offspring, and 7, as effect
on married or not as an overall weighting factor across the
objective. This gives the objective hypothetical meaning of
utility. The A variable is chosen to be fixed at 3.0 across all
models to add a fixed cost weighting factor across income
and offspring cost.

For both datasets, we split training, validation and test
with ratios 60%, 20%, 20%.

Evaluation Methodology We evaluate the algorithms in
two ways. The first evaluation is Aggregated Counterfactual
(Treatment Effect) To Percentage (ATETP). This measure
compute the effectiveness measure on the test data-set, then
take an increasing percentage of the test set as to evaluate the

10 Fertil’ field is off-set by 1, ‘iFertil’= 0 indicating < 15 year
old male, ‘iFertil’=1 no children.

average treatment effect according to the pre-defined causal
metric in equation 3. If the model scores the matches and
treatment policies well, the ATETP should be high across
the lower spectrum of percentages. We also use the ATETP
area under curve (termed a-AUC) to be a numerical mea-
sure. The secondary metric is to plot a cost curve, i.e. to plot
the counterfactual query on reward 7, versus cost 7, as we
increase percentage of coverage in the test set. This measure
sees cost versus reward as the main concern, and we also
compute the area under curve (termed c-AUC) to numeri-
cally measure performance. !!

Experiment Results Figure 2 and Figure 3 show results
of causal models on Ponpare dataset'”>. The CTPM out-
performs quasi-oracle estimation, and simplied CT model
on both ATETP curve and cost-curve. With peak at 10-
20% treatment, the CTPM produces ATE improvement at
the most effective match instances across user and coupons.
For cost curve, CTPM also outperforms other models.
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at no model selection
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normalized Average Treatment Effect as % of value
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% of sessions treated from model selection

Figure 2: Aggregated counterfactual to percentage for Pon-
pare data.
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Figure 3: Secondary measure cost curve for Ponpare data.

Figure 4 and Figure 5 show results of the CTPM on US
Census. We observe higher ATE for the CTPM model in
high-scored instances. CTPM could identify the most in-
cremental instances without significant differences in cost.
The model outperforms baseline quasi-oracle estimation and
simplified CT model significantly both on the ATETP and
cost curve measures.

""For both a-AUC and c-AUC, the higher the measure the better.
12Standard deviations across 6 runs are indicated for both Pon-
pare and USCensus
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Figure 4: Aggregated counterfactual to percentage for US
Census.
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Figure 5: Secondary measure cost curve for US Census.

Table 1 summarizes results of the continuous treatment
policy matching model. On Ponpare dataset, CTPM out-
performs quasi-oracle estimation by more than 3x and im-
proves 67% upon aggregated ranking model in a-AUC. For
c-AUC, CTPM improves 41% upon quasi-oracle estimation
and improves 2 X upon aggregated ranking model. On US-
Census dataset, CTPM performs 8x better in terms of a-
AUC than quasi-oracle estimation, and out-performs aggre-
gated ranking model by around 42%. CTPM is more cost ef-
fectiveness in terms of c-AUC by 28% compared with quasi-
oracle estimation, and improvement 13% upon the aggre-

gated ranking model.
Analysis and Interpretation The continuous policy

model is able to predict the optimal treatment intensity. In
Figure 6, we visualize the optimal discount per session for
the genre ‘Health‘ in the Ponpare test set. Compared with

Table 1: Summary of results across models and datasets.

Algo/Dataset Ponpare USCensus
Eval. Metric  a-AUC ¢c-AUC a-AUC c-AUC
Random 1.15 0.50 0.31 0.50
Quasi-O 5.06 0.65 0.40 0.54

Causal Forest 6.58 0.61 0.53 0.51
Simple CT 11.12 0.74 2.47 0.61
CTPM 18.57 0.92 3.51 0.69

original treatment intensities, the optimal intensities from
model prediction shows apparent segregation of low vs high
intensity recommendations. This is shown by the data clus-
ters near zero percentage (green oval), and near full percent-
age (orange oval).

Predicted optimal treatment intensities (discounts)
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Figure 6: Scatter plot comparison across optimal predictions
from model (left) and original treatment intensities (right).

Figure 7 shows the results of the learned embeddings by
our model on the Ponpare dataset. The embedding space is
jointly learned across the individuals and the coupons. Fig-
ure 7 plots the embeddings projected by the model using
2D t-distributed stochastic neighbor embedding (van der
Maaten and Hinton 2008) (t-SNE)'3. We can see the learned
subject embeddings are organized by gender with two sepa-
rable clusters.
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Figure 7: Visualization of CTPM user embeddings for age
group 30 (left) and 44 (right) from Ponpare dataset using
T-SNE with color indicating user gender.

Conclusion and Discussion

In this paper, we proposed a model that jointly optimizes
aggregated counterfactual queries. This method is suitable
for contextual bandits while able to learn continuous space,
meta-selection policy models. This method differentiates
from prior work by considering multiple counterfactual
queries and utilizes deep learning architectures for joint op-
timization. We show the algorithm performs well on public
datasets, especially handling scenarios when trading off cost
with reward. For future work, our proposal offers potential
to combine with other deep learning techniques such as se-
quential, recurrent models, generative models, and can be
potentially extended and applied to other scientific domains.

3The parameters for t-SNE are learning rate of 30, perplexity of
20.
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