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Introduction 
 

In 2002 alone, the human world produced 5 exabytes ( 1810  bytes) [1] of information, 

equivalent to all the words ever spoken by human beings. The information in this world is 
growing at mind-blowing speed in the form of text, films, and computer data storage. 

 

Does producing information mean advance in human knowledge? It is not hard to recognise 
that the amount of information produced has no direct correlation to significance, and more 
information without a way to find what's useful, can only disorient human minds. 
Information overload, the problem of overwhelming amount of unclassified information, has 
become a serious issue even to the life of average people, who has learned to use the modern 
communication tools such as the World Wide Web.   

 

The field of Information Retrieval tries to solve the problem of information overload. Given 
some small amount of query information provided by the user, an automated information 
retrieval system tries to find the exact piece of information required, from a mass 
information storage base. However, the best tools available to us, computing machines, have 
storage specifications which are not optimal for structuring, processing and retrieving 
information needed by the human user. The field of information retrieval have developed 
comprehensive computational algorithms, and applied advanced interdisciplinary techniques 
to this demanding area.  

 

In this report, we will combine the perspectives of information retrieval with machine 
learning, and discuss a specific machine learning algorithm developed for information 
retrieval, Bayesian Sets (Z.Ghahramani and K.A. Heller, 2005) [2].  This algorithm is 
proposed to solve an interesting problem of clustering-on-demand, or finding similar items 
given some examples. In the next section, the report will explore theoretical aspects of 
Bayesian Sets in detail. Two extensions to the original Bayesian Sets algorithm are 
introduced, and we will look at applying the algorithm in different ways with different types 
of data.  

 

The form of information needs by the human user is hardly easily understood by the 
computer. For instance, the request for a piece of 'soothing' music cannot be comprehended 
by a machine unless pieces of music are marked with tags of 'soothing', 'invigorating' in 
binary form. It will cost enormous human effort to label these data, analogous to program a 
microprocessor by assembly code. Is there a way to have the computer comprehend these 
concepts? In this report, we try to do this using a collaborative dataset, i.e. a dataset formed 



 CUED Final Project: Information Retrieval with Bayesian Sets and Extensions 

 4 

by human opinions. We use the Bayesian Sets algorithm in the collaborative, or a trivial 
'human interest' data-space of multi-dimensional binary data, to retrieve similar items to 
those specified by the user query and have the retrieval system pick up common similarities 
in the items’ content features. In Section 3, the report will discuss implementation of 
Bayesian Sets and extensions on a recently published collaborative database, the Netflix 
Movie dataset [3]. 

 

In Section 4, a number of experiment designs is specified and implemented using MATLAB. 
Using movie content information extracted from the Internet Movie Data Base (IMDB) [4] 
(www.imdb.com), we show by experimentation the effectiveness and the advantages of 
Bayesian Sets used in information retrieval of collaborative data. We compare results to 
other retrieval algorithms and evaluate a new implementation which improves the original 
Bayesian Sets algorithm. 
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Theoretical Results and Derivations 
 
It is essential to introduce and derive, at the start of this report, the key theoretical results that 
will be used as the basis of implementation and experimentation. We will show in this 
section: 

♦ The Boolean formulation for information retrieval 

♦ The basic Bayesian Sets algorithm for information retrieval 

♦ An extension to Bayesian Sets applied to Negative Relevance Feedback (NRF) 

♦ An implicit method of applying NRF with content information. 

1.1 Information Retrieval and its Basic Formulations 

“Information Retrieval is finding materials of an unstructured nature that satisfy information 
need from within large collections.” [5]   
 
To introduce our formulations of information retrieval, it is useful to look at the common 
problem of retrieving documents with the text query. Suppose there are a large number of 
documents. The retrieval task is find relevant documents to a query text string. Given the 
query, say “Cambridge”, the simplest form of search that we can perform is: 
 
 
 
 
 
 
 
If the document base is large, the text search can be computationally expensive. To perform 
real-time retrieval by request, we could use a form of pre-computation, or indexing. A 
simple way to index the raw data can be performed if we obtain the following Boolean 
matrix: 
 

 Doc 1 Doc 2 Doc 3 Doc 4 
“Cambridge” 0 1 1  0 
“London” 1 0 0 1 
“Paris” 0 0 1  0 
“New York” 1 1 0 1 

 
Figure 1.1: Term-document incident matrix. Element (i,j) is 1 if document in column j contains the term in i 

For all stored documents, 

Search for the matching string “Cambridge” 

 

Return all the documents that have one or more matches 
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The matrix given in Figure 1.1 is called a “term-document incident matrix”, where the 
incidence of a term in a document is represented by a binary ‘1’. Provided with a complete 
vocabulary of words, this matrix is pre-processed from the documents and stored in 
computer memory. Now to perform retrieval by request, we can simply search through rows 
for ‘1’s and return the documents accordingly. By solving the above simple retrieval 
problem, we have assumed a trivial definition for ‘relevance’. A document is ‘relevant’ to 
the query if it contains the term given in the query.  
 
From the above simple example, it can be seen that the problem of information retrieval can 
be broken down into basic components: the raw data, the indexed/processed data, the query 
and the algorithm that defines relevance.  
 
In our formulation, we use the above Boolean model with collaborative data: 
 

 Movie 1 Movie 2 Movie 3 Movie 4 
Katie 1 1 0 0 
Phil 0 1 0 1 
Ken 1 0 1  1 
Ruth 0 0 0 1 

 
Figure 1.2: Collaborative incident matrix. Element (i,j) is 1 if user i likes movie j 

 
Figure 1.2 shows the form of pre-processed collaborative data on which we apply the 
Bayesian Sets algorithm in the scope of this report. Each element (i,j) is a binary indicator of 
whether user i likes item j. In the pre-processed data-space of U users and I items, each item 
(movie) is represented by a I-dimensional binary vector [0,1,1,0,1…….].  
 
Unlike the text retrieval example, searching through a certain user’s preferred movies is not 
informative. This is because the knowledge that one user likes a certain movie give us little 
information about the movie. However, the collaborative opinion of all the users toward this 
movie gives us much richer information. We use the formulation that movies, represented by 
binary vectors of user opinion, form the elements of both query and target of retrieval. Using 
the collaborative information, we’d like the retrieval to system to answer this question: given 
a query ‘set’ of some items (movies), which other items in the dataset are ‘similar’ to the 
query? The definition of an item’s relevance to the query is the key to solving this problem. 
This definition is clarified by introducing the Bayesian Sets algorithm. 

1.2 Defining Relevance with Bayesian Sets 

The Bayesian Sets method defines a general framework for finding data that belongs to the 
same concept/cluster as the specified query. Consider the following data from previously 
defined formulation: 
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A query set formed by two binary vectors: 

{0000111000111,0001100001011}Q =  

Items (movies) in the collaborative dataset: 

1 1111000011000=x , 2 0000011010110=x , ….. 0010001010000n =x  

In order to retrieve the most relevant items, it is expected to rank the items 1x , 2x …… nx  by 

a measure of relevance with Q. 

 

To define similarity, one could measure the number of matching bits between elements of Q 

and ix , or use other intuitive measures. However, a more systematic approach is to perform 

probabilistic modeling. We assume the data points all come independently and identically 
distributed (i.i.d) and use the Bernoulli distribution to model them: 

1

1

( | ) (1 )ij ij
J

x x
i j j

j

p θ θ θ −

=

= −∏x   (1.1) 

Take the query data as been ‘observed’; we arrive at an inference problem: having observed 

data Q, how likely are we to observe the data ix ? 

A number of techniques could be applied to solve this problem, such as performing 
maximum likelihood estimation for the model parameters. But for Bayesian Sets, we apply a 
full Bayesian approach. 

 
We return to the general perspective. Consider a dataset where each data item is described by 
a certain data type, for instance, a vector of real numbers. The user has supplied a query set 
Q consisting of items that come from the same concept, and we'd like to find other items in 
the dataset that also belongs to this concept.  
 
Suppose we have assumed a probabilistic model that governs the distribution of data, to 
evaluate how well an item may fit into the concept defined by Q, the basic measure is given 
by the probability p(x|Q), i.e. the probability of observing data x having observed data Q. In 
order to make this quantity sensible as a relevance measure, the basic measure is divided by 
the marginalised probability of observing the new data p(x), i.e. the probability of observing 
this data a priori. 
 
The expression is given as: 
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( | )( | )
( )

p Qscore Q
p

=
xx
x

     (1.2) 

which can also be written in the form: 

( , )( | )
( ) ( )
p Qscore Q
p p Q

=
xx
x

  (1.3)  

The above expression can be interpreted as a ratio of the probability of data x and Q being 
generated by the same model with the same set of parameters, to the probability that data x 
and Q are generated by models with different sets of parameters. 
 
The score can be computed once a probabilistic model is assumed for the data. This can be 
shown by marginalising the numerator and denominators of the score expression in (1.2): 

( | ) ( | ) ( | )p Q p p Q dθ θ θ= ∫x x     (1.4) 

( ) ( | ) ( )p p p dθ θ θ= ∫x x      (1.5) 

 
Returning to binary data, we have assumed our data to be i.i.d: each binary vector (J 
dimensions) has an independent Bernoulli distribution given in equation (1.1). The conjugate 
prior for the parameters of a Bernoulli distribution is the Beta distribution: 

1 1

1

( )
( | , ) (1 )

( ) ( )
j j

J
j j

j j j

p α βα β
θ α β θ θ

α β
− −

=

Γ +
= −

Γ Γ∏     (1.6) 

 

Assume the query Q has N data points, i.e. i Q∈x  (i=1,2,…N). Equation (1.4) can be further 

derived: 

1

1

( | ) ( )
( | ) ( )( | ) ( | ) ( | )
( ) ( )

N

i
i

N

i
i

p p
p Q pp Q p d p d
p Q p

θ θ
θ θ

θ θ θ θ=

=

= =
∏

∫ ∫
∏

x
x x x

x
   (1.7) 

Using equation (1.1), (1.5), (1.6) and (1.7), the scoring expression given in equation (1.2) 
can now be expressed with Bernoulli and Beta forms. In fact the derivation arrives at an 
expression of gamma functions: 

± ±
± ±

( ) ( ) ( 1 )
( 1) ( ) ( )( | )( | ) ( ) ( ) ( 1 )( )
( 1) ( ) ( )

j j j j j j

j j j j

j j j j j jj

j j j j

N x x
Np Qscore Q x xp

α β α β

α β α β
α β α β

α β α β

⋅ ⋅

⋅ ⋅

Γ + + Γ + Γ + −

Γ + + + Γ Γ
= =

Γ + Γ + Γ + −

Γ + + Γ Γ

∏
xx
x        (1.8) 

This expression can be simplified using gamma function property ( ) ( 1) ( 1)x x xΓ = − Γ −  
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(for x>1).  

The element jx⋅  can be either 0 or 1:  

If jx⋅ =1, the score expression simplifies to 
±

j j j

j j jN
α β α

α β α

+

+ +
 

If jx⋅ =0, the score expression simplifies to 
±

j j j

j j jN
α β β

α β β

+

+ +
 

From arguments above, equation (1.8) becomes: 
 

± ± 1

( | )
j jx x

j j j j

j j j j j

score Q
N

α β α β

α β α β

⋅ ⋅−
⎛ ⎞ ⎛ ⎞+

= ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟+ + ⎝ ⎠ ⎝ ⎠

∏x      (1.9) 

 
Taking log on both sides: 
 

log ( | ) j j
j

score Q c q x⋅= +∑x     (1.10) 

where 

±log( ) log( ) log logj j j j j j
j

c Nα β α β β β= + − + + + −∑    (1.11) 

± ±log log log logj j j j jq α α β β= − − +     (1.12) 

 
If we form all the data into one matrix X  such that the data points are rows of the matrix, 
the log score vector across all data points can be computed using one matrix-vector 
multiplication: 
 

c= + ⋅s X q     (1.13) 

 
The above derivation for Bayesian Sets is given with reference to Z.Ghahramani, K.A.Heller 
“Bayesian Sets”(NIPS 2005)[2].  
 

1.3 Interpretation of the Algorithm and Data Types 

With the Bayesian Sets scoring expression given in the previous section, we can now 
efficiently apply the Bayesian Sets algorithm to binary data in the form defined in Section 
1.1 using the Beta-Bernoulli framework. We are able compute the Bayesian Sets score for all 
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the data items in the dataset, and rank the relevance of items to the given query set, in terms 
of how well the item fit into the concept defined by the query.  
 
We could define a space spanned by the dimensions of the data being used. In this space, 
data points in the dataset are distributed in certain clusters. Give a query, the Bayesian Sets 
algorithm, essentially performs a search in the data space and finds elements of the cluster 
that the query data belongs to. In other words, given we’ve observed the query data as 
elements of one cluster, the algorithm ranks other items by the criterion of whether an item 
belongs to this cluster. The needs of the user are satisfied if the retrieved cluster or 'concept' 
is in line with what he/she requires. Given more number of data points provided by the user, 
the system is able to find, more accurately, the cluster he/she is looking for.  
 
The algorithm can be applied to data of other origins. In a movie retrieval system, the above 
process can be performed with both collaborative and content data. With content data, each 
movie can also be represented by a binary vector. The dimensions of the data vector are 
given by the enumeration of a specific feature, e.g. for movie genre: action, romance, horror 
etc. each element representing whether the movie has the corresponding content feature (e.g. 
genre).  
 
Querying the collaborative data using a set of movies, it is very possible that returned results 
have similar content features, as some features are closely correlated to user preference. If 
we’re in fact looking for similar content, wouldn’t it be better if we applied the algorithm on 
the content data?  
 
However, genre data for movies, for example, cannot easily generalise to other content 
features of a movie such as cast, director, language, year etc. There is little correlation 
between different content features. Allowing Bayesian Sets to generalize is one of the 
reasons why a collaborative data set is used as the primary data to run Bayesian Sets. Given 
enough example movies of a same concept, the algorithm is able to generalise to the required 
data cluster with collaborative data. The user does not need to specify the content 
information he/she requires, which is implicit with the query provided. 
 
Nevertheless, a content dataset is collected for the implementation described in this report. 
We use the content data for two important purposes. First, the content data is used to 
evaluate the performance of the Bayesian Sets algorithm and extensions. Secondly, the 
content data is used to implement a Bayesian Sets extension to refine the retrieval process on 
collaborative data. This is performed using the Negative Relevance Feedback framework 
introduced below, applying the method implicitly. The implicit Negative Relevance 
Feedback is discussed in detail in Section 1.5. 
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1.4 Negative Relevance Feedback 

We rewrite equation (1.3) for of the Bayesian Sets scoring criterion 

( , )( | )
( ) ( )
p Qscore Q
p p Q

=
xx
x

 

The criterion is the ratio of the joint probability of observing x and Q, to the probability of 
independently observing x and Q. An interpretation is that the ratio compares two 
probabilities:  
 

1. The probability of x and Q being generated by the same model with the same 
parameters θ  

2. The probability of x and Q being generated by models with different parameters θ  

and 'θ  

 
The score compares the probability of the hypotheses that the data is generated by the two 
graphical models illustrated in Figure 1.3. 
 

 
Figure 1.3: Comparison of hypotheses that the data was generated each of the two graphical models 

 
 
In order to derive an expression for the negative relevance feedback of the retrieval 
algorithm, we study this formulation in more detail. 
 
Suppose we have been supplied another set by the user: the Negative Relevance Set I, which 
specifies the items that belongs to the same concept, but a concept the user does not wish to 
search for and does not belong to the same concept as the query set Q. We would like to find 
the items which fit into the same cluster as Q while do not belong to the same concept as I.  
 
From the given information that Q and I belong to different concepts. We have a fixed 

Q

θ

x 1x 2x Nx......

( , )p Qx

 
θ 'θ

x 1x 2x Nx......

Q

( ) ( )p p Qx
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graphical framework given by Figure 4. 
 

        
Figure 1.4: Initial graphical model framework for NRF  

 
Given that Q and I belong to different concepts, what are the possible models that could 
generate data x, Q and I? 

 
Figure 1.5: Illustration of all possible model assumptions 

 
There are three possible hypotheses as shown on Figure 1.5, and the goal is to find data that 
is likely to fit hypothesis 1. Similar to the probabilities shown in Figure 1.3, we can define 
the probability criterion for how likely data is generated by models defined by each of the 
hypotheses. Analogous to the basic Bayesian Sets criterion, our new criterion that takes 
account of the negative relevance set should measure the ratio of these two quantities: 
 

1. The probability of x and Q being generated by the same model with the same 
parameters θ , while {x, Q} and I are generated by models with different parameters  

2. A sum of the following probabilities: 
a. The probability of x and I being generated by the same model with the same 

parameters θ , while {x, I} and Q are generated by models with different 
parameters 

b. The probability of x, Q and I being respectively generated by models with 
different parameters  

 
The above is interpreted as: 

( , ) ( )( | )
( , ) ( ) ( ) ( ) ( )I

p Q p IscoreNRF Q
p I p Q p p I p Q

=
+

xx
x x  

 

 
θ 'θ

Q I

x

 
θ 'θ

Q Ix

 

x

''θ

1 2 3 
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This is in fact comparing the probabilities of different hypotheses given data (assuming 
equal priors for the hypotheses): 

1 1

2 3 2 3

( | ) ( | ) ( , ) ( )( | )
( | ) ( | ) ( | ) ( | ) ( , ) ( ) ( ) ( ) ( )I

p H D p D H p Q p IscoreNRF x Q
p H D p H D p D H p D H p I p Q p p I p Q

= = =
+ + +

x
x x

 

        
( | ) ( ) ( )

( | ) ( ) ( ) ( ) ( ) ( )
p Q p Q p I

p I p I p Q p p I p Q
=

+

x
x x  

     
( | )

( | ) ( )
p Q

p I p
=

+

x
x x     

     
1

1
( | )( | )
( | )

score Iscore Q
score Q

−
=

+
xx
x

   (1.14) 

      
The final expression shows that the negative relevance feedback criterion given query Q and 
NRF set I can be expressed in terms of basic Bayesian Sets scores with regards to query Q 
and query I. The computation for calculating the NRF is simply twice the basic Bayesian 
Sets scoring. This is reasonable as two sets of information are provided by the user. 
 

This expression is easily extended to multiple NRF sets 1 2, ... MI I I : 

1 2, ...
1 1 2

1( | ) ( | ) ( | ) ( | )( | ) ...
( | ) ( | ) ( | )

MI I I
M

scoreNRF Q score I score I score Iscore Q
score Q score Q score Q

−
=

+ + +
x x x xx

x x x
                  (1.15) 
The direct application of NRF is user specified NRF. The user may feedback information 
through the application user interface, giving the system sets of items that he/she thinks is 
irrelevant, may as well be some he/she's just seen from the retrieval ranking. The NRF can 
be then applied to refine the search and return a more informative result.  
 
The NRF can be applied in more interesting ways through a user interface. This is discussed 
in more detail in the Section 4.2 of this report. 

1.5 Implicit Negative Relevance Feedback (iNRF) with Content 

Information 

Having derived the basic Bayesian Sets algorithm and the Negative Relevance Feedback 
method, we propose a framework to apply Negative Relevance Feedback with implicitly 
decided NRF sets given some content training data.  
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Suppose we have the following data:  

♦ The complete collaborative dataset (e.g. a complete movie-user dataset) 

♦ A small knowledge(training) set containing specific content information of a fraction 
of the data items (e.g. genres of a small set of movies) 

Both of these data can be made into ‘incidence’ binary data matrices in the way described in 
Section 1.1. Once we have the data matrix, we can run Bayesian Sets algorithm on both data 
matrices as illustrated by equation (1.13).  
 
Given a query containing a few items, the content based iNRF, is able to perform a focused 
search for the specified feature corresponding to the knowledge (training) set in the way 
described as follows: 

 

1. Query the training set matrix C with Bayesian Sets using some query Q to obtain a 
list ranked by relevance with regards to the specific content. 

2. Fill a negative relevance set I with k lowest scoring items in the retrieved results, 
which are least likely to have the same content as Q, specified by C. 

3. (Optional) Eliminate elements of I that match Q with content information. This step 
can be taken to use a supervised process. 

4. Query the collaborative data with query set Q and NRF set I, using the NRF method. 
5. Score and obtain the final ranking. 

 
This process is illustrated in Figure 1.6. 

 
Figure 1. 6: iNRF illustration 

 
The above formulation can be performed with a number of content sub-features such as (for 

movies) genre, cast, plot in parallel, each corresponding to a different NRF set 1 2, ... MI I I . 

This is made possible with the NRF formulations we have described (equation 1.15). Using 
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this implementation, the collaborative information and content information are combined to 
improve the performance of the basic algorithm.  

 
The iNRF is useful because the method generalizes information contained in the small 
training matrix to the retrieval process with the collaborative dataset. For instance, if we 
have a collaborative data set of people’s preferences for movies, and the content training 
matrix is formed by incidences of genres with a small number of movies. The result of 
applying iNRF is supplying with a NRF set least likely to have the same genre as the query 
set. This NRF set (which can be chosen as small or large to tune the influence) references to 
collaborative data that defines the cluster in the collaborative data space of least likely genres. 
With the NRF framework previously derived, the scoring criteria ranks the data by how well 
they fit into the NRF hypothesis, thus allowing the genre information to be generalized to the 
much larger collaborative dataset in the retrieval process.  
 
Furthermore, we can extend the idea of iNRF to building hybrid retrieval processes with 
different types of data. For example, the iNRF can be applied in reverse where content data 
is abundant whereas there is a small amount of collaborative data, and an implicit feed back 
from the collaborative data can be given to the prominent content search. This is applicable 
in the case where the user of the retrieval application has found some like-minded people 
whose opinions the user wishes to take into account in his/her search, give their collaborative 
data is accessible to the system. 
 
With the movie retrieval implementation of this report, an implicit Negative Relevance 
Feedback method is constructed using genre information of movies. Given a specific query 
set of movies, and a particular need to look for the similar genre, the system is able to feed 
the algorithm with implicitly found negative relevance items. The implementation of this 
method is given in Section 2.5 and in Section 3 we experimentally evaluate the effectiveness 
of iNRF. 
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System Implementation 
 
The implementation of this project is divided into three major areas: raw data specification 
and processing; MATLAB implementation, on which experimentation is performed; and the 
C++ implementation, the basis for an efficient application of Bayesian Sets.  

2.1 Collaborative Data 

In the scope of this report, a Beta-Bernoulli model is adopted to perform retrieval using 
Bayesian Sets. Ideal data should be formed into a sparse binary matrix of the size number of 

users by number of movies, where the element ijM  corresponds to a logical 1 or 0 

representing whether user i likes movie j. We use a predefined orientation, users by movies, 
with the data matrix throughout this report for consistence. 

Implementation of Bayesian Sets associated with this report is mainly based on the 
collaborative data obtained from the internet company Netflix. The data was made public 
available on 2nd Oct. 2006 for the Netflix Prize[3], a competition for 1 million USD prize for 
a Collaborative Filtering (user rating prediction) system that out-perform 10% of the current 
system used by Netflix. 

 

The original Netflix dataset contains the user rating data of 17,770 movies/DVDs across 
480,000 random users. The data is given in 17,770 text files, each containing rating 
information for the corresponding movie. Rating information is given in the form as user id, 
rating (from 1 to 5 stars), and date of rating. The size of the complete dataset is around 700 
MB. 

 

The titles, indices and year of production of the movies are given as a separate text file. This 
is extracted to form a dictionary for the movie titles. 
 
The data was imported into a MATLAB sparse matrix of the size number of users by number 
of movies in many segments. The sparse matrix underwent significant pre-processing of the 
following steps: 

 

1. Eliminate the movies which are rated by a number of users that is less than a 
threshold (e.g. 100). This process corresponds to collapsing the columns of the 
matrix  

2. Eliminate the users which have number of ratings less than a threshold. This 
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corresponds to collapsing the rows of the matrix 

3. Binarise data so that ratings of larger than 3 stars are translated into a logical 1 in the 
sparse binary matrix 

4. Normalise the data matrix by each movie to account for movie popularity, i.e. all the 
binary rating data of a movie are divided by the total number of ratings of that movie 

 
Data matrices of different sizes have been obtained, e.g. 13052x5080, 7772x2000, by 
different criteria for data pre-processing steps 1 and 2. These data matrices are all processed, 
tested by runs of the algorithm and ready for the use of further building an application. The 
large matrices, despite sparse, incur heavy computation overloads. The matrix used in the 
experimentation and illustrations of this report is of the size 5387x5751, formed to retain the 
least sparse parts of the data. Appendix A gives the form of Netflix raw data and the 
processed sparse matrix. 
 

2.2 Content Genre Data 

The content information of movies serves important purposes in experimentation, and 
implementation of the implicit Negative Relevance Feedback method. The content dataset 
was obtained from the Internet Movie Database (IMDB) [4]. The IMDB offers a wealth of 
content information for movies including genre, year, cast, country, language, etc. The 
content data obtained for this report is specifically genre information obtained from a text 
file in the format given in Appendix A. There are in total 28 genres. 

 
The text files are read into MATLAB, matching for the titles of 5751 movies in our 
illustration matrix is performed. We choose to perform relatively strict matching criteria for 
the reliability of experiments. The titles for Netflix data have more condensed titles, so for 
all the 5751 movies: 

1. If title shorter than 35 characters, find match for entire Netflix title in the IMDB 
data. If longer than 35 characters, match the first 35 characters. 

2. Search for the year specified in the Netflix data in the IMDB title 

3. If both cases satisfy, mark a match  

 

Using the above method, 3163 out of 5751 movies have been found in the IMDB content 
data. The reasons for unmatched items are that the titles in the Netflix database are 
practically DVD/video titles, while the IMDB is a database of films and TV. There are 
non-overlapping items, and the strict criteria may miss titles in unconventional form. 
Nevertheless, the matched 3163 movies have good chances of being correct, and they have 
full genre information. This is sufficient for experiment use and implementing the content 
based iNRF.  
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From the IMDB genre data, we have formed a second binary data matrix of the size 28 by 
3163. The Bayesian Sets algorithm can be run directly on this matrix. This matrix is an 
important basis for implementing the iNRF method, and essential for experimentation. 

2.3 Direct Implementation of Bayesian Sets in MATLAB 

As shown by equation (1.2) in the theory derivations, the algorithm can be implemented in a 
straightforward manner using MATLAB vectors and matrices: 

c= + ⋅s X q  

The MATLAB code for the direct implementation can be found in Appendix B 
 
The implemented Bayesian Sets algorithm can be run directly on the collaborative and genre 
data matrices. Examples of results are given in Figure 2.1 (top 10 most relevant). 

 

Q={‘Saving Private Ryan’} Q={‘Home Alone’,         

‘102 Dalmatians’} 

Q = {‘The Matrix’, ‘Starship 

Troopers’, ‘Aliens’} 

'We Were Soldiers'        

'U-571' 

'Enemy at the Gates' 

'Black Hawk Down'    

'Hart's War' 

'Band of Brothers' 

'The Program' 

'K-19: The Widowmaker'  

'Windtalkers'   

'Tears of the Sun' 

'Cinderella II' 

'Home Alone 2: Lost in New York' 

'The Kid'         

'Beethoven's 3rd' 

'Lady and the Tramp II' 

'Jack Frost'       

'The Flintstones' 

'The Jungle Book'  

'The Santa Clause'  

'Max Keeble's Big Move' 

'Final Fantasy: The Spirits Within' 

'Alien 3'           

'Event Horizon' 

'Alien: Resurrection'     

'Screamers' 

'Wing Commander'   

'The Animatrix' 

'Krull'                 

'Soldier' 

'Battlefield Earth' 

 

Figure 2.1: Example Results from the Bayesian Sets Implementation 

2.4 Negative Relevance Feedback 

The NRF is implemented using the expression given in equation (1.14) and (1.15) by 
calculating the basic Bayesian Sets multiple times. The user has the option of specifying a 

number of sets 1 2, ... MI I I  with movies that he/she thinks is irrelevant to the retrieval task. 



 CUED Final Project: Information Retrieval with Bayesian Sets and Extensions 

 19 

The MATLAB code for performing NRF is given in Appendix B. 

 

We try to show the intuitive effectiveness of NRF with an example run on our implemented 
system. The input process references movies by index, so takes seconds to complete. The 
first query is given by Q on the left below. 

 

The user may think that the movie 

'How to Lose a Guy in 10 Days' 

is irrelevant to the query of children’s animation movies, 
and puts this into a NRF set I1 together with a similar 
romance movie 

‘When Harry Met Sally’ 

The system runs NRF with  

Q = { ‘Finding Nemo’, ‘Shrek 2’} 

I1 = {'How to Lose a Guy in 10 Days', ‘When Harry Met Sally’} 

 

 

The result for the NRF is: 

The results have been refined as the user has added more 
negative relevance information.  

If the user is yet not satisfied finding that 

'Lord of the Rings: The Return of the King' 
is not a typical children’s animation and puts it into 
another NRF set I2  

The system runs again with 

Q = { ‘Finding Nemo’, ‘Shrek 2’} 

I1 = {'How to Lose a Guy in 10 Days', ‘When Harry Met Sally’} 

I2= {'Lord of the Rings: The Return of the King: Extended Edition'} 
 

 

The system returns the following much more refined results with a clear hint of similarity: 

 
 
 

Q = { ‘Finding Nemo’, ‘Shrek 2’} 

Top returned items: 

'Shark Tale'    'Brother Bear'  

'Just Married'   'Racing Stripes' 

'Cheaper by the Dozen' 'Robots'  

'Alex and Emma'     

'Raising Helen'   

'The Longest Yard' 

'How to Lose a Guy in 10 Days' 

'The Incredibles' 

'Shrek ' 

'A Bug's Life' 

'Monsters; Inc.' 

'Toy Story' 

'Aladdin' 

'The Lion King' 

'Shark Tale' 

'Ice Age' 

'Brother Bear' 

'Lord of the Rings: The Return of 

the King' 

'Brother Bear (Theatrical Widescreen Version)'  'Shark Tale'  'Ice Age'   'Shrek '  

'Monsters; Inc.' 'Lilo and Stitch'  'Finding Nemo'  'A Bug's Life'   'Robots' 

'The Lion King: Special Edition' 'The Incredibles' 'Elf'     'Mulan'   

'Spirit: Stallion of the Cimarron' 'The Emperor's New Groove'   'Aladdin'  

'Beauty and the Beast'   'The Fox and the Hound'    'Brother Bear (Home Viewing Version)'    

'Patch Adams'    'Pocahontas' 

'Racing Stripes'    'Toy Story' 
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2.5 iNRF 

The iNRF implementation with the collaborative and genre data for movies is given as 
follows: 

♦ A knowledge (training) matrix C for iNRF is obtained by randomly selecting 500 movie 
vectors from the genre matrix (28x3163) obtained in Section 2.2. We use a smaller 
matrix to test the system’s ability to generalize. 

♦ For each query of iNRF, the query set is scored with regards to matrix C. Lowest 
scoring items are formed into a negative relevance set. We adopt an unsupervised 
feedback process i.e. the step 3 in Section 1.5 is not taken. It is proved in the 
experimentation section that this gives stronger generalization results. 

♦ The collaborative data matrix is queried using NRF to obtain final score and ranking 

 

The significance of implementing the iNRF is two fold. Firstly, iNRF is evaluated with 
experimentation to test the effectiveness of Negative Relevance Feedback. Secondly, the 
iNRF is a useful retrieval method itself and shows good performance as evaluated in the 
experimentation section. 

2.6 Clustering 

If the query is not well classified, i.e. it is a combination of movies without a clear common 
feature, the results returned from the algorithm can be uninformative. This can occur when 
for instance, when a user inputs all the movies he/she likes, but these movies do not have 
obvious similarity, or in fact, the pattern is too complex for the probabilistic model assumed. 

  

This can be remedied using clustering, which is a way to raise the model complexity. 

 

Clustering can be applied in two different ways. Firstly, clustering can be applied in a 
conventional information retrieval approach, where all the data is subject to this process and 
a classification of data can be obtained using an iterative algorithm such as K-means. 
Moreover, a more complex process called hierarchical clustering can be applied, and a 
classification hierarchical structure can be obtained. These predefined classification 
information can be used to filter and refine result, or to better inform the user. The second 
approach, which we implemented, is clustering the query set.  

 

It has been discussed that the Bayesian Sets algorithm essentially finds clusters of data in the 
data-space it is applied to. It is therefore straightforward to adopt a simple clustering 
algorithm to cluster the query data points. 
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As clustering is not related to the main results of this project and report, the details of 
theoretical aspects are not discussed. A copy of MATLAB implementation code is included 
in Appendix B. This is for the reference of future implementation of the Bayesian Sets 
retrieval system, as clustering should be a useful aspect in implementing an application. 

 

2.7 C++ Implementation of Bayesian Sets 

The purpose of implementing the Bayesian Sets algorithm is to work towards a hard-coded 
application. This report discusses the implementation of a C++ program to load data 
matrices and perform the basic Bayesian Sets scoring computations, which can be the basis 
of further implementation. We have chosen the C++ language for speed considerations. The 
algorithm needs to be applied on large matrices, and speed is crucial for an information 
retrieval application. 
 
The implementation of the Bayesian Sets algorithm in C++ is performed in a Linux 
Environment with the GNU g++ compiler. As the data required by the algorithm needs to be 
stored and manipulated as sparse matrices, a sparse matrix library SparseLib++ [6] is used.  
 
With the C++ implementation, an average of 420 milliseconds of query time is obtained for 
with a sparse binary matrix of the size 10099x17770 processed from the Netflix data. This is 
compared to more than 2 seconds of query time for the same matrix in MATLAB. 
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Experimentation 
The experiments presented in this report focus on evaluating the performance of the 
Bayesian Sets information retrieval algorithm and extensions. We compare to a number of 
competing algorithms. A standard experimentation method for information retrieval, the 
precision-recall curve, is used through out this section. In designing the tests, this report 
provides detailed aims, specifications and implementation to justify our results. 

The method used in our experimentation is data oriented in line with the evaluation practice 
of information retrieval. We do not use user tests due to the difficulty of sustaining 
objectivity. 

 

In highlight, the experimentation discussed in this report provides evidence for the basic 
algorithm’s ability to: 

1. Retrieve items similar in content with the query by querying collaborative data, i.e. 
ability to generalise content from collaborative information. 

2. Generalise the data clusters specified by common content features in the query. 

 

Also, we further evaluate a content-collaborative hybrid method, the implicit Negative 
Relevance Feedback with comparison to competing algorithms. The results are evidence of  

1. Performance of Negative Relevance Feedback framework derived in Section 1.4. 

2. The merits of the iNRF implementation for content focused search.  

3.1 Evaluation in Information Retrieval 

The evaluation of information retrieval methods is based on concrete test designs. Before 
experiments are designed to evaluate our retrieval methods. It is useful to look at the basic 
concepts in evaluating information retrieval: Precision and Recall. 

 
Figure 3.1: Classification used to define Precision and Recall 

B C A 
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Given a query, and if it is possible to define a criterion that can categorize which items in the 
dataset are relevant and which are not, a classification of items as shown in Figure 3.1 can be 
obtained for each run of a specific algorithm.  
 
In the illustration of Figure 3.1: 
♦ A is the set of items that are both retrieved by the algorithm and relevant to the query 
♦ B is the set of items that are relevant to the query, but not retrieved by the algorithm 
♦ C is the set of items that are retrieved but not relevant to the query. 
 
Once the sets A, B and C are defined, Precision and Recall are defined as the ratios: 

APr
A C

=
+                 Re

A
A B

=
+    (3.1) 

 
Precision = Number of retrieved, relevant items/the total number of retrieved items 
Recall = Number of retrieved, relevant items/ the total number of relevant items to the query 
 
For a given retrieval algorithm that gives ranked results, and a specific definition of 
relevance, Precision is decreasing function of Recall. This is illustrated in the following 
example.  
 
Given a query, the corresponding ranked retrieval results can be classified as either relevant 
or irrelevant, represented by 1’s and 0’s. We can also evaluate the total number of items in 
the database that’s relevant to the query. In the following example as shown in Figure 3.2, 
assume that we’ve determined the relevance of the ranked results, and found the total 
number of relevant items in the dataset is 10. We can calculate Precision and Recall pairs for 
each ranking index.  
 

Rank Relevant? A A+C A+B Precision Recall  
1 1 1 1 10 1 0.1 
2 1 2 2 10 1 0.2 
3 0 2 3 10 0.67 0.2 
4 1 3 4 10 0.75 0.3 
5 0 3 5 10 0.6 0.3 

Figure 3.2: Calculation or Precision and Recall 
 

The plot of Precision against Recall is in the form of Figure 3.3, where Precision jumps for 
every correctly retrieved item. It is desirable to reduce the sudden changes in direction and 
the standard way to do this is interpolate precision at any recall level R as the maximum 
precision found for any recall level r that’s higher than R: 

intPr ( ) max Pr( )r RR r>=     (3.2) 

The interpolated Precision values are shown as red in Figure 3.3. 
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Figure 3.3: Example Precision-Recall Curve for a single query. ([3] Page 119) 

 

The performance of an information retrieval algorithm is evaluated by the best trade off 
between precision and recall. As shown in Figure 3.4, the ‘higher’ the curve is, the better the 
system performance. Given a certain fixed value, a superior algorithm gives a higher 
precision. 

 

Figure 3.4: Evaluation of performance using P-R curves 

We will use the evaluation method of Precision-Recall curves to evaluate the Bayesian Sets 
algorithm and its extensions. 

3.2 Competing Algorithms 

Experiments are performed in comparison of the following sets of algorithms: 
 
♦ Bayesian Sets Basic Algorithm 
♦ Bayesian Sets implicit Negative Relevance Feedback (iNRF) 
 
♦ K-Nearest Neighbour (KNN) 
♦ K-Nearest Neighbour Mean(KNNM) 
♦ GroupLens Algorithm for Collaborative Filtering with Netnews [7] 
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The guidelines for choosing comparable algorithms are: 
 

1. Select algorithms that define relevance for Information Retrieval or one that can be 
modified from a Collaborative Filtering method 

2. Compare the Bayesian Sets algorithm to the geometric algorithms, such as KNN 
 
We now give the details for implementations of KNN, KNNM, and the GroupLens 
algorithm. The implementation of Bayesian Sets and iNRF were given in then previous 
sections. 
 

Implementation of KNN on Binary Collaborative Data 
The data is represented by multi-dimensional binary vectors. The K-Nearest Neighbour 
algorithm is implemented so that the data vectors are ranked by their Euclidean distances to 
the query set. 
 
The data matrix is firstly normalized so that: 

( , ) ( )( , )
( )

i
norm

i

M i j jM i j
j
µ

σ
−

=     (3.3) 

Where iµ  is the mean vector across user i, indexed by movie j, and iσ  is the standard 

deviation across user i. 
 
Given a query Q, the KNNM algorithm is given by: 
 
 
 
 
 
 
 
 
 
The KNN algorithm is given by: 
 
 
 
 
 
 
 
 

For all the data-vectors x  in the data set: 

{ 

Calculate and rank the Euclidean Distance d between x  

and every data-vector in Q, Qx ; 

Choose the shortest distance d to elements in set Q, as 

the distance D from x  to Q 
} 
Rank items by descend sort of D; 

 

Compute the mean vector Qm  across all items in Q; 

Calculate and rank the Euclidean Distance d between 

every item in the data set and Qm ; 

Rank items by descend sort of d; 
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The KNNM and KNN algorithms are straightforward to implement in MATLAB. 
 

Implementation for GroupLens Algorithm 
The GroupLens Algorithm we refer to in this report is the Collaborative Filtering method 
presented by P.Resnick et.al (1997) [7]. The algorithm is considered to be suitable for 
comparison because it was developed for user-rating collaborative data. It is also a geometric 
algorithm suitable to perform retrieval with our collaborative movie data. The GroupLens 
Algorithm is essentially an improvement on KNN. 
 
Its original implementation is explained in [7] and was applied to discrete user rating data 
(e.g. rating from 1-5). Using a user item matrix of ratings, we’d like to predict the rating user 
a would give for item p.  
 
First calculate the Pearson Correlation for all the users with regard to a, which is a measure 
of how likely are user a and b to agree with each other [7]: 

cov( , )
ab

a b

a br
σ σ

=      (3.4) 

The prediction of user a’s rating to item p is given by: 

( )ip i ai
i

ap a
ai

i

R r
R

r

µ
µ

−
= +

∑
∑    (3.5) 

where iµ  is the average rating for user i across all items.  

 
This algorithm can be easily modified to apply to our pre-processed and normalised 
collaborative data by creating a pseudo-user (vector with number of movie dimensions) who 
has preferences for only the movies in the query. We then try to predict the pseudo-user’s 
ratings for all the other movies, and obtain a ranking result. The computation can also be 
formulated into a vector-matrix multiplication, although a full matrix rather than sparse 
needs to be stored. The MATLAB code for performing this algorithm is given in Appendix 
B. 
 
 

3.3 The General Genre Test with Single Item Query 

Figure 2.1 shows example results returned from the Bayesian Sets algorithm. We propose an 
experimental method using genre information to evaluate these results. 
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QUERY 

NAME: 

    'Saving Private Ryan' 

YEAR 

    '1998' 

GENRES: 

    'Drama' 

    'Action' 

    'War' 

 

TOP RESULT 

NAME: 

    'We Were Soldiers' 

YEAR 

    '2002' 

GENRES: 

    'Drama' 

    'Action' 

    'War' 

    'History' 

Figure 3.5: Detail Comparison between Query and Retrieval Result 

 
Figure 3.5 gives the detailed genre information for the query of example 1 in Figure 2.1 and 
the movie ranked as most relevant. It can be observed that a useful measure for the similarity 
of movies, given any two movies, is their genre patterns. In this example, three of the genres 
match, and because the two are both ‘War’, ‘Action’ and ‘Drama’ movies, they can be seen 
as similar by a major opinion. With this perspective, we aim to evaluate the algorithm’s 
effectiveness in satisfying users’ requests to find ‘similar’ items. 
 
Having obtained the genre information from IMDB, we use this data to define ‘relevance’ in 
order to obtain the classification shown in Figure 3.1 required to compute Precision and 
Recall.  
 
Aim of Experiment 
Evaluate the Bayesian Sets, iNRF algorithms in their general performance of returning 
similar movies measured by Precision-Recall.  
 
Specification 
Only the 3167 movies with genre information (described in Section 2.2) out of 5751 are used 
so that each item’s relevance to the query can be evaluated. The test queries contain only 1 
element and are drawn from a filtered list of movies having more than 3 genres. These 
queries are run on the collaborative data.  
 
Relevance measure between movies is approximated by genre match. We assume the user 
making queries is looking for genre matches, and define the relevance criterion:  
 
A movie in the database is relevant to the query if it has  
Test 1: at least 1 match of genre 
Test 2: at least 2 matches of genre 
Test 3: at least 3 matches of genre 
 
In order to compute Precision-Recall, it is required to find the number of all the relevant 
movies in the database. This is done by matching genres and can be achieved in one 
vector-matrix multiplication in MATLAB. 
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All the competing algorithms are evaluated in this test. Note for single items as query, KNN 
and KNNM are equivalent. 
 
Implementation  
The experiment is run on an automated program in MATLAB. For each query, a single 
query is draw from the test set. The results returned by the algorithms are judged with the 
genre relevance criteria and a binary vector indicating relevance can be obtained. Having 
obtained this vector, the method described in Figure 3.2 can then be used to compute 
Precision and Recall. The Precision values are interpolated using equation 3.2 for a fix grid 
of recall. These Precision values are averaged over a sufficient number of runs. 
 
Results 
All results are obtained averaging over 50 runs of each algorithm. 
 
 
 
 
 

P-R Curve for Test 1 

 

Figure 3.6: Precision Recall for General Genre Test (Match 1) 
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P-R Curve for Test 2 

 
Figure 3.7: Precision Recall for General Genre Test (Match 2) 

 
 

P-R Curve for Test 3 

 
Figure 3.8: Precision Recall for General Genre Test (Match 3) 
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Figure 3.9: Alignment of results for General Genre Test 
 

Observation and Discussion of Results 
♦ The relevance criteria in the three tests are made stricter as the demanded number of 

matched genres increase. This results in the decrease of precision give a certain recall 
for all algorithms.  

 
♦ The Precision at the ending point of P-R curve gives the fraction of number of relevant 

movies to the total number of movies. For Test 1, this fraction is near 0.77. The two 
other tests give fairly small retrieval fractions, suggesting the retrieval problem is harder 
and the system is retrieving a small number of relevant results for the user. 

 
♦ The Bayesian Sets and iNRF algorithms outperform the KNN algorithm significantly in 

all three tests. The higher P-R curves indicate that given a fixed recall, or a specific 
ranking index, Bayesian Sets and iNRF return more relevant items. Therefore Bayesian 
Sets and iNRF should be more useful than KNN to a user’s retrieval task. 

 
♦ For the single query and all three tests, the Bayesian Sets algorithm matches closely 

with the GroupLens algorithm. However, for single queries, i.e. a single example data 
point, the system is under-informed and differences will emerge once given more data 
points. This is shown in the next experiment. 

 
♦ The iNRF outperforms GroupLens and basic Bayesian Sets algorithm significantly in all 

three tests. This give indication that  
 

1. Given the negative relevance set selected for iNRF is reasonable, the Negative 
relevance method is effective in refining results and improving algorithm 
performance. This result for NRF is obtained implicitly without the need for a user 
trial. 

 
2. The iNRF uses the genre information of 500 hundred movies to improve the 

retrieval in genre of 3000 movies. The feedback is also unsupervised as stated in 
section 2.5. This shows the iNRF has good generalization with collaborative data. 

 

More Genres Match  
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3. When the Bayesian Sets system is under-informed, the iNRF is able to provide 

improvement to reinforce the Bayesian Sets algorithm for the case of few query data 
points. 

 

3.4 The Multiple-element Query Test 

It has been shown that with single query element, the GroupLens algorithm matches 
Bayesian Sets in performance. However, the strength of Bayesian Sets is in multiple element 
queries. With more example data points in one cluster, the algorithm is able to predict better 
other data points that belong to the same cluster. 
 
We design the multiple element query test to give evidence for this observation. We try to 
show that from collaborative data, the Bayesian Sets algorithm and its extension iNRF are 
capable of generalizing common content features in the query set. 
 
Aim of Experiment 
Evaluate the performance of algorithms in identifying the similarities shared in the query set.  

 
Specification 
The data and test set of movies are as defined in the last experiment. We use a step-up 
comparison of K=1, 3, 6, 10 data points in the query. For every value of K, first randomly 
choose a fixed genre G from the list of 28. K movies are then chosen randomly to form the 
query from this same genre. They may have other genres apart from the chosen, but all K 
movies have 1 genre G in common. 
 
Relevance criterion: a retrieved movie is considered relevant to the query if it has the genre 
G. This experiment assumes the type of user that requires the system to return items with the 
common similarity found in query. 
 
Implementation 
Again the experiment is performed with a MATLAB program. The interpolation method for 
Precision described in the previous experiment is also used. 
 
 
Results 
All results are obtained averaging over 50 runs of each algorithm 
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K = 1 (this result is added as a benchmark against higher values of K) 

 
Figure 3.10: Result for 1 element query to retrieve movies with a chosen genre 

 
 
 

K=3 

 
Figure 3.11: P-R curves for 3 query elements to retrieve movies with the chosen common genre 
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K=6 

 
Figure 3.12: P-R curves for 6 query elements to retrieve movies with the chosen common genre 

 

 

K=10 

 

Figure 3.13: P-R curves for 10 query elements to retrieve movies with the chosen common genre 
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Figure 3.14: Aligned Results for Multiple Element Query 

 

Observation and Discussion 

♦ From Figure 3.10, the three algorithms GroupLens, Bayesian Sets and iNRF start from 
matching performance. As the number of data points in the query increases, Bayesian 
Sets and iNRF quickly pick up the cluster defined in the multiple element query and 
improve performance in retrieving movies with the common genre in query set. 

♦ Contrast to the previous experiment, given more query elements, Bayesian Sets exhibits 
superior retrieval results against GroupLens algorithm in retrieval precision for this task, 
and further outperforms KNNM and KNN.  

♦ It is observed from Figure 3.14 that the Bayesian Sets algorithm’s performance of 
generalizing the common query concept improves with the increasing number of 
data-points, while the geometric algorithms stay unaffected. This proves our theoretical 
results and discussion in Section 1 of the algorithm’s strength on finding clusters. 

♦ The iNRF retains its improvements in performance with regard to Bayesian Sets. The 
improvements are not as significant as the previous experiment. This is because the 
more strict relevance criterion of matching one specific genre. Nevertheless, with 
negative relevance feedback, the iNRF retains ability to generalize common query 
concept yet still raises precision with respect to Bayesian Sets. 

 

 

 

 

 

 

 

 

 

 

More Example Data Points (query elements) 
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Conclusions and Future Work 

4.1 Conclusions 

In this report, we have referenced and introduced the Bayesian Sets algorithm for 
information retrieval, derived two extensions to the basic algorithm, implemented the binary 
data formulation for the basic algorithm and its extensions using the Netflix movie 
collaborative data and IMDB movie genre data. We also performed experimentation using 
information retrieval evaluation methods to justify the performance of our theoretical work.  
 
The conclusions of this report and the project are summarized as follows: 
 
Theory 
♦ A comprehensive study of the Bayesian Sets algorithm has been conducted, and a good 

understanding of the underlying theory is obtained. 
♦ An extension of the Bayesian Sets algorithm, the negative relevance feedback, has been 

developed through this project.  
♦ A specific method for building hybrid retrieval systems with data of different origins, 

the implicit Negative Relevance Feedback method was introduced through this project. 
 
Dataset 
♦ The Netflix collaborative dataset of 480,000 users by 17770 movies was processed and 

used throughout implementation. Pre-processed matrices of different sizes are ready to 
be used in applications. 

♦ Genre data was obtained for 3167 movie titles in the Netflix dataset from IMDB. 
♦ A combined processed dataset used in this project will be made available for research 

use. 
 
Implementation 
♦ The basic Bayesian Sets algorithm have been implemented in both MATLAB and C++  
♦ All versions of all the methods related to Bayesian Sets, negative relevance feedback, 

data and query clustering, iNRF, have been implemented and tested in MATLAB 
♦ Around 150 pieces of MATLAB code have been produced during this project 
 
Experiment Results 
♦ From the results to Section 3.3 and 3.4, we can conclude that, in generalizing content 

from collaborative data, the basic Bayesian Sets algorithm outperforms the K-Nearest 
Neighbour algorithm with both single and multiple element queries. The basic Bayesian 
Sets algorithm matches with the performance of our implementation of GroupLens 
algorithm with under-informed single element queries, but significantly outperforms 
GroupLens with multiple element queries. This illustrates the strength of Bayesian Sets 
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at finding data clusters or item ‘concepts’. 
 
♦ In both the results to Section 3.3 and 3.4, the iNRF method outperforms all the 

algorithms we have studied in generalizing content from collaborative data. The iNRF 
significantly outperforms the basic Bayesian Sets algorithm with under-informed 
queries. We can conclude that iNRF is effective in retrieving with a content feature 
focus, and is especially useful when the system supplied with few data points in the 
query. The performance of iNRF illustrates the effectiveness of the Negative Relevance 
Feedback Framework.  

4.2 Future Work: Proposed Interfaces for Retrieval Application 

The Bayesian Sets algorithm is well equipped with methods to apply in a retrieval interface: 
negative relevance feedback, clustering and hybrid retrieval with content information. Also, 
the data is readily available (Netflix and IMDB) and an initial C++ implementation has been 
made. The next step of this project might be to develop an interface for the retrieval 
application. A few of the interface ideas are given below. 
 
NRF 
As illustrated in Section 2.4, NRF is a useful method to add ‘reasoning’ to information 
retrieval. With 2 NRF sets, the system can return clearly oriented results. However, it is 
troublesome for the user to type in the movie items. It would be helpful to produce a 
click-and-drag interface with a number of windows to which the user can drag items from 
his/her collection. The user is able to trial and error with different combinations of NRF sets, 
and will be able to quickly find the correct model hypothesis. An illustration is given in 
Figure 4.1. 

 
Figure 4.1: Proposed interface for NRF 

 

Clustering 

As discussed in Section 2.6, clustering can be applied to the query if the query is large and/or 
without a clear common feature. Suppose the query is processed into M clusters. In each 
cluster elements should be relevant to each other and form reasonable queries. The retrieval 
results can be given by a parallel display of the respective query results of the M clusters 

‘Finding Nemo’, 
‘Shrek 2’ 

'How to Lose a 
Guy in 10 Days' 
‘When Harry Met 
Sally’ 

'Lord of the Rings’ Search! 
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individually. The user is informed of which results are given from which of the M clusters.  

 

iNRF 

Consider a movie retrieval system for instance, with iNRF, one can tell the system to search 
for films similar to 'The Godfather' with a preference direction to 'cast' if say the user likes 
the movie because of the actors/actresses. The system uses only a small amount of data, the 
knowledge dataset of casts for a fraction of all the movies, to apply an implicit feedback to 
the search in the complete dataset. Thereafter, the system will rank high the movies with a 
similar cast as ‘The Godfather’ on top of the score from collaborative data. This will achieve 
higher precision toward the user's needs, as the user has specified more information. Note 
the system does this without knowing any content information about the movies it is trying 
to score. 

As mentioned before, using the Negative Relevance Feedback formulations we have derived, 
our system should be able to perform iNRF with a multitude of content features by 
specifying a multitude of NRF sets.  

Moreover, with some further implementation, the user is able to specify to what extent 
he/she may emphasize on a certain feature. The system can enable this by linking this 
specific 'extent' quantity with the amount of relevance feedback the system receives, e.g. the 
number of items in each negative relevance set. The user is then able to use his/her own 
search initiatives to filter through results and change search preferences.  
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Appendix A: Format of Raw Data  
 
 
Netflix 
Collaborative 
Data: 
In the format of 
user index, rating 
and rating date. 

Pre-processed 
and Normalised 
Sparse Matrix 
for the Bayesian 
Sets Algorithm 

IMDB Genre Data Example 

 

1488844,3,2005-09-06 

822109,5,2005-05-13 

885013,4,2005-10-19 

30878,4,2005-12-26 

823519,3,2004-05-03 

893988,3,2005-11-17 

124105,4,2004-08-05 

1248029,3,2004-04-22 

1842128,4,2004-05-09 

2238063,3,2005-05-11 

1503895,4,2005-05-19 

2207774,5,2005-06-06 

(96,83)      0.0004 

(97,83)      0.0004 

(25,84)      0.0016 

(52,84)      0.0016 

(90,84)      0.0016 

(97,84)      0.0016 

(25,85)      0.0018 

(29,85)      0.0018 

(33,85)      0.0018 

(38,85)      0.0018 

(41,85)      0.0018 

(45,85)      0.0018 

Matrix Revolutions, The (2003)   Action 
Matrix Revolutions, The (2003)   Sci-Fi 
Matrix Revolutions, The (2003)     Thriller 
Matrix, The (1999)        Action 
Matrix, The (1999)        Thriller 
Matrix, The (1999)         Sci-Fi 
"Matroesjka's" (2005)     Crime 
"Matroesjka's" (2005)     Drama 
"Matroesjka's 2" (2007) (mini)   Drama 
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Appendix B: MATLAB Codes 

 

The Basic Bayesian Sets IR Scoring Algorithm 

%The matrix to run the algorithm is given in TempM 
%Query set is given by Q(1xn vector), alpha, beta are pre-computed 
%Please refer to the expressions derived in Section 1. 
QueCut= TempM(:,Q); 

CompleteSum=size(Q,2); 

QueSum = sum(QueCut, 2); 
alphatilde=alpha+QueSum; 

betatilde=beta+CompleteSum-QueSum; 

  

c=sum(log(alpha+beta)-log(alpha+beta+CompleteSum)+log(betatilde)-log(beta) 
q=log(alphatilde)-log(alpha)-log(betatilde)+log(beta); 

 

s= c+(TempM')*q; 
scr=exp(s); 

% Sort score 
[final, IX]=sort(scr); 

%Display movie names 
Names(IX); 

 

The Query-Clustering Algorithm 

%The query to cluster is given in Qc, data matrix is TempM 

qmovlist = 1:size(Qc,2); % This variable stores what cluster each element currently belongs to 
liststore = zeros(1, size(Qc, 2)); 
change =1; 
iteration=0; 

%Find the limit for stopping the clustering algorithm, as the minimum of the maximum score with any 
other data vector so first need to find the maximum list for all query elements 
testMaxStore=zeros(1,size(Qc,2)); 

for i = 1:size(Qc,2) 

    i     

    if(sum(TempM(:,Qc(i)))==0) 
         

        qmovlist(i)=0; 
    else 

         mov = Qc(i);  
        record = qmovlist(i); 

        qmovlist(i)=0; 
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        clear Q; 

        clear scrboard; 

        for j = 1:size(Qc,2) 
            binlist = (qmovlist == j); 
            Q = Qc(reflist(binlist)); 

            if(Q) 
                scoresingle; 

%Score and store the scores across all other items in the query in scoreboard 
                scrboard(j)=scr; 

            else 
                scrboard(j)=0; 

            end         

        end 

        [Max,Clu]=max(scrboard); 
        Max 

        testMaxStore(i)=Max; 

        qmovlist(i)=record; 
    end 
end 

while(change) %stop if there is no change of clusters for all the elements 
    change = 0; 

     

    iteration = iteration +1; 
for i = 1:size(Qc,2) 
    i 

    if(i>1) 

        qmovlist(i-1) 

    end 

    if(sum(TempM(:,Qc(i)))==0) 
        qmovlist(i)=0; 
    else 

        mov = Qc(i); 
        record = qmovlist(i); 

        qmovlist(i)=0; 

        clear Q; 

        clear scrboard;     

        for j = 1:size(Qc,2) 
            binlist = (qmovlist == j); 
            Q = Qc(reflist(binlist)); 

            if(Q) 
                scoresingle; 

                scrboard(j)=scr; 

            else 
                scrboard(j)=0; 
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            end         

        end 

        [Max,Clu]=max(scrboard); 
        Max 

        if(Max>min(testMaxStore)) 
            qmovlist(i)=Clu; 

        else  

            qmovlist(i)=record; 

        end 

        if(qmovlist(i)~=record) 
            change=change+1; 
        end 
    end 
end 

end 

liststore = cat(1, liststore, qmovlist); 
end 
 
 
The GroupLens Algorithm 
 
%load stdstore (standard deviation across movies, an element for each user) 

%load M (offsetMatrix minus mean across movies) 

 

queryusr = zeros(size(M,2),1); 

for i =1:size(Q) 

    temp = 1/nnz(TempM(:,Q(i))); 

    queryusr(Q(i))=temp; 

end 

 

r = zeros(size(TempM,1),1); 

rvector=queryusr-mean(queryusr); 

rstd=(var(queryusr)^0.5); 

 

r=(M*rvector)./(rstd*stdstore); 

 

scr = r'*M./(r'*r); 

 

[final,IX]=sort(scr'); 

 
Negative Relevance Feedback 
%Please refer to NRF expression given in report Section 1 

%Query is given in Qc, NRF sets I1, I2, I3 

Q = Qc; 
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score; 

rel = scr; 

if(I1~=-1) 

    Q=I1; 

    score; 

    irel1= scr; 

    if(I2(1)~=-1) 

        Q = I2; 

        score; 

        irel2=scr; 

 

        if(I3(1)~=-1) 

            Q = I3; 

            score; 

            irel3=scr; 

     

            scr = 1./(1./rel+irel1./rel+irel2./rel+irel3./rel); 

        else 

            scr = 1./(1./rel+irel1./rel+irel2./rel); 

        end 

    else 

        scr = 1./(1./rel+irel1./rel);   

 

    end 

else 

    scr = 1./(1./rel); 

end 

 

[final,IX]=sort(scr); 


