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ABSTRACT

Relevance ranking models based on additive ensembles of regres-
sion trees have shown quite good effectiveness in web search en-
gines. In the era of big data, tree ensemble models grow large in
both tree depth and ensemble size to provide even better search
relevance and user experience. However, the computational cost
for their scoring process is high, such that it becomes a challenging
issue to apply the big tree ensemble models in a search engine
which needs to answer thousands of queries per second. Although
several works have been proposed to improve the scoring process,
the challenge is still great especially when the model size grows
large. In this paper, we present RapidScorer, a novel framework
for speeding up the scoring process of industry-scale tree ensemble
models, without hurting the quality of scoring results. RapidScorer
introduces a modified run length encoding called epitome to the
bitvector representation of the tree nodes. Epitome can greatly re-
duce the computation cost to traverse the tree ensemble, and work
with several other proposed strategies to maximize the compact-
ness of data units in memory. The achieved compactness makes
it possible to fully utilize data parallelization to improve model
scalability. Experiments on two web search benchmarks show that,
RapidScorer achieves significant speed-up over the state-of-the-art
methods: V-QuickScorer, ranging from 1.3x to 3.5x;QuickScorer,
ranging from 2.1x to 25.0x; VPred, ranging from 2.3x to 18.3x; and
XGBoost, ranging from 2.6x to 42.5x.
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1 INTRODUCTION

Decision tree ensembles are intensively usedmodels inweb services,
as they can find complex correlations across features, resulting in
good performance in search ranking and ad click prediction. For
example, Gradient-Boosting Decision Trees (GBDT) [14], and
LambdaMART [4] achieved the best results in the Kaggle competi-
tion [12, 18] and Yahoo! Learning to Rank Challenge [6]. In industry,
tree ensembles have been implemented as the search ranking mod-
els in Microsoft Bing [20, 35], AltaVista, Yahoo! and Yandex [30],
and as the advertising model in Facebook [15].

There are two challenges in serving online tree ensembles. The
first is the demand of designing highly efficient tree ensemble tra-
versal algorithms for the scoring process, as web services often
impose strict requirements on model latency [33, 34]. The second is
model scalability, as web service systems need to support fast grow-
ing tree ensemble models, with deeper trees and larger ensemble
size, in the era of big data [11, 25, 34].

Some existing works leverage boolean-vector operations [23],
vectorization [2, 31], and Single Instruction Multiple Data (SIMD)
data-level parallelism [24] to address the aforementioned challenges.
For example, as the conventional root-to-leaf tree traversal algo-
rithm suffers from the CPU inefficiency due to the forced sequential
computation [2, 10, 23, 24], the recent approach QuickScorer [10,
23] reformulates the sequential computation by performing an in-
terleaved tree traversal with logical bitwise operations. The compu-
tation operands are boolean-vectors of lengthΛ, themaximum num-
ber of leaves per tree. The upgraded model, V-QuickScorer [24],
further exploits CPU SIMD extensions to vectorize scoring process,
such that multiple samples (e.g., documents or ads) can be evaluated
simultaneously in the ensemble tree traversal. These algorithms
have offered considerable speed-up of tree ensembles evaluations.

However, the above boolean-vector based algorithms iteratively
compute on vectors of length Λ and thus their complexity scales
linearly with the maximum number of leaves per tree, i.e. O (Λ).
With deeper trees, the CPU execution is more expensive and the
parallelization is more difficult. The running time of boolean-vector
methods can be extremely high for industry-scale tree ensembles.
For example, the number of leaves in a single tree can commonly
be more than 200 for the tree ensembles in Bing Ads to do click
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prediction as illustrated by Table 1. The top-performing models [8,
33] for KDD Cup and Yahoo! ranking challenges have to deal with
even larger numbers of leaves to achieve better performance.

To better address the aforementioned challenges, we present
RapidScorer for tree ensembles evaluation that is both fast at
traversal speed and scales up to deeper and larger tree ensembles.
Specifically, we introduce a modified run length encoding called
epitome to the bitmask representation of the tree ensemble mod-
els. The epitome data structure brings two benefits to the tree
ensembles evaluation, addressing the two challenges respectively.

First, using epitome, we utilize the hierarchical structure in the
trees to epitomize memory usage per node to constant scale. The
data-flow and layout are redesigned with modern CPU architec-
ture, so that the epitomization can help improve the tree ensemble
traversal with significant speed-up for both small and large tree
ensembles. As a result, we can reduce the complexity per node from
O (Λ) to O(

√
Λ) w.r.t. the maximum number of leaves Λ.

Second, the epitome structure for CPU operations works well
with the bit-wise memory usage in SIMD registers. SIMD extensions
have shown excellent competence for parallelizing computation for
web serving models [24, 31]. SIMD extensions, namely Streaming
SIMD Extensions (SSE) and Advanced Vector Extensions (AVX),
exploit wide registers of 128 and 256 bits, so the data inserted in
parallel are processed with a single instruction. In tree ensembles,
SIMD can be used to implement data-level parallelism [1, 9] across
the ensemble and across data samples. In RapidScorer, SIMD can
coordinate well with epitome structure to speed up the calculation
by one order of magnitude. Specifically, we can vectorize all steps
by leveraging SIMD and epitome to evaluate multiple samples in
parallel. As a result, RapidScorer can maximize the compactness
of data units and fully utilize the SIMD data-level parallelization to
further speed up the tree ensembles evaluation.

In our experiments, we tested RapidScorer against existing
worksQuickScorer [10, 23], V-QuickScorer [24], VPred [2], and
XGBoost [7], for both small scale ensembles and industry scale
ensembles. The experiments were performed on a public dataset
MSN [27] for search ranking and a production dataset in Bing
Ads for ad click prediction. According to the results, RapidScorer
achieves speed-up over V-QuickScorer ranging from 1.3x to 3.5x,
overQuickScorer ranging from 2.1x to 25.0x, over VPred ranging
from 2.3x to 18.3x, and over XGBoost ranging from 2.6x to 42.5x.

To sum up, our contributions are listed as below. (i) We intro-
duced a modified run length encoding called epitome to the bit-
mask representation of the tree ensemble models, and proposed
RapidScorer for fast tree ensemble evaluation. (ii) With epitome,
RapidScorer for tree ensembles evaluation can reduce per-node
CPU complexity from O (Λ) to O(

√
Λ) w.r.t. the number of leaves.

(iii) With epitome, RapidScorer can make the SIMD register oc-
cupation significantly compact. The compactness brings benefits
to the design of data flow, memory layout, and vectorization of
the SIMD instructions. (iv) In RapidScorer, the equivalent nodes
from different trees can be merged together as one node since the
node processing is order insensitive, which further reduces memory
usage and improves computing performance.

2 RELATEDWORK

The optimization for efficiently scoring documents by means of
regression tree ensembles has been well studied in information
retrieval. Several previous works [2, 5, 10, 23, 24] have provided
strategies to speed up tree traversal without losing quality.

In the scoring process of tree ensembles, a naïve implementation
is traversal from each tree root all the way down to a specific leaf,
like the example in Figure 1. However, this strategy induces frequent
control hazards, i.e., the next instruction to be executed remains
unknown until the boolean test of current node is performed. In
addition, due to the unpredictable of the tree nodes traversal, it is
hard for cache to pre-fetch the next correct node to be visited, which
results in low cache hit ratio. Therefore, the instruction pipeline of
the processor will be stalled as it always needs to wait for the result
of boolean test and the fetching of the next correct node, which
makes the tree traversal very inefficient.

Asadi et al. [2] proposed Pred and its vectorized version VPred,
to rearrange the traversal computation with the goal of converting
control hazards into data hazards. Pred unrolls the traversal of a
d-depth tree with the same d operations. Thus, control hazards are
removed as the next instruction is always known, but data hazards
are introduced as the next instruction requires the results of the
current one. VPred reduces data hazards by operating on multiple
samples simultaneously in an interleaved way, but it always runs d
steps, even if a document might reach an exit leaf very earlier.

QuickScorer [10, 23] and V-QuickScorer [24] are more recent
approaches which transform sequential tree evaluation into a more
cache friendly process. We will describe them in details in Section
3 as they are closely related to our work.

Different with the above works that aim at speeding up tree
ensemble evaluation with no quality loss, some recent approaches
approximate the results to reduce scoring time. For example, Lucch-
ese et al. [22] proposed several pruning strategies to remove trees
in the ensemble and fine-tuned the weights of the remaining trees
according to some quality metrics. Cambazoglu et al. [5] proposed
to early terminate the low-score samples before the traversal of the
whole tree ensemble.

It is also worth mentioning the oblivious decision trees [19], a pop-
ular variant of standard decision trees, which enforces the learned
trees of an ensemble to be oblivious, i.e., the trees must be balanced
and all branching nodes at the same level of each tree have to
perform the same test. Several approaches address on oblivious
decision trees and achieve noticeable speed-up, such as BDT [21],
CatBoost [26], and Oblivious [10].

3 BACKGROUND

Usually, a tree ensemble T is a predictive model composed of a
weighted combination ofmultiple decision trees, i.e.,T = {T0,T1, ...,
T |T |−1} with weights {w0,w1, ...,w |T |−1}. Each treeTh = (Nh ,Lh )
is composed of |Lh | − 1 internal nodes (referred to as nodes) Nh =

{nh0 ,n
h
1 , ...,n

h
|Lh |−2

} and |Lh | leaf nodes (referred to as leaves) Lh =

{lh0 , l
h
1 , ..., l

h
|Lh |−1

}. Each node nhi ∈ Nh contains four fields: the spe-

cific splitting feature with id ϕhi , the corresponding splitting thresh-
old θhi ∈ R, and the pointers to left and right child. Each leaf l

h
j ∈ Lh

has a score value shj ∈ leafvalue [Th ], where leafvalue [Th ] is
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the array containing the score contribution ofTh . As different trees
may have different number of leaves, a parameter Λ is set to be the
maximum number of leaves for each Th in T , and thus |Lh | ≤ Λ.

In tree ensemble evaluation, each sample is represented by a
real-valued vector x of features, i.e., x = (x0,x1, ...,x |F |−1)T where
F = { f0, f1, ..., f |F |−1} is the set of features and xk stores the value
of feature fk . The evaluation of tree Th on sample x returns the
score sh (x) at the exit leaf that x falls into. This leaf is found by
starting at the root node and following a path determined by the
decision criteria at each node. That is, if xϕhi ≤ θhi at node nhi is
true (TRUE node), it falls into the left child; otherwise (FALSE node),
it falls into the right child. For example, in Figure 11, if x satisfies
x2 > θh0 , x3 ≤ θh2 , and x0 ≤ θh4 , then the boolean tests inn

h
0 ,n

h
2 , and

nh4 will be FALSE, TRUE, and TRUE respectively. Thus, the traversal
turns right at nh0 (FALSE node), turns left at nh2 (TRUE node), turns
left at nh4 (TRUE node), and finally reaches exit leaf lh3 .

The tree traversal process is repeated for all the trees in the
ensemble T , and the final score for x is calculated as the weighted
sum over the contributions of all the trees in T .

3.1 QuickScorer

QuickScorer [10, 23] is a state-of-the-art approach which trans-
forms sequential tree evaluation into a cache friendly process. This
algorithm establishes tree traversal by applying bitwise AND to
boolean representations of FALSE nodes, i.e., nodemask.

n0 0001111

n1 0011111

n3 0111111

l0

x2 ≤ θ3

l1

x0 ≤ θ1

l2

x2 ≤ θ0

n2 1110011

n4 1110111

l3e(x)

x0 ≤ θ4

l4

x3 ≤ θ2

n5 1111101

l5

x2 ≤ θ3

l6

leafindex[Th] = 1111111 ∧
0001111 ∧
0111111 ∧
1111101 =
0001101

True node False node Candidate exit leaf

Figure 1: Tree traversal example of QuickScorer.

Algorithm 1 illustrates the details of QuickScorer. In the scor-
ing process of a sample x, for each tree Th ∈ T , QuickScorer
maintains a bitvector leafindex [Th ], composed of Λ bits, one per
leaf, to indicate the possible exit leaf candidates with correspond-
ing bits equal to 1. Initially, all bits in leafindex [Th ] are set to
1. For each node nhi , the children pointers are replaced by a bit-
mask nodemask[nhi ], which acts as a mask to encode the set of
unreachable leaves when nhi is a FALSE node. For example, in Fig-
ure 1, the bitmask 0001111 in FALSE node nh0 means, as x2 > θh0 ,
the leaves {lh0 , l

h
1 , l

h
2 } would not be visited by x. Thus, the bitwise

AND operation between leafindex [Th ] and nodemask[nh0 ] corre-
sponds to the removal of the leaves in the left subtree of nh0 from
1To simplify the notations, we drop the superscript h in the figures.

Algorithm 1 The QuickScorer Algorithm
1: function QuickScorer(x, T):
2: for h ∈ 0, 1, ..., |T | − 1 do
3: leafindex [Th ] ← {11...11}
4: for k ∈ 0, 1, ..., |F | − 1 do // Mask Computation
5: currentnode = nhi ← offset [fk ]
6: endnode← offset [fk+1]
7: while xk > θhi && currentnode < endnode do

8: leafindex [Th ] ← leafindex [Th ] ∧ nodemask
[
nhi

]
9: currentnode = nh

′

i′ ← next node of nhi for fk
10: s(x) ← 0
11: for h ∈ 0, 1, ..., |T | − 1 do // Score Computation
12: j ← index of leftmost bit equal to 1 in leafindex [Th ]
13: s(x) ← s(x) +whshj
14: return s(x)

the set of exit leaf candidates. QuickScorer proves that, after up-
dating leafindex [Th ] on all FALSE nodes, the exit leaf is exactly
the one corresponding to the position of the leftmost bit equal
to 1 in leafindex [Th ]. Finally, the score of the exit leaf can be
obtained as the score sh3 . Figure 1 shows how the initial bitvector
leafindex [Th ] is updated by using bitwise AND operations.

To efficiently identify all the FALSE nodes in T , QuickScorer
processes the nodes of all the trees feature by feature in ascend-
ing order of their predicate thresholds. As bitwise AND operation
is insensitive to the order of variables, QuickScorer has a nice
property that the updating process of leafindex [Th ] is insensitive
to the node processing order. This property allows it to perform an
interleaved traversal of the trees in a cache-aware fashion. Specifi-
cally, QuickScorer groups all nodes of all trees that have the same
splitting feature fk together and adopts an array, offset [fk ], to
mark the starting node of each feature. Within each feature, nodes
are sorted according to their thresholds in ascending order and
each node is represented in a triplet:

(
θhi ,h, nodemask[n

h
i ]
)
.

In addition, Lucchese et al. [10, 23] presented two optimization
strategies for specific conditions. One is blocking for large tree
ensembles, which splits the tree ensemble into disjoint blocks. The
other is tree reversing for trees that contain more FALSE nodes than
TRUE nodes on average over a collection of training documents.

3.2 V-QuickScorer

V-QuickScorer [24], QuickScorer’s vectorized extension, further
exploits SIMD extensions to vectorize the tree scoring process in
QuickScorer by evaluating multiple input samples simultaneously.
SIMD extensions, including Streaming SIMD Extensions (SSE) [32]
and Advanced Vector Extensions (AVX) [13], are sets of instructions
exploiting wide registers of 128 and 256 bits.

Specifically, during the mask computation step (line 7-9 in Al-
gorithm 1), multiple input samples can be tested against a given
node and their corresponding leafindex [Th ] can be updated in
parallel. For example, suppose Λ is 32, then line 8 in Algorithm 1
can be extended to support the parallelism of 128

Λ = 4 and 256
Λ = 8

samples by adopting one SSE and AVX instructions, respectively.
Similarly, the score calculation of multiple input samples (line 13)
can also be computed simultaneously.
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Table 1: Validation AUC scores and gains of GBDT for ad

click prediction in Bing Ads with various leaf numbers.

Λ 32 64 128 256 400

AUC 0.8385 0.8392 0.8397 0.8402 0.8408
AUC Gain +0.00% +0.08% +0.14% +0.20% +0.07%

3.3 Limitations

As mentioned by Jin et al. [17], the core QuickScorer and V-
QuickScorer scheme has a complexity sensitive to the maximum
number of leaves Λ. These algorithms are efficient when Λ is less
than 64, i.e., a typical machine word of modern CPUs (64 bits).
When Λ > 64, the AND operation has to be carried by multiple
64-bit instructions (line 8 in Algorithm 1), thus QuickScorer can
become very expensive. While in industrial settings where more
complex models are needed to fit the web-scale training data, Λ can
commonly be much more than 64. For instance, Table 1 illustrates a
case used in Bing Ads for click prediction, where Λ = 400 achieves
best AUC score. Things will be even worse for V-QuickScorer, in
which the number of parallelism v heavily relies on Λ, i.e., v = 128

Λ
for SSE and v = 256

Λ for AVX. We can see that the above limitation
is caused by the data structures leafindex and nodemask. Our pro-
posed algorithm will redesign the data structure to break through
the limitations in QuickScorer and V-QuickScorer.

4 DATA STRUCTURE IN RAPIDSCORER

In order to efficiently improve the traversal speed of the tree en-
sembles, we propose a novel algorithm called RapidScorer. Our al-
gorithm takes the advantages of the tree traversal of QuickScorer
and V-QuickScorer, but completely avoids their disadvantages
by presenting three strategies. In Section 4.1, we present a novel
tree-size insensitive encoding method for tree nodes, which pro-
vides a much more compact memory footprint, faster bitwise AND
operations, and better flexibility to further support parallelism of
multiple samples simultaneously. In Section 4.2, we present the
equivalent nodes merging, in which the nodes with same splitting
feature and threshold are grouped together so that we only need
to take an one-time boolean test for those nodes. In Section 4.3,
we design a novel layout for the efficiency of RapidScorer for
data-level parallelization.

4.1 Epitome Structure on Nodes

As discussed in Section 3, previous tree ensemble traversal algo-
rithms [10, 23, 24] represent the nodes of decision trees by boolean
vectors like the nodemask structure. This data structure offers a
technical framework to use boolean representation in tree ensemble
evaluation. However, for large trees, this representation is redun-
dant and inefficient, which hurts the calculation efficiency in the
update of leafindex. For example, given a larger decision tree
with 400 leaves, the length of nodemask[nhi ] is 400, which is much
longer than that in Figure 1 with 7 leaves. Meanwhile, using trees
with larger number of leaves in GBDT usually leads to better model
performance. As illustrated in Table 1, we applied an ensemble in
Bing Ads with 1,200 trees on 256 features for ad click prediction

(click or non-click binary classification). When Λ is changed from
32, 64, 128, 256 to 400, we can see the AUC score is increased.

To improve the calculation efficiency for trees with large number
of leaves, our first strategy is to encode the node representation
into a new data structure.

4.1.1 The Number of 0s in nodemask on Decision Trees.

An important fact for the update process of leafindex is: only
bit-0matters while bit-1 does not change the bitwise AND operation
result, i.e., given arbitrary bity, 0∧y = 0, 1∧y = y. This fact inspires
that we only need to focus on bit-0s in nodemask for the update of
leafindex. We further notice that, averagely, bit-0s only occupy
a small percentage of the total bits in nodemask. For example, in
Figure 1, the number of bit-0s is only 1 in these nodes: nh3 , n

h
4 , n

h
5 . In

the following theorem, we will prove that, averagely, the percentage
of bit-0s in nodemask is approximately

√
πLh/2Lh .

Theorem1: For decision trees with L leaves, the average number
of bit-0s (referred to as #0s) in the nodemask of each node isO(

√
L).

Proof.We assume the appearance probabilities of binary trees
in different shapes are the same2. Given L leaves (i.e.,m = L − 1
nodes), according to a proved theorem, Theorem 2 [16], the number
of binary trees is Cm , where Cm is a Catalan number,

Cm =
1

m + 1

(
2m
m

)
=

(2m)!
(m + 1)!m!

=

m∏
k=2

m + k

k
, form ≥ 0. (1)

We first calculate the sum of #0s (Sm ) across total nodes of these
Cm trees, then obtain the average #0s per node (Pm ) by Pm = Sm

Cm ·m .
Form = 0: S0 is 0 as there is no node.
Form ≥ 1: a treeT withm nodes has a root node n0 with left and

right subtrees,Tl ,Tr . Since n0 is an node,Tl andTr must havem−1
nodes together, i.e., given arbitrary integer q where 1 ≤ q ≤ m,
if Tl has q − 1 nodes then Tr hasm − q nodes. Thus, according to
Theorem 2, the number of trees for Tl and Tr are Cq−1 and Cm−q
respectively. Sm can be regarded as a summation of three parts (i.e.,
the root node n0; the left subtree of n0, Tl ; the right subtree of n0,
Tr ), which results in a recursive formula:

Sm =
m∑
q=1

Cq−1 ·Cm−q · q +Cq−1 · Sm−q +Cm−q · Sq−1 (2)

where Cq−1 · Cm−q · q is the summation of #0s for root node n0;
Cm−q ·Sq−1 is the summation of #0s for all nodes inTl ; Cq−1 ·Sm−q
is the summation of #0s for all nodes in Tr .

Solving Equation 2, we can get Sm as:

Sm = 22m−1 −
m + 1
2
·Cm (3)

Thus, the average #0s per node (Pm ) can be obtained by:

Pm =
Sm

Cm ·m
=

22m−1

Cm ·m
−
m + 1
2m
, form ≥ 1. (4)

Pm can be approximated by Stirling’s approximation [29], which
is an approximation for factorials in mathematics:

m! ∼
√
2πm

(m
e

)m
(5)

2In practice, the trees usually tend to be balanced. This property would make a better
result for the #0s, which isO (log L). We omit its proof due to space limit.
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Pm =
22m−1

m ·Cm
−
m + 1
2m

=
22m−1

m
·
(m + 1)(m!)2

(2m)!
−
m + 1
2m

∼
22m−1

m
·
2πm(m + 1)

(m
e
)2m

√
4πm

(
2m
e

)2m −
m + 1
2m

=

√
πm

2
+

√
πm −m − 1

2m
<

√
πm

2
<

√
πL

2
= O

(√
L
)

(6)

�

4.1.2 Epitome Data Structure.

Inspired by Theorem 1, we introduce a novel data structure called
epitome to encode the decision tree nodes, which allows perform-
ing AND operations only on bit-0s. Epitome is a modified run-length
encoding [28], which has two aspects: one is the compact data
encoding, and the other is the efficient operator computation.

For compact data encoding, we replace the nodemask of a node
by epitome, which contains the first and the last bytes that contain
bit-0s, together with their positions. The four bytes are defined as:
fb, the first byte that contains bit-0s; fbp, the byte position of fb;
eb, the last byte that contains bit-0s; and ebp, the byte position of
eb. We use a quadruple ep = {fb, fbp, eb, ebp} to denote epitome.

The AND operation between leafindex and epitome is given in
Algorithm 2. For ease of understanding, we use a two-dimensional
array to describe leafindex. In implementation, we only need a
one-dimensional array, as the lengths of all leafindex [Th ] are the
same, and thus the byte index such as ep.fbp will be replaced by
a global index. Algorithm 2 only does logic AND on the bytes with
bit-0s. Thus, the epitomization procedure reduces the average CPU
complexity from O (Λ) to O(

√
Λ) at each node.

Algorithm 2 Epitome AND operators
1: function Epitome_AND(ep, leafindex [Th ]):
2: leafindex [Th ] [ep.fbp] ← leafindex [Th ] [ep.fbp] ∧ ep.fb
3: leafindex [Th ] [ep.fbp + 1 : ep.ebp] ← 00...0 bytes
4: leafindex [Th ] [ep.ebp] ← leafindex [Th ] [ep.ebp] ∧ ep.eb
5: return leafindex [Th ]

Here, we describe an optimization which further reduce the cost
of updating leafindex [Th ], epitome_short, which is a simplified
epitome. It contains a tuple epS = {fb, fbp}, which is used when
bit-0s can be covered by single byte block. That is, eb and ebp of a
node can be omitted since fb and fbp can cover all of bit-0s. These
nodes only need to run line 2 in Algorithm 2. In implementation, as
the node processing is order-insensitive, the epitome_short nodes
can be grouped and processed separately. In the decision tree hier-
archy, epitome_short can be applied to most of the nodes. Empiri-
cally, Table 2 lists the distribution of nodes represented by epitome
in the tree ensembles (20,000 trees with different Λ) trained on a
public search ranking dataset [27]. Columns epS and ep report the
percentages of nodes which can be represented by epitome_short
and epitome, respectively. “Avg ins” means the average number
of machine instructions using epitome. Table 2 shows that the
percentage of nodes using epitome_short dominates in all cases.

In section 5, we will show that epitome works well with SIMD
instruction, which can support 16 or 32 epitomes in one instruction.

Table 2: The distribution of nodes represented by epitome.

Λ 8 16 32 64 128 256 400
epS 100% 83% 75% 71% 68% 67% 66%
ep 0% 17% 25% 29% 32% 33% 34%

avg ins 1 1.34 1.49 1.59 1.64 1.66 1.67

4.2 Equivalent Nodes Merging

The second strategy is equivalent nodes merging. In the tree en-
semble, there are a large number of nodes with the same splitting
feature and threshold, though usually belong to different trees. This
is because the upper bound of the total number of nodes |T | (Λ − 1)
is usually much larger than the number of features |F |. In our al-
gorithm, we regard the nodes with the same splitting feature and
threshold (no matter in the same tree or not) as equivalent nodes,
which can be grouped together as an uniquemerged node, to reduce
the overall cost in detecting the FALSE nodes.

To perform the equivalent nodes merging, we present a new
structure eqnode to represent all these nodes. That is, eqnode =
(θ ,u, treeids, epitomes), where θ is the feature threshold of these
nodes, u is the number of nodes before merging, treeids is an ar-
ray which stores the corresponding tree id h each node belongs to,
and epitomes is an array which stores the corresponding epitome
of each node. With eqnode, FALSE nodes detection can be accom-
plished by just one-time processing for all the nodes in the group.

We computed the statistics on the numbers of nodes in the tree
ensembles used in Bing Ads for ad click prediction. The results are
shown in Table 3, where #unique is the number of unique nodes
after merging, #original is the number of nodes before merging, and
Ratio is the ratio of #unique over #original. The results show that
there are a significant number of equivalent nodes. In addition, as Λ
increases, the percentage of unique nodes decreases. For example,
in the ensemble of 3,000 trees with 400 leaves each tree, only 0.93%
unique nodes need processing. This implies that redundancy grows
with the number of leaves, and we can save more computations by
leveraging equivalent nodes merging with larger number of leaves.

Table 3: Statistics on number of nodes in tree ensembles be-

fore and after equivalent nodes merging.

Λ
1,000 trees 3,000 trees

#unique #original Ratio #unique #original Ratio

8 3,565 7,000 50.93% 6,959 21,000 33.14%
16 5,686 15,000 37.91% 8,942 45,000 19.87%
32 7,726 31,000 24.92% 10,043 93,000 10.80%
64 9,218 63,000 14.63% 10,575 189,000 5.60%
128 9,993 127,000 7.87% 10,837 381,000 2.84%
256 10,382 255,000 4.07% 11,016 765,000 1.44%
400 10,707 399,000 2.68% 11,152 1,197,000 0.93%

4.3 Layout for Boolean Vector Tree Traversal

In the third strategy, we redesign the layout of required data struc-
tures in memory, since it is crucial for the efficiency of our Rapid-
Scorer algorithm.We leverage the layout inQuickScorer with our
epitome encoding and eqnode structure. Specifically, the arrays of
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nodes, offset, leafindexes, and leafvalues are all juxtaposed
one after the other as illustrated in Figure 2, to represent the data
structure of the tree ensemble T .
• nodes is a global array of eqnode structures, where each item
groups nodes with the same feature and threshold. As these nodes
may belong to different trees and may have different nodemasks,
we keep their original tree ids as treeids and transform their
corresponding nodemasks into epitomes. Suppose the number
of eqnodes with the same splitting feature fk is denoted by | fk |.
These | fk | eqnodes are grouped together and sorted by their
thresholds in an ascending way.
• offset is an auxiliary array to mark the starting position of each
feature in the global array of nodes, since different features may
have different numbers of eqnodes.
• leafindexes is a global array juxtaposed by the boolean vec-
tors of leafindex [Th ]. To perform multiple samples parallelism,
leafindex [Th ] has v copies, each corresponding to one sample.
To make full use of SIMD, we propose a new structure called
ByteTransposition for leafindex [Th ] in Section 5.2.
• leafvalues is a global array to store the values for leaves of each
tree grouped by their tree ids, i.e., a group of leafvalue [Th ].

leafvalues

Λ × |T |

ΛΛ ΛΛ ΛΛ

......... ...... ............ ... ...leafvalues

Λ × |T |

Λ Λ Λ

...... ... ...

leafindexes m×Λ/8 bytes each,
ByteTransposition layout

|T |

...... ... ...... ... ...leafindexes m×Λ/8 bytes each,
ByteTransposition layout

|T |

... ... ...

offset .........offset ...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

u 

   

...

...

u 

   

...

f0f0

treeids

epitomes

nodes
...

...

...

...

...

...

...

...

f|F|-1f|F|-1

...

...

...

...

f|F|-1

...

...

f1f1

...

ebp

fb

fbp

eb

ebp

fb

fbp

eb

...

...

...

...

...

...

...

Figure 2: Arrays used by RapidScorer.

With this layout, the data flow runs through the features to find
FALSE nodes. For each FALSE node nhi , leafindex [Th ] is updated
by epitome AND operation. The algorithm eventually finds the in-
dexes of leftmost TRUE bits in leafindex [Th ] forv samples (feature
vectors).

5 VECTORIZATIONWITH SIMD

In this section, we will show that SIMD can coordinate well with the
strategies in Section 4 to speed up the calculation by one order of
magnitude. The basic idea of vectorization with SIMD is to group a
set of data together which have the same operations. Following this
idea, we do vectorization on multiple samples, which exactly meets
the scenario of scoring multiple documents for a given query. We

Algorithm 3 The RapidScorer Algorithm
Input:

• χ : combination of feature vectors {x} of v samples
• T: ensemble of binary decision trees, with nodes, offset,
leafindexes, and leafvalues

Output:

•
−→s : final score vector of χ
1: function RapidScorer(χ , T):
2: for h ∈ 0, 1, ..., |T | − 1 do
3:

−−−−−−−−−−−−−−→
leafindex [Th ] ← 11...1

4: for k ∈ 0, 1, ..., |F | − 1 do
5: // Vectorized_FalseNodeDetection: line 6-8
6: −→xk ←

(
χkv , ..., χ(k+1)v−1

)T
7: for i ∈ 0, 1, ..., |fk | − 1 do
8: −→η ← −→xk ≤

←−−−−−−−−−−−−−−
nodes [k ] [i] .θ

9: if
−→η ,

←−−−−−
FFhex then // FFhex = 11111111

10: for q ∈ 0, 1, ..., nodes [k ] [i] .u − 1 do
11: h ← nodes [k ] [i] .treeids [q]
12: p ← nodes [k ] [i] .epitomes [q]

13: Vectorized_AND(p,
−−−−−−−−−−−−−−→
leafindex [Th ],

−→η )
14: else

15: break

16: −→s ←
←−0

17: for h ∈ 0, 1, ..., |T | − 1 do
18: −→c ← Vectorized_FindLeafIndex(

−−−−−−−−−−−−−−→
leafindex [Th ])

19: −→s ← −→s +←−−wh · leafvalue [Th ]
[−→c ]

20: return
−→s

first show the complete RapidScorer Algorithm in its logical flow,
and then dive into the details for each vectorization step. We will
present its three advantages over V-QuickScorer, corresponding
to the three major steps in RapidScorer.

5.1 The RapidScorer Algorithm

The complete RapidScorer algorithm is illustrated in Algorithm 3.
The inputs are: the feature vector χ of v samples and the ensemble
of trees T . χ is an array that combines all feature vectors {x} of
the v samples. To perform vectorization, v should be a constant
that depends on the register width, i.e., v = ⌈ rλ ⌉, where r is the
maximum register width and λ is the minimum processing unit for
each sample. In our experiments, λ is set to 8, length of a byte, and
r is 128 (SSE) or 256 (AVX)3. In the storage of multiple samples,
feature values from the same feature are placed contiguously, i.e.,
χkv , ..., χ(k+1)v store the values of the kth feature for thev samples.

The scoring process in RapidScorer runs as follows. At first,
RapidScorer initializes leafindexes to be all 1s (line 2-3). Then, it
loops over all the features in F (line 4) to identify whether a node is
a FALSE node for each sample (line 6-15). The information of FALSE
nodes will be stored in an indicator vector −→η 4 (line 8). If −→η does
not equal to←−−−−FFhex

5 (line 9), which means that the current node
is still a FALSE node for some samples in the current feature fk ,
3Note that r can be 512 if AVX-512 is supported. It can also be 64 or less if the machine
does not support SIMD instructions.
4A symbol with a right arrow on head like −→η means a vector containing v different
items of this symbol, belonging to the v samples in the parallelization batch.
5A symbol with a left arrow on head like←−−−−−FFhex means a vector containing v identical
items of this symbol, belonging to the v samples in the parallelization batch.
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then RapidScorer will iterate over all the same-threshold nodes
and do vectorized AND operation (see Algorithm 4) on each node to
update leafindex [Th ]6 (line 10-13); otherwise it will break (line
14-15) and move to the next feature fk+1. After finishing updating
leafindex [Th ], RapidScorer inspects all items in leafindex [Th ]
(line 17) to identify the indexes of the exit leaves of the v sam-
ples (line 18), and uses these indexes to obtain the values stored
in leafvalue [Th ] (line 19). Finally, the output scores −→s will be
updated by the obtained values (line 19).

5.2 Vectorizations

We dive into the details in each vectorization step to explain howwe
vectorize all operations to make full use of the SIMD performance,
so that RapidScorer is able to support 16 ways or 32 ways data
parallelism with SSE or AVX. We will describe three major steps
that contribute to the speed-up of RapidScorer: vectorized FALSE
node detection based on equivalent nodes merging, vectorized AND
operation based on epitome, and vectorized index of exit leaves.

Step 1 is to detect FALSE nodes. Based on equivalent nodes
merging, we utilize SIMD to parallelize the process of detecting
FALSE nodes, called Vectorized_FalseNodeDetection. In this
step, multiple samples can be tested against a given node predicate,
p. The testing results will be stored in a vector −→η . As the feature
values may vary from different samples, given testing condition
in line 8, p could be FALSE node for some samples but TRUE node
for the others. If all tests of p on v samples result in TRUE, i.e., we
do not have any FALSE nodes, then the next feature is processed;
otherwise, leafindex [Th ] is updated by vectorized AND operation.
To ensure logical AND is only performed on FALSE nodes, −→η will be
used as a mask in step 2.

Step 2 is to update tree vectors for the samples by AND operation.
As the operations in Algorithm 2 are all byte-based operations, they
can be vectorized perfectly with SIMD. Given the current node p,
the test indicator vector −→η , and tree vectors leafindex [Th ], the
vectorized logical AND is described in Algorithm 4, where only line
2 is required if p is an epitome_short node. The correctness of
Algorithm 4 can be verified easily, so we omitted it to save space.
To ensure that the memory access for vectorized AND operation ofv
samples is sequential, we reorder the bytes in leafindex [Th ] such
that the bytes corresponding to the same byte index ofv samples are
located contiguously.We named this layout as ByteTransposition
layout, which is illustrated in the top table of Figure 3.

Step 3 is to find exit leaf indexes for v samples, i.e. Vector-
ized_FindLeafIndex. The task is to quickly find the leftmost TRUE
bits from leafindex [Th ]. We present a novel strategy with SIMD,
which first finds the byte-wise position, and then finds the bit-wise
position precisely. Figure 3 shows the process of vectorizing the exit
leaf index finding. The leafindex [Th ] for v samples are located
in the ByteTransposition layout. Each single row fits into the
size of one SIMD register. In Step 3.a, the algorithm operates on
all v tree vectors, and returns two separate results. One is the first
byte that contains bit-1, shown as the row denoted by

−→
b in the left

branch. The other is the index of the first byte (starting with 00hex )
that contains bit-1, shown as the row denoted by −→c1 in the right

6leafindex [Th ] represents
−−−−−−−−−−−−−−→
leafindex [Th ] in paragraphs of Section 5.

Algorithm 4 Vectorized logical AND operation

1: function Vectorized_AND(p ,
−−−−−−−−−−−−−−→
leafindex [Th ], −→η ):

2:
−−−−−−−−−−−−−−−−−−−−−−→
leafindex [Th ] [p .fbp] ←

−−−−−−−−−−−−−−−−−−−−−−→
leafindex [Th ] [p .fbp] ∧

−→η ∨
←−−−
p .fb

3: if p .fbp , p .ebp then

4: for k = p .fbp + 1 to p .ebp − 1 do
5:

−−−−−−−−−−−−−−−−−→
leafindex [Th ] [k ] ←

−→η ∧
−−−−−−−−−−−−−−−−−→
leafindex [Th ] [k ]

6:
−−−−−−−−−−−−−−−−−−−−−−→
leafindex [Th ] [p .ebp] ←

−−−−−−−−−−−−−−−−−−−−−−→
leafindex [Th ] [p .ebp]∧

−→η ∨
←−−−
p .eb

branch. For example, in leafindex [Th ]2 = (00, 69, 07...)
T
hex , we

first inspect the first byte, 00hex , which does not have bit-1, then
move to the second byte 69hex , which has bit-1. Thus, 69hex is
recorded into

−→
b , and its position index 01hex is written into −→c1 . In

Step 3.b, the algorithm finds the index of the first bit-1 at each byte,
denoted by −→c2 . Either in Step 3.a or Step 3.b, an auxiliary indicator
vector is adopted to record whether the first non-zero byte or bit-1
has been found, which is similar to −→η in Algorithm 4. In Step 3.c,
the final bit-wise indexes for the leftmost TRUE, denoted by −→c , is
simply computed by −→c ← −→c1 × 8 + −→c2 . Thus, we get the exit leaf
indexes of the v samples for Th simultaneously.

v0 v1 v2 ... vm−1

03 00 00 ... 5B

4A 00 69 ... 72

20 A1 07 ... 00

... ... ... ... ...

v0 v1 v2 ... vm−1

03 A1 69 ... 5B

v0 v1 v2 ... vm−1

00 02 01 ... 00

v0 v1 v2 ... vm−1

06 00 01 ... 01

v0 v1 v2 ... vm−1

06 10 09 ... 01

−−−−−−−−−−→
leafindex[Th] in memory

Leftmost TRUE bytes (
−→
b )

Index of leftmost TRUE bits in
−→
b (−→c2)

Index of leftmost TRUE bytes (−→c1)

Index of leftmost TRUE bits in tree vectors (−→c )

vi:
−−−−−−−−−−→
leafindex[Th]i

128 bits or 256 bits

Each row fits into a SIMD register

Step 3.a:

Step 3.b:

Step 3.c:

−→c2 + 8×−→c1

dΛ/8e rows

Figure 3: Illustration of vectorizing leaf indexing strategy.

6 EXPERIMENTAL EVALUATION

In this section, we conduct a set of quantitative experiments to
compare the performance of RapidScorerwith several state-of-the-
art baseline algorithms, in a public dataset for search ranking and
a production dataset for ad click prediction in search advertising.

6.1 Experiment Setup

6.1.1 Datasets. The experimentswere conducted on two datasets:
the MSN7 dataset and the AdsCTR dataset. The MSN dataset is a
public dataset with 136 features extracted from query-url pairs.
There are 723,412 samples for training, 235,259 samples for valida-
tion, and 241,521 samples for testing. We trained GBDT models on
this dataset using an open source tool, XGBoost [7]8, with 8, 16, 32,
7https://www.microsoft.com/en-us/research/project/mslr/
8XGBoost is widely used by data scientists, and is behind many winning solutions of
various machine learning challenges. https://github.com/dmlc/xgboost
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Table 4: Per-sample scoring time in µs of RapidScorer(RS), V-QuickScorer(vQS), QuickScorer(QS), VPred, and XG-

Boost(XB). Orange numbers highlight the best algorithm; blue numbers highlight the best previous results.

Method Λ
Number of trees

1,000 5,000 10,000 20,000
MSN AdsCTR MSN AdsCTR MSN AdsCTR MSN AdsCTR

RS(AVX) 0.9 (-) 1.4 (-) 4.6 (-) 6.3 (-) 9.1 (-) 11.8 (-) 18.1 (-) 23.1 (-)

RS(SSE) 1.1 (1.2x) 1.8 (1.3x) 5.2 (1.1x) 7.6 (1.2x) 10.3 (1.1x) 13.5 (1.1x) 20.6 (1.1x) 26.4 (1.1x)
QS 8 2.4 (2.7x) 4.9 (3.4x) 11.1 (2.4x) 18.6 (3.0x) 22.2 (2.4x) 36.0 (3.0x) 44.8 (2.5x) 64.5 (2.8x)
VPred 7.8 (8.8x) 8.9 (6.2x) 38.9 (8.4x) 44.4 (7.1x) 76.0 (8.3x) 88.8 (7.5x) 153.3 (8.4x) 177.2 (7.7x)
XB 25.9 (28.9x) 30.9 (21.5x) 122.7 (26.4x) 178.9 (28.5x) 261.1 (28.6x) 359.9 (30.4x) 604.6 (33.3x) 760.9 (32.9x)
RS(AVX) 1.4 (-) 2.1 (-) 6.8 (-) 9.5 (-) 12.8 (-) 17.6 (-) 21.7 (-) 35.1 (-)

RS(SSE) 1.5 (1.1x) 2.6 (1.3x) 7.8 (1.1x) 11.5 (1.2x) 15.0 (1.2x) 22.0 (1.2x) 24.5 (1.1x) 43.3 (1.2x)
QS 16 3.1 (2.2x) 7.5 (3.6x) 16.5 (2.4x) 29.0 (3.1x) 33.2 (2.6x) 53.7 (3.0x) 73.6 (3.4x) 105.9 (3.0x)
VPred 16.2 (11.4x) 16.0 (7.6x) 80.3 (11.8x) 79.8 (8.4x) 161.5 (12.7x) 160.5 (9.1x) 319.7 (14.7x) 326.8 (9.3x)
XB 38.3 (27.1x) 49.4 (23.5x) 185.4 (27.2x) 236.2 (24.9x) 423.6 (33.2x) 475.0 (26.9x) 921.8 (42.5x) 976.5 (27.9x)
RS(AVX) 2.5 (-) 3.4 (-) 11.9 (-) 15.2 (-) 25.0 (-) 30.4 (-) 48.3 (-) 58.8 (-)

RS(SSE) 2.7 (1.1x) 4.1 (1.2x) 13.4 (1.1x) 17.9 (1.2x) 28.4 (1.1x) 35.6 (1.2x) 54.4 (1.1x) 69.9 (1.2x)
vQS(AVX) 32 3.2 (1.3x) 5.1 (1.5x) 17.8 (1.5x) 23.0 (1.5x) 39.3 (1.6x) 49.4 (1.6x) 81.0 (1.7x) 110.0 (1.9x)
QS 5.1 (2.1x) 11.5 (3.4x) 27.2 (2.3x) 49.0 (3.2x) 62.6 (2.5x) 94.6 (3.1x) 168.6 (3.5x) 229.5 (3.9x)
VPred 31.2 (12.6x) 30.7 (9.0x) 164.9 (13.8x) 158.4 (10.4x) 345.8 (13.8x) 332.1 (10.9x) 720.8 (14.9x) 736.3 (12.5x)
XB 47.8 (19.4x) 63.7 (18.7x) 264.9 (22.2x) 303.8 (20.0x) 560.8 (22.4x) 636.9 (20.9x) 1343.9 (27.8x) 1253.1 (21.3x)
RS(AVX) 4.3 (-) 6.0 (-) 20.8 (-) 28.2 (-) 40.2 (-) 56.8 (-) 88.1 (-) 124.8 (-)

RS(SSE) 5.3 (1.3x) 6.8 (1.1x) 25.4 (1.2x) 32.0 (1.1x) 45.8 (1.1x) 64.7 (1.1x) 98.6 (1.1x) 141.2 (1.1x)
vQS(AVX) 64 7.3 (1.7x) 12.8 (2.1x) 40.2 (1.9x) 61.4 (2.2x) 139.6 (3.5x) 144.1 (2.5x) 304.2 (3.5x) 361.9 (2.9x)
QS 10.4 (2.4x) 19.7 (3.3x) 57.8 (2.8x) 99.1 (3.5x) 154.6 (3.8x) 220.7 (3.9x) 435.9 (4.9x) 514.5 (4.1x)
VPred 59.9 (14.0x) 56.5 (9.4x) 338.7 (16.3x) 320.0 (11.3x) 736.4 (18.3x) 683.0 (12.0x) 1284.8 (14.6x) 1372.8 (11.0x)
XB 60.6 (14.2x) 78.2 (13.0x) 366.3 (17.6x) 387.1 (13.7x) 821.1 (20.4x) 778.3 (13.7x) 2280.3 (25.9x) 1899.2 (15.2x)
RS(AVX) 6.8 (-) 11.0 (-) 33.8 (-) 55.5 (-) 75.5 (-) 124.2 (-) 230.5 (-) 366.9 (-)

RS(SSE) 8.9 (1.3x) 12.4 (1.1x) 43.6 (1.3x) 62.2 (1.1x) 96.5 (1.3x) 139.7 (1.1x) 290.2 (1.3x) 415.0 (1.1x)
QS 128 39.2 (5.8x) 64.4 (5.8x) 268.4 (7.9x) 430.5 (7.8x) 618.9 (8.2x) 1086.9 (8.8x) 2083.6 (9.0x) 3143.8 (8.6x)
VPred 77.6 (11.5x) 79.5 (7.2x) 441.8 (13.1x) 436.9 (7.9x) 921.3 (12.2x) 952.2 (7.7x) 2154.3 (9.3x) 2114.1 (5.8x)
XB 85.0 (12.6x) 89.8 (8.1x) 515.4 (15.2x) 504.1 (9.1x) 1156.0 (15.3x) 926.1 (7.5x) 3112.4 (13.5x) 2805.5 (7.6x)
RS(AVX) 12.3 (-) 21.2 (-) 70.1 (-) 119.1 (-) 184.7 (-) 282.3 (-) 595.8 (-) 793.1 (-)

RS(SSE) 16.4 (1.3x) 24.1 (1.1x) 88.5 (1.3x) 139.2 (1.2x) 228.2 (1.2x) 341.1 (1.2x) 710.1 (1.2x) 913.6 (1.2x)
QS 256 148.8 (12.1x) 182.2 (8.6x) 1226.9 (17.5x) 1817.7 (15.3x) 3167.0 (17.1x) 4276.2 (15.2x) 6937.5 (11.6x) 9042.6 (11.4x)
VPred 91.0 (7.4x) 96.7 (4.6x) 529.9 (7.6x) 558.6 (4.7x) 1203.7 (6.5x) 1264.9 (4.5x) 2645.9 (4.4x) 2715.1 (3.4x)
XB 117.5 (9.6x) 101.0 (4.8x) 675.4 (9.6x) 524.6 (4.4x) 1356.9 (7.3x) 1268.6 (4.5x) 4570.0 (7.7x) 3934.2 (5.0x)
RS(AVX) 25.2 (-) 36.0 (-) 196.8 (-) 269.0 (-) 475.2 (-) 768.0 (-) 1260.6 (-) 1799.2 (-)

RS(SSE) 34.0 (1.3x) 41.6 (1.2x) 240.8 (1.2x) 319.5 (1.2x) 581.5 (1.2x) 887.5 (1.2x) 1438.0 (1.1x) 2001.0 (1.1x)
QS 400 536.0 (21.3x) 727.0 (20.2x) 4847.1 (24.6x) 6231.3 (23.2x) 11858 (25.0x) 13198 (17.2x) 23465 (18.6x) 28628 (15.9x)
VPred 123.4 (4.9x) 125.6 (3.5x) 729.6 (3.7x) 743.7 (2.8x) 1798.0 (3.8x) 1953.4 (2.5x) 3915.8 (3.1x) 4130.5 (2.3x)
XB 139.1 (5.5x) 111.6 (3.1x) 868.1 (4.4x) 977.0 (3.6x) 2070.5 (4.4x) 2006.4 (2.6x) 5125.6 (4.1x) 4943.9 (2.7x)

64, 128, 256 and 400 leaves. The AdsCTR is the dataset used in Bing
Ads for ad click prediction with 870 features, which was sampled
from real traffic. The query-ad pairs for training and testing are
810,516 and 263,509 respectively. We trained GBDT models on this
dataset with 8, 16, 32, 64, 128, 256 and 400 leaves. Specifically, the
model with 400 leaves is used in the production.

6.1.2 Baselines. We have implemented two versions of Rapid-
Scorer (RS): RS(SSE) using SSE4.2 instructions and RS(AVX) us-
ing AVX2 instructions. The scoring efficiency of RS is compared
with four baselines: QuickScorer [10, 23] (QS), V-QuickScorer
[24] (vQS), VPred [2], and XGBoost [7] (XB). As QS and vQS
are not publicly available, we implemented them to our best, 9

9For both QS and RS, we do not adopt the strategies of blocking and tree reversing, as
they need model-specific tuning (e.g., block size and the percentage of FALSE nodes in
each tree), while their gains are limited even in the best case reported in [10, 23] (i.e.,

which achieved similar scoring performance to that reported in
[10, 23, 24] on the MSN dataset. It should be mentioned that vQS
only supports trees with 32 and 64 leaves in the AVX-based imple-
mentation [24]. We adopt the implementation of VPred10 and XB
from Github. All models and the test set were transformed to be
XGBoost-compatible for fair evaluation. Each test ran 3 times and
the averaged per-sample scoring latency was used for evaluation.

All the implementations were compiled with GCC 5.4.0 with
the highest optimization settings (-O3). The code was executed
in a single core on a machine equipped with an Intel Core E5-
1650 v4 clocked at 3.60Ghz. The machine has 32GiB RAM, running
Windows 10. The CPU has three levels of cache. Level 1 and 2

1.55x when Λ = 64 and |T | = 20, 000), RS (AVX) achieves much better improvement
of 4.9x under the same conditions in Table 4.
10https://github.com/lintool/OptTrees.git
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caches are core-private with 32 KB and 256 KB, respectively, while
level 3 is a shared cache with 15 MB.

6.2 Evaluation Result

As both RS and other baseline algorithms provide exactly the same
scoring results (same scoring result as the naïve tree traversal), our
experiments focus on comparing their runtime performance and
analyzing the contributions of the proposed strategies in RS.

6.2.1 Compared with baselines. The average time (in µs) needed
by the different algorithms to score each document of the two
datasetsMSN andAdsCTR are reported in Table 4.We list the results
w.r.t. the algorithm name, the ensemble size, and the number of
leaves (Λ). For each test the table also reports between parentheses
the gain factor of RS over its competitors. From Table 4, we find
that: (i) RS outperforms the state-of-the-art algorithms, with speed-
up 1.3x-3.6x for Λ ≤ 64, and 2.3x-9.0x for Λ > 64. (ii) RS works
consistently well across the ensemble sizes and the number of leaves.
We provide detailed discussions as below.

First, we compare RS with vQS and QS, which are all based on the
feature by feature traversal of tree ensembles. We observe that RS
surpasses vQS and QS significantly even when Λ is small. This owes
to the compactness of epitome structure in SIMD register which
maximizes the parallelism. (i) Compared with vQS(AVX), RS(AVX)
executes 1.3x-1.9x faster when Λ = 32, in which vQS(AVX) was
reported to perform the best in the literature [24]. When Λ = 64,
RS(AVX) executes 1.7x to 3.5x faster than vQS(AVX). Specifically,
RS(AVX) obtains 32-way parallelism independent of the number of
leaves; however, vQS(AVX) only obtains 8-way parallelism when
Λ = 32, 4-way parallelism when Λ = 64, and no parallelism when
Λ > 128. (ii) Compared with QS, RS(AVX) achieves significant
speed-up, i.e. 2.1x-25x. The speed-up is relative stable (2.1x to 4.9x)
when Λ ≤ 64, and it increases sharply (5.8x to 25x) when Λ > 64.
The reason is that, to update leafindex [Th ], multiple 64-bit AND
operations per node are needed in QS when Λ > 64.

Then, we compare RS with VPred and XG. Different with RS,
VPred and XG adopt tree by tree traversal of tree ensembles, eval-
uating each tree from root to leaf. As QS is not good at dealing
with large Λ, VPred and XG surpass QS when Λ ≥ 256. However,
RS(AVX) still achieves huge speed-up: 2.3x-18.3x faster than VPred,
and 2.6x-42.5x faster than XG. This is due to the combination of
epitome structure and the vectorization with SIMD instructions.
Note that, the speed-up of RS(AVX) over VPred and XG decreases
slightly when Λ grows, which shows the RS(AVX)’s advantage on
cache locality is partially counteracted by dealing with more nodes.

Finally, we compare RS(AVX) with RS(SSE), the speed-up is from
1.1x to 1.3x, less than 2x. The main reason is that, the benefit of
longer register width is partially counteracted by larger padding
cost of AVX register and pressure on memory access bandwidth.

6.2.2 Analysis on strategy contributions. The superior perfor-
mance of RS relies on a combination of several proposed strategies.
Figure 4 shows the improvement of each strategy, in which QS
is considered as the baseline and each strategy is added at a time.
(i) “+Epitome” (EP) means replacing the nodemask [Th ] by epitome

encoding and bitwise AND operation by epitome AND operation (Sec-
tion 4.1.2). (ii) “+NodesMerging” (NM) means merging the equiv-
alent nodes to reduce the cost of detecting the FALSE nodes upon
EP (Section 4.2). (iii) “+VecAND” (VA) means vectorizing the FALSE
node detection of multiple samples and the AND operation upon NM
(Step 1 and 2 in Section 5.2). (iv) “+VecExitLeafIndex” (VE) means
vectorizing the computation to locate the exit leaf nodes upon VA
(Step 3 in Section 5.2). Note that VE exactly equals to RS(SSE). From
Figure 4, we have the following observations.

EP and NM optimizations aim at preserving only necessary com-
putations. (i) EP changes the data structure of nodes to save compu-
tation and maximize parallelism. This speed-up effect is apparent
in leaf sizes 256 and 400, but there is a little drop for EP v.s. QS at
small leaf sizes. This is because in the update of leafindex [Th ],
epitome AND works at byte granularity, but QS works at coarse
granularity which is limited by the machine word of modern CPUs,
typically 64 bits. As the number of leaves increases, EP achieves a
notable speed-up. The improvement is around 80% when Λ = 400
(Figure 4c), where QS needs 7 operations of 64 bits AND while EP
only needs average 1.67 AND operations, shown in Table 2. In other
words, computational complexity in RS is independent of Λ. (ii) For
NM, the speed-up over QS and EP increases when the number of
trees grows (X-axis). This validates the observation in Table 3 that
the ratio of unique nodes drops when the number of trees grows.
As NM merges all the nodes with the same feature and threshold
as one unique node to perform one-time FALSE node detection, it
significantly saves the average detection time.

The VA and VE optimizations together vectorize all operations
in RS with SIMD, which achieves a speed-up from 5.5x to 6.5x over
non-vectorized version. (i) VA achieves a significant speed-up, rang-
ing from 42.8% to 603.7%. This is due to the perfect combination
of epitome structure and ByteTransposition layout, which im-
proves the parallelism in vectorization, i.e., 16 samples can be served
using SSE4.2 instructions. (ii) VE further improves the scoring speed
from 24.3% to 330.8%, as it vectorizes the process of finding exit leaf
indexes such that the entire algorithm can be vectorized to avoid
the sequential bottleneck.

7 CONCLUSIONS AND FUTUREWORK

We presented RapidScorer to speed up the scoring process of tree
ensembles by systematically compacting CPU operations and mak-
ing full use of SIMD register. Specifically, we defined the epitome
structure to reduce the computational complexity of the update
process for each FALSE node from O (Λ) to O(

√
Λ); we designed

the equivalent nodes merging strategy to reduce the cost of FALSE
node detection by grouping nodes with the same feature and thresh-
old; we proposed the RapidScorer algorithm that can maximize
the compactness of data units and fully utilize SIMD data-level
parallelization. Experimental evaluations show that RapidScorer
significantly outperforms the state-of-the-art algorithms.

For the future work, for much larger Λ, we would like to explore
a hybrid approach that combines RapidScorer with the conven-
tional root-to-leaf evaluation, to leverage the fact that there are
exponentially less nodes in top layers than those in bottom layers
in the decision trees; we would also like to extend RapidScorer to
work on other tree ensemble models such as Random Forest [3].
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(a) 128 leaves (b) 256 leaves (c) 400 leaves

Figure 4: Per-tree per-document scoring time in µs of each optimization strategy fromQuickScorer to RapidScorer (SSE) in

GBDT models with 128, 256, and 400 leaves in MSN dataset.
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