Bilingual Embeddings for Phrase-Based Machine Translation

Will Y. Zou
Richard Socher
Daniel Cer
Christopher D. Manning
Stanford University
MT is one of the most classical and useful AI problems

Phrase-Based systems are very competitive

Classical statistical methods suffer from sparsity problems for phrase semantic equivalence

A. un cas de force majeure \Longleftrightarrow case of absolute necessity (an event of) (unavoidable accident)

B. 依然故我 \Longleftrightarrow persist in a stubborn manner (as before)(old)(self)

Learn Distributed Semantic Representations, with neural language models
Model Description

Combining a **Neural Language Model** with **Bilingual Constraints**

- Max-margin contrastive objective for learning word embeddings
- Obtain word alignments using the Berkeley Aligner on parallel text
- Combine both objectives to constrain word embeddings for translational equivalence
Learning of Embeddings

Curriculum Training with minibatch L-BFGS of varying band sizes:
{5k, 10k, 25k, 50k, 100k}

Train in parallel

Band size

Vocabulary

Train a large number of iterations

Entire Vocabulary

Band 1
Band 2
Band 3
Band 4

... Band N1

... Band N3

Train in parallel

Vocab. by freq. low to high
A first set of Mandarin Chinese word embeddings with 100k vocabulary (downloadable from http://ai.stanford.edu/~wzou/mt/)
Application to Stanford Phrasal System

- Phrase-table scoring in an end-to-end MT system
- Competitive BLUE baseline on NIST08 (30.01), with addition data for phrase-table extraction
- Simply average word embeddings to obtain phrase representations
- Cosine similarity is used to form an MT feature
- MERT for decoder optimization
Main Results

Word semantic similarity on SemEval 2012
NIST08 Chinese-English machine translation

<table>
<thead>
<tr>
<th>Word semantic similarity</th>
<th>BLEU score on NIST08 Chinese-English translation task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Sp. Corr.</td>
</tr>
<tr>
<td>Prior work (Jin and Wu, 2012)</td>
<td>5.0</td>
</tr>
<tr>
<td>Tf-idf</td>
<td></td>
</tr>
<tr>
<td>Naive tf-idf</td>
<td>41.5</td>
</tr>
<tr>
<td>Pruned tf-idf</td>
<td>46.7</td>
</tr>
<tr>
<td>Word Embeddings</td>
<td></td>
</tr>
<tr>
<td>Align-Init</td>
<td>52.9</td>
</tr>
<tr>
<td>Mono-trained</td>
<td>59.3</td>
</tr>
<tr>
<td>Biling-trained</td>
<td>60.8</td>
</tr>
<tr>
<td>Method</td>
<td>BLEU</td>
</tr>
<tr>
<td>Our baseline</td>
<td>30.01</td>
</tr>
<tr>
<td>Embeddings</td>
<td></td>
</tr>
<tr>
<td>Random-Init Mono-trained</td>
<td>30.09</td>
</tr>
<tr>
<td>Align-Init</td>
<td>30.31</td>
</tr>
<tr>
<td>Mono-trained</td>
<td>30.40</td>
</tr>
<tr>
<td>Biling-trained</td>
<td>30.49</td>
</tr>
</tbody>
</table>