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Abstract

Natural scenes in a video stream contain rich collections ofvisual transforma-
tions. In this paper, a generic neural network is built to learn visual invariance
from videos in an unsupervised manner. We use temporal coherence to learn both
visual transformations and features with complex invariances. Without fine-tuning
with labels, our invariant features are superior for classifying objects in still im-
ages. The learned features out-perform features learned with sparsity in vision
benchmarks Caltech-101, STL-10 and COIL-100.

1 Introduction

Our visual system is able to recognize objects in various viewing angles, orientations, deformations,
scales and lighting conditions. This ability relies on robust visual signals or invariant represen-
tations. In deep neural networks, invariances can be learned purely from discriminative training
which requires large amounts of labeled data. We illustratethat alternatively, visual invariance can
be learned by exposing a learning system to motion and transformations in unlabeled videos.

In modeling statistics of natural images, sparsity plays animportant role in unsupervised learning
methods such as Sparse Coding [1], Independent Component Analysis [2] and Sparse Restricted
Boltzmann Machines [3]. As sparse representations, features learned by these algorithms share
properties with simple cell receptive fields in early visualsystem V1. Another plausible principle
specific to learning visual invariance is temporal coherence [4, 5, 6, 7]. Retinal projections of objects
move smoothly across time. It is likely high-level visual representations become slow-changing over
time by associating low-level visual templates [5].

With temporal coherence, a single layer of modules learns features similar to simple cell receptive
fields [8, 9]. This evidence is interesting but shows the limitations of using only one layer of learning
modules. We focus on learning a second layer with temporal coherence. Our work is closely related
to motion models [10, 11, 12]. The second layer neurons combines signals from the first layer (V1)
with an over-complete set of neurons. Instead of hard-coding the second layer weights [10], we
optimize for an additional objective so that second layer activations are coherent over time. Motion
patterns are learned implicitly by combining signals from the V1 layer, and second layer neurons
produce signals invariant to those transformations. In both layers of the network, we follow the
classic complex cell model to group neurons in group size 2 with energy pooling. The result is that
features are represented efficiently with non-redundant quadrature pairs [11, 12].

Much prior work has been devoted to learning invariant features using image sequences [13, 8, 14,
12]. Despite efforts, there lacks indicative evidence showing invariant features learned with coherent
image sequences are competitive in recognition tasks. To address this deficit, we aim to show that
features learned using temporal coherence can improve object recognition on still images. In this
work, a two-layer model is trained on a closed set of gray-scale natural videos in an unsupervised
manner. The learned features are transferred to object recognition tasks using a linear classifier on
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computer vision benchmarks. With our model, recognition performance increase consistently with
temporal coherence. With cross-validation, the increase in accuracy by using video across three
tested datasets is 4-5%. In particular, we achieve the best recognition accuracy to date (61%) on
STL-10 dataset using video for unsupervised training. To validate the attribution of our results to
invariance, we visualize and analyze second layer invariances.

2 Prior work

There has been long standing interest in unsupervised algorithms to learn visual invariance from im-
age sequences. Foldiak [13] described a Hebbian learning rule for learning invariance to translation.
Hyvarinen et. al. proposed the general ‘Bubbles’ framework[8] to encourage coherence both across
features and across time. Hadsell et. al. [15] proposed a method to learn invariant mapping using
convolutional networks. Slow Feature Analysis (SFA) [7] solves a constrained problem and opti-
mize for temporal coherence by mapping data into quadratic expansion and performing eigenvector
decomposition. Hashimoto [16] proposes a similar algorithm, but replaced L2 penalty in SFA with
L1 penalty. Further, [14] applies SFA to extract object identity, position and rotation angles on an
artificial dataset. Despite its elegance, SFA requires non-linear (quadratic) expansion and suffers
from curse of dimensionality. There hasn’t been clear successful application of SFA on computer
vision benchmarks.

Closely related are unsupervised learning algorithms to learn visual invariance by factoring out
‘what’ and ‘where’ parts of representations. Hinton et. al.[17] formulated an auto-encoding neural
network architecture that separates pathways for feature identity and feature position. Koster et.
al. [18] introduced a horizontal product model based on Independent Component Analysis. [19, 20]
proposed bi-linear models which represents natural imagesusing a factorial code. Cadieu et. al. [12]
modeled image transformations using interpolation between pooled features in quadrature pairs.

In computer vision, relatively few attempts have been made to improve vision features with video.
Only recently, Stavens et. al. [21] show improvement in performance when SIFT/HOG parameters
are optimized using tracked image patch sequences in specific application domains. In comparison,
more work has been done to improve discriminative tasks suchrecognition or detection using videos
as ‘weakly supervised’ signals. Leistner et. al. [22] used natural videos to improve random forest
classifiers; Mobahi et. al. [23] used coherence in video to regularize a convolutional neural network
and improve supervised object recognition task on COIL-100dataset. It is worth noting that in [21],
[22] and [23], a similar cost function or regularization technique is used in the discriminative task to
enforce coherence between features in consecutive frames,and variation between features far-apart
in time.

Prior work on unsupervised learning invariances with temporal coherence lack convincing appli-
cation. In computer vision, there is need for unsupervised learning of complex invariances from
temporal data. In this work, we illustrate a scalable feed-forward model that is able to learn visual
invariances and applicable to real-world problems.

3 First layer algorithm

3.1 Linear Auto-encoder with Energy Pooling

We start by describing the algorithm for our basic learning module, based on the auto-encoder, an
unsupervised learning architecture used to pre-train deepnetworks [24]. To learn features from
data samplex(i), the conventional auto-encoder attempts to reconstruct the data by minimizing the
following cost function:

N
∑

i=1

‖x(i) −W2g(W1x
(i) + b1) + b2‖

2 + S(W1x
(i) + b1) (1)

g is a non-linear function such as sigmoid11+e−x
. S is usually a regularization function. To simplify

the formulation, we use linear activation, no biases and tied weights (W2 = WT

1 ). Further, an energy
pooling with group size of two is used. The cost function for the unsupervised learning algorithm
is:
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J =

N
∑

t=1

‖x(t) −WTWx(t)‖22 + λ

N
∑

t=1

‖
√

H(Wx(t))2‖1 (2)

In this equation, square and square-root operations are element-wise. The indext denotes data
samples.H is a subspace-pooling matrix with group size of two [25]. More specifically, each
row of H picks and sums tow neighboring feature dimensions in a non-overlapping fashion. The
last term regularizes for sparsity in the pooling units. This auto-encoding algorithm has close ties
with Independent Subspace Analysis (ISA) [25] and has the advantage of being able to learn over-
complete hidden representations. Further, compared to ISA, the algorithm solves an unconstrained
optimization problem.

To add temporal coherence, we give indext notion of time and add a simple L1-cost on temporal
difference on the pooling units:

J =
N
∑

t=1

‖x(t) −WTWx(t)‖22 + λ

N
∑

t=1

‖p(t)‖1 + γ

N−1
∑

t=1

‖p(t) − p(t+1)‖1 (3)

The activations of pooling units are denoted asp(t) =
√

H(Wx(t))2.

When applied to natural images, the auto-encoder learns gabor-like features localized in orientation,
space and frequency. An interesting property of this formulation is it is possible to learn a quadrature
pair of gabor-like features when temporal coherence cost isadded in the third term.

We visualize changes induced in the feature by the angle interpolating between two pooled neurons.
Take two rowsw1, w2 of matrix W which are in one group size, and denote each elementw

(i)
1

in w1, w(i)
2 in w2. For each angle valueθ ∈ [0, 360] construct elements of interpolation̂w by

ŵ(i) = cos(θ)

√

(w
(i)
1 )2 + (w

(i)
2 )2. In Figure 1 from left to right, we visualizêw by incrementing

the angleθ by 45 degrees. The increment corresponds to translations inthe localized Gaussian
envelope in the gabor-like feature. In Figure 1, the translation is to the top-left, orthogonal to the
feature orientation. Since the pooling units are invariantto the interpolation angle, we may say that
the first layer units are invariant to translations in the local feature.

Figure 1: Visualization of change in one feature from the auto encoder by interpolation angle

3.2 Complex number interpretation

An interpretation with complex representations can be given to the above linear auto-encoder. In-
stead of having real number weights, we allow complex weightmatrix and complex hidden activa-
tions, the auto-encoder objective would become (without energy pooling):

J =
N
∑

i=1

‖x(i) − real(W †
c
Wcx

(i))‖22 + λ

N
∑

i=1

‖Wcx
(i)‖1 (4)

Wc ∈ Cm×n is a complex matrix. Note the hidden activations are decodedby a complex matrix-
vector productW †

c
z, whereW †

c
is Hermitian ofWc. To form the objective function, we take the

real part to calculate the reconstruction error between the decodedx̂ and datax, and add a sparsity
regularization term. The L1-norm indicates taking the L1-norm of the real vector obtained by taking
complex norm in each element.
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The objective in Equation 4 is equivalent to objective in Equation 2. In this respect, our algorithm
has connections with the complex number formulation of sparse coding in Cadieu et. al. [12].
The visualization in Figure 1 can be seen as varying the phaseof a complex feature. Later in the
next section, we show that our model is able to produce similar results as Cadieu et. al. [12] to
learn image transformations. For Figure 1, reviewers are encouraged to see a video visualization
layer1 motion.mov 1 with multiple features.

4 Learning the second layer

4.1 Stack up to learn complex visual invariances

Each pooling unit on the first layer is only invariant to localtranslations within the local envelope.
From natural videos, we expect to learn complex invariancessuch as rotational invariance, transla-
tional invariance across large scales, and perhaps invariance to out-of-plane rotation.

To obtain high-level invariance and implicitly model motion, second layer units should be able to
see continuous switching between first layer features. Morespecifically, when a small object part
moves coherently over time in video sequence, there should be one feature which describes this
small part in frame 1, and another feature which describes the same part at a different location and
pose in frame 2. In this manner, when the temporal coherence constraint is applied, higher layer
units are able to associate the two abovementioned featuresacross time thus learn from motion
patterns. This observation is in accordance with models forthe MT [10]. Therefore, the higher layer
requires a highly over-complete set of first layer outputs. Also, the second layer feature should try
to model larger-scale features than the first layer. We use convolution to replicate first layer neurons
at multiple grid locations, and expand the receptive field ofsecond layer neurons.

Figure 2 illustrates the second layer architecture. Once the first layer network withm hidden units
are trained, convolution is performed on a larger image patch to obtainm response maps. The
second layer, with a larger visual field in the original imagespace, is built on top of the all the
convolutional response maps of the first layer neurons. We apply PCA with whitening to this high-
dimensional input data and reduce to acceptable dimensionsfor the learning algorithm. This is
similar to Le et. al [26] for learning high-dimensional spatial-temporal features. We use the auto-
encoder algorithm described in the last section to learn thesecond layer. The only difference is a
much stronger temporal coherence cost is placed on the pooling units. In the coming sections, we
illustrate that temporal coherence cost is important to learning a meaningful second layer.

Figure 2: Illustration for learning the second layer on convolutional response map of layer 1 norm
units.

4.2 Visualization of invariances

Similar to the first layer, second layer invariance can be visualized by adding increments to interpo-
lation angle in each pooling group and observe the resultingtransformations. To visualize changes
that correspond to increasing the interpolation angle, second layer weight vectors are multiplied by
the corresponding norm, projected onto the larger receptive field. By incrementing the interpolation
angle in each element of the weight vector, we can visualize amotion sequence to which the sec-
ond layer norm unit is invariant to. This visualization is shown on the right of Figure 3. Each row

1http://ai.stanford.edu/˜wzou/avi/layer1motion.mov
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corresponds to one second layer feature. The video of these invariance visualization are supplied in
videolayer2 motion.mov 2.

Figure 3: Visualization of layer 2 features (patch size 32x32): We can observe complex invariances
with a number of variations in the second layer, such as different kinds of warping (rows 9 and 10),
rotation (first row), local non-affine changes (rows 3, 4, 6, 7), large scale translations (rows 2 and 5).

4.3 Tracking

Of these learned invariances, the least interesting is translation. First, translation are the most com-
mon transformations in patch sequences extracted from videos; second, it is easy to hand-craft
translation invariance with convolution and pooling. Instead of learning on video blocks cut out
from videos, we attempt to learn our features with tracked sequences. The difference is illustrated
in Figure 4. Tracking reduces translation invariance learned in the second layer. Instead, the fea-
tures encode more interesting invariance such as warping. In object recognition tasks, we track our
training data. This increases performance and makes the ourmethod more stable against changes in
hyper-parameters.

Figure 4: Comparison of layer 2 invariances learned with data obtained with tracking and without
tracking.

4.4 Importance of temporal coherence for layer 2

Figure 5 shows different second layer features visualized using methods described in past sections.
On the left are second layer features learned using only sparsity regularization. On the right are
features learned using a strong temporal coherence cost. From this illustration together with clas-
sification results in Section 5, we observe that temporal coherence is key to learning a meaningful
second layer in our model.

2http://ai.stanford.edu/˜wzou/avi/layer2motion.mov
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Figure 5: Comparison of layer 2 invariances learned with only sparsity, and adding temporal coher-
ence cost

4.5 Learning motion and transformations

As in [12], we take the difference in interpolation angle (orcomplex phase) across time in the
first layer units as representation for motion, and apply an unsupervised learning algorithm. In this
experiment, we used the van Hateren video dataset as training data.

PCA, Sparse Coding, and the same auto-encoder were applied on the phase difference across time.
All algorithms returned similar qualitative results and able to learn bases vectors that correspond
to meaningful image transformations. To visualize, we takethe complex coefficients of any im-
age patch, and take the dot-product of this complex vector with a complex vectorc. c is con-
structed with unit norm and increment the phase of each element in proportion to learned com-
ponent directions; the image patch for each increment step is then reconstructed to form a motion
sequence corresponding to that second layer feature. Reviewers are encouraged to view this in video
(pca transformations.mov3). The video shows 10 first principle components of motion. Our model
is able to pick up translation, and warping (local rotation,or non-linear affine transformations) sim-
ilar to [12].

5 Object Recognition Experiments

In our experiments, we motivate self-taught and transfer learning from unlabeled data by learning
features unsupervised on high-quality natural scene videos, and evaluate these features with clas-
sification on object recognition datasets. We only use gray-scale features in the experiments. For
unsupervised learning of features, we use van Hateren videodataset of natural scenes. COIL-100
is first experimented to illustrate that the learned invariances work in concept to recognize the same
object from different perspectives. Next we run classification experiments on realistic object recog-
nition datasets STL-10 and Caltech 101 with the same features.

5.1 Training

Tracked image patch sequences (patch size 16x16 and 32x32) were extracted from the van Hateren
video dataset. First layer is learned on 16x16 patches with 128 features (pooled with a group size
of 2 from 256 linear bases). After pre-training the first layer, the bases are convolved with in the
larger 32x32 image patches with a stride of 2 to obtain 128 response maps (each 9x9). The second
layer is trained on all these response maps. In practice, PCAis used to first reduce the dimensions
of the response maps to 300 before learning the second auto-encoder layer. The second layer learns
150 features (pooled from 300 bases). 16x16 patch size for the first layer is chosen similar to typical
vision features (such as SIFT). For layer2 we expand the patch size to 32x32, twice layer 1 patch
size to learn features at a significantly larger scale. The number of features on each layer and the
convolution stride are chosen without much tuning to meet computational and memory requirements
in training.

5.2 Feature extraction

To obtain first layer features for an image patch of size 16x16(vectorized as a column vectorx),
perform a feed-forward operation on datax through the trained network: (the square and square-root
operations are element-wise, H is a group size 2 pooling matrix)

f1 =
√

ǫ+H(W1x)2 (5)

3http://ai.stanford.edu/˜wzou/avi/pcatransformations.mov
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To obtain second layer features for an image patch of size 32x32: perform convolution with the first
layer network on 16x16 sub-images with a stride of 2, combineall response maps in a vectorz.
Obtain feed-forward activations of the network for second layer features:

f2 =
√

ǫ+H(W2z)2 (6)

For large images, features are extracted using convolution: the first layer features are extracted
by sampling the image in strides of 2, and second layer features extracted in the same manner on
layer 1 response maps. The recognition architecture is similar to [27]. We use a two-layer feature
extraction step, contrast-normalize, average pool the features and apply a standard classifier on
the concatenation of both first and second layer features. This method is simpler than supervised
fine-tuning a conventional convolutional network [23]. Thefeature extraction stage is illustrated in
Figure 6 for a 72 by 72 image.

Figure 6: Feature extraction using a 2-layer model

5.3 Datasets

We evaluate our features learned from video using 3 publiclyavailable datasets: COIL-100, Caltech
101 and STL-10.

COIL-100 contains 100 objects placed on turntables. Each object has 72 views. In our experiments
we followed testing protocols in [28] and use 0, 90, 180, 270 degree perspectives of objects as
supervised training set, and the rest as test set. Since we follow the protocol of training only on
related videos, the classification experiment is performedon all 100 objects.

Caltech 101 contains images of 100 different objects and 1 background class. Our experiments were
performed following the original protocol (30 objects per class) by [29]: we take 5 images per
class as validation set, randomly pick 30 images per class (from the rest) for training, and randomly
pick 50 per class (from the rest) as test set. This is performed 10 times and we report the average
classification accuracy.

STL-10 is a newly proposed dataset by Coates et. al. [30] for developing algorithms for unsupervised
feature learning and self-taught learning. There are 10 pre-defined folds of training images, 500 in
each fold. The experiment protocol requires that in each fold, a classifier is trained on the pre-defined
500 training images, and tested on all 8000 images in the testset. Reported accuracy is averaged
across 10 folds. Since the number of supervised training labels are small, this procedure tests the
discriminative power of unsupervised learned features.

5.4 Results

We report the results on COIL-100, Caltech 101 and STL-10 dataset in tables 1, 2 and 3 respectively.

7



Table 1: Results on COIL-100 dataset trained with unrelatedvideo

VTU [28] 79.1%
ConvNet regularized with video [23] 79.77%
Our results without video 82.0%
Our results using video 87.0%

Table 2: Results on Caltech 101 dataset

Two-layer ConvNet [31] 66.9%
ScSPM [32] 73.2%
Hierarchical sparse-coding [33] 74.0%
Our results without video 66.5%
Our results using video 74.6%

In all three datasets, the hyper-parameters (temporal coherence cost, sparsity cost multipliers) are
cross-validated. Despite the features are transferred from completely unrelated videos, training
with temporal coherence offers a consistent and significant4-5% increase in recognition accuracy,
bringing our results to state-of-the-art and competitive levels.

6 Conclusion

We have shown an unsupervised learning architecture with feed-forward neural network to learn
invariant features from video using the temporal coherenceprinciple. The model is able to learn
hierarchically invariant features by convolution and stacking to two layers. We show that learning
from videos, the newly proposed features achieve competitive results on standard object recognition
benchmarks. The learned features are invariant a collection of complex transformations. Using a
feed-forward network, our features are easy to use and fast to extract from images.
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