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Abstract

Natural scenes in a video stream contain rich collectiongisfal transforma-
tions. In this paper, a generic neural network is built tanegsual invariance
from videos in an unsupervised manner. We use temporal enbero learn both
visual transformations and features with complex invarésn Without fine-tuning
with labels, our invariant features are superior for clygsj objects in still im-

ages. The learned features out-perform features learntbdsyarsity in vision
benchmarks Caltech-101, STL-10 and COIL-100.

1 Introduction

Our visual system is able to recognize objects in variousivig angles, orientations, deformations,
scales and lighting conditions. This ability relies on rsbuisual signals or invariant represen-
tations. In deep neural networks, invariances can be ldgpoecly from discriminative training
which requires large amounts of labeled data. We illustitze alternatively, visual invariance can
be learned by exposing a learning system to motion and tsemstions in unlabeled videos.

In modeling statistics of natural images, sparsity playsngmortant role in unsupervised learning
methods such as Sparse Coding [1], Independent Componetysis1[2] and Sparse Restricted
Boltzmann Machines [3]. As sparse representations, festl#arned by these algorithms share
properties with simple cell receptive fields in early visagstem V1. Another plausible principle
specific to learning visual invariance is temporal coheedic5, 6, 7]. Retinal projections of objects
move smoothly across time. Itis likely high-level visugbresentations become slow-changing over
time by associating low-level visual templates [5].

With temporal coherence, a single layer of modules learatufes similar to simple cell receptive
fields [8, 9]. This evidence is interesting but shows thetttions of using only one layer of learning
modules. We focus on learning a second layer with temporaemce. Our work is closely related
to motion models [10, 11, 12]. The second layer neurons coestsignals from the first layer (V1)
with an over-complete set of neurons. Instead of hard-gpthie second layer weights [10], we
optimize for an additional objective so that second layéivations are coherent over time. Motion
patterns are learned implicitly by combining signals frdre ¥/1 layer, and second layer neurons
produce signals invariant to those transformations. I bayers of the network, we follow the
classic complex cell model to group neurons in group sizetR aiergy pooling. The result is that
features are represented efficiently with non-redundaaticiure pairs [11, 12].

Much prior work has been devoted to learning invariant fietwsing image sequences [13, 8, 14,
12]. Despite efforts, there lacks indicative evidence shgunvariant features learned with coherent
image sequences are competitive in recognition tasks. dceas this deficit, we aim to show that
features learned using temporal coherence can improvetaigeognition on still images. In this
work, a two-layer model is trained on a closed set of grayesgatural videos in an unsupervised
manner. The learned features are transferred to objeagmémm tasks using a linear classifier on



computer vision benchmarks. With our model, recognitioriggenance increase consistently with
temporal coherence. With cross-validation, the increasaccuracy by using video across three
tested datasets is 4-5%. In particular, we achieve the beegnition accuracy to date (61%) on
STL-10 dataset using video for unsupervised training. Taate the attribution of our results to
invariance, we visualize and analyze second layer invegian

2 Prior work

There has been long standing interest in unsupervisedidlgaerto learn visual invariance from im-
age sequences. Foldiak [13] described a Hebbian learniedaniearning invariance to translation.
Hyvarinen et. al. proposed the general ‘Bubbles’ frameVj8}ko encourage coherence both across
features and across time. Hadsell et. al. [15] proposed haddb learn invariant mapping using
convolutional networks. Slow Feature Analysis (SFA) [7lves a constrained problem and opti-
mize for temporal coherence by mapping data into quadragaresion and performing eigenvector
decomposition. Hashimoto [16] proposes a similar algorijthut replaced L2 penalty in SFA with
L1 penalty. Further, [14] applies SFA to extract object iitgnposition and rotation angles on an
artificial dataset. Despite its elegance, SFA requireslim@ar (quadratic) expansion and suffers
from curse of dimensionality. There hasn't been clear ssefcé application of SFA on computer
vision benchmarks.

Closely related are unsupervised learning algorithms aonlevisual invariance by factoring out
‘what’ and ‘where’ parts of representations. Hinton et.[&F] formulated an auto-encoding neural
network architecture that separates pathways for featigetity and feature position. Koster et.
al. [18] introduced a horizontal product model based onpeaelent Component Analysis. [19, 20]
proposed bi-linear models which represents natural imasjeg a factorial code. Cadieu et. al. [12]
modeled image transformations using interpolation betvpamled features in quadrature pairs.

In computer vision, relatively few attempts have been madeprove vision features with video.
Only recently, Stavens et. al. [21] show improvement in @eniance when SIFT/HOG parameters
are optimized using tracked image patch sequences in spagflication domains. In comparison,
more work has been done to improve discriminative tasks sadgnition or detection using videos
as ‘weakly supervised’ signals. Leistner et. al. [22] usatliral videos to improve random forest
classifiers; Mobabhi et. al. [23] used coherence in videogalaize a convolutional neural network
and improve supervised object recognition task on COIL-d&x@set. It is worth noting that in [21],
[22] and [23], a similar cost function or regularizationtt@cue is used in the discriminative task to
enforce coherence between features in consecutive framésariation between features far-apart
in time.

Prior work on unsupervised learning invariances with terapooherence lack convincing appli-
cation. In computer vision, there is need for unsupervigagning of complex invariances from
temporal data. In this work, we illustrate a scalable femmvérd model that is able to learn visual
invariances and applicable to real-world problems.

3 First layer algorithm

3.1 Linear Auto-encoder with Energy Pooling

We start by describing the algorithm for our basic learnimgdoie, based on the auto-encoder, an
unsupervised learning architecture used to pre-train dedporks [24]. To learn features from
data sample:(*), the conventional auto-encoder attempts to reconstreatidta by minimizing the
following cost function:

N
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g is anon-linear function such as sigmqiglfz. S is usually a regularization function. To simplify
the formulation, we use linear activation, no biases artiMieights (', = W{'). Further, an energy
pooling with group size of two is used. The cost function fog tinsupervised learning algorithm
is:
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In this equation, square and square-root operations aneealewise. The index denotes data
samples. H is a subspace-pooling matrix with group size of two [25]. Bla@pecifically, each
row of H picks and sums tow neighboring feature dimensions in a nvenlapping fashion. The
last term regularizes for sparsity in the pooling units. sTauto-encoding algorithm has close ties
with Independent Subspace Analysis (ISA) [25] and has thvaraidge of being able to learn over-
complete hidden representations. Further, compared totl®falgorithm solves an unconstrained
optimization problem.

To add temporal coherence, we give indexotion of time and add a simple L1-cost on temporal
difference on the pooling units:
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The activations of pooling units are denotedpds = /H (Wx®)2,

When applied to natural images, the auto-encoder learns-¢jabdeatures localized in orientation,
space and frequency. An interesting property of this foatioih is it is possible to learn a quadrature
pair of gabor-like features when temporal coherence caslded in the third term.

We visualize changes induced in the feature by the angleioligting between two pooled neurons.
Take two rowsw,, wo Of matrix W which are in one group size, and denote each elerm»é’ﬁt
in wq, wg) in wo. For each angle valué € [0,360] construct elements of interpolatioh by

W@ = cos(0)y/ (wi™)2 + (w”)2. In Figure 1 from left to right, we visualizé by incrementing
the anglef by 45 degrees. The increment corresponds to translatiotisitocalized Gaussian
envelope in the gabor-like feature. In Figure 1, the traisias to the top-left, orthogonal to the
feature orientation. Since the pooling units are invariarihe interpolation angle, we may say that
the first layer units are invariant to translations in thealdeature.
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Figure 1: Visualization of change in one feature from theartcoder by interpolation angle

3.2 Complex number interpretation

An interpretation with complex representations can bergieethe above linear auto-encoder. In-
stead of having real number weights, we allow complex weigatrix and complex hidden activa-
tions, the auto-encoder objective would become (withoatg@npooling):
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W. € C™*™ is a complex matrix. Note the hidden activations are decdyea complex matrix-
vector productV z, whereW is Hermitian of W,.. To form the objective function, we take the
real part to calculate the reconstruction error between the decoded datar, and add a sparsity
regularization term. The L1-norm indicates taking the ldkm of the real vector obtained by taking
complex norm in each element.



The objective in Equation 4 is equivalent to objective in &ipn 2. In this respect, our algorithm
has connections with the complex number formulation of spaoding in Cadieu et. al. [12].

The visualization in Figure 1 can be seen as varying the pbaecomplex feature. Later in the

next section, we show that our model is able to produce simélsults as Cadieu et. al. [12] to
learn image transformations. For Figure 1, reviewers ace@aged to see a video visualization
layer1_motion.mov * with multiple features.

4 Learning the second layer

4.1 Stack up tolearn complex visual invariances

Each pooling unit on the first layer is only invariant to lot@nslations within the local envelope.
From natural videos, we expect to learn complex invariasoes as rotational invariance, transla-
tional invariance across large scales, and perhaps imari@ out-of-plane rotation.

To obtain high-level invariance and implicitly model maticsecond layer units should be able to
see continuous switching between first layer features. Mpeeifically, when a small object part

moves coherently over time in video sequence, there shauldnle feature which describes this
small part in frame 1, and another feature which describesaime part at a different location and
pose in frame 2. In this manner, when the temporal coherenwstm@int is applied, higher layer

units are able to associate the two abovementioned featwress time thus learn from motion

patterns. This observation is in accordance with modelh®MT [10]. Therefore, the higher layer

requires a highly over-complete set of first layer outputisoAthe second layer feature should try
to model larger-scale features than the first layer. We useatation to replicate first layer neurons

at multiple grid locations, and expand the receptive fieldefond layer neurons.

Figure 2 illustrates the second layer architecture. Oneditbt layer network withn hidden units
are trained, convolution is performed on a larger imagep&tcobtainm response maps. The
second layer, with a larger visual field in the original imageace, is built on top of the all the
convolutional response maps of the first layer neurons. \ggy/&CA with whitening to this high-
dimensional input data and reduce to acceptable dimen$wrtbe learning algorithm. This is
similar to Le et. al [26] for learning high-dimensional Sphtemporal features. We use the auto-
encoder algorithm described in the last section to learrséttend layer. The only difference is a
much stronger temporal coherence cost is placed on thengoofiits. In the coming sections, we
illustrate that temporal coherence cost is important tmieg a meaningful second layer.

Temporal coherence + sparsity cost
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Figure 2: lllustration for learning the second layer on adational response map of layer 1 norm
units.

4.2 Visualization of invariances

Similar to the first layer, second layer invariance can bealiged by adding increments to interpo-
lation angle in each pooling group and observe the resultargsformations. To visualize changes
that correspond to increasing the interpolation anglegrsgtayer weight vectors are multiplied by
the corresponding norm, projected onto the larger recefitdd. By incrementing the interpolation
angle in each element of the weight vector, we can visualiz®#on sequence to which the sec-
ond layer norm unit is invariant to. This visualization i©sm on the right of Figure 3. Each row

Yhttp://ai.stanford.edu/ wzou/avi/layeriotion.mov



corresponds to one second layer feature. The video of theagance visualization are supplied in
videolayer2_motion.mov 2.

0 36 72 118 144 180 216 242 278 314

layer2 invariance visualization

Figure 3: Visualization of layer 2 features (patch size 3)x3Ve can observe complex invariances
with a number of variations in the second layer, such asréiffiekinds of warping (rows 9 and 10),
rotation (first row), local non-affine changes (rows 3, 4,)6latge scale translations (rows 2 and 5).

4.3 Tracking

Of these learned invariances, the least interesting isldan. First, translation are the most com-
mon transformations in patch sequences extracted fronpsjdsecond, it is easy to hand-craft

translation invariance with convolution and pooling. &el of learning on video blocks cut out

from videos, we attempt to learn our features with trackepieaces. The difference is illustrated

in Figure 4. Tracking reduces translation invariance ledrim the second layer. Instead, the fea-
tures encode more interesting invariance such as warpingpject recognition tasks, we track our

training data. This increases performance and makes thmeitinod more stable against changes in
hyper-parameters.
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Figure 4: Comparison of layer 2 invariances learned witta dditained with tracking and without
tracking.

4.4 |mportance of temporal coherence for layer 2

Figure 5 shows different second layer features visualizégumethods described in past sections.
On the left are second layer features learned using onlysi#paegularization. On the right are
features learned using a strong temporal coherence cast fais illustration together with clas-
sification results in Section 5, we observe that temporaépaice is key to learning a meaningful
second layer in our model.

2http://ai.stanford.edu/"wzou/avi/layer@iotion.mov
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Figure 5: Comparison of layer 2 invariances learned witly gplrsity, and adding temporal coher-
ence cost

45 Learning motion and transformations

As in [12], we take the difference in interpolation angle ém@mplex phase) across time in the
first layer units as representation for motion, and applyr@supervised learning algorithm. In this
experiment, we used the van Hateren video dataset as galaia.

PCA, Sparse Coding, and the same auto-encoder were applib@ phase difference across time.
All algorithms returned similar qualitative results andeato learn bases vectors that correspond
to meaningful image transformations. To visualize, we tdileecomplex coefficients of any im-
age patch, and take the dot-product of this complex vecttin wicomplex vectoc. c is con-
structed with unit norm and increment the phase of each elemeproportion to learned com-
ponent directions; the image patch for each increment stépen reconstructed to form a motion
sequence corresponding to that second layer feature. \Reng@re encouraged to view this in video
(pca_transformations.mov®). The video shows 10 first principle components of motionr @odel

is able to pick up translation, and warping (local rotationnon-linear affine transformations) sim-
ilar to [12].

5 Object Recognition Experiments

In our experiments, we motivate self-taught and transfamlieg from unlabeled data by learning

features unsupervised on high-quality natural scene gidand evaluate these features with clas-
sification on object recognition datasets. We only use geaje features in the experiments. For
unsupervised learning of features, we use van Hateren dd&set of natural scenes. COIL-100
is first experimented to illustrate that the learned invas&s work in concept to recognize the same
object from different perspectives. Next we run classiftzagxperiments on realistic object recog-

nition datasets STL-10 and Caltech 101 with the same feaiture

5.1 Training

Tracked image patch sequences (patch size 16x16 and 32g8@)ewtracted from the van Hateren
video dataset. First layer is learned on 16x16 patches #ighféatures (pooled with a group size
of 2 from 256 linear bases). After pre-training the first laytbe bases are convolved with in the
larger 32x32 image patches with a stride of 2 to obtain 128aese maps (each 9x9). The second
layer is trained on all these response maps. In practice, B@Aed to first reduce the dimensions
of the response maps to 300 before learning the second aotaler layer. The second layer learns
150 features (pooled from 300 bases). 16x16 patch sizeddirit layer is chosen similar to typical
vision features (such as SIFT). For layer2 we expand thehpare to 32x32, twice layer 1 patch
size to learn features at a significantly larger scale. Thebar of features on each layer and the
convolution stride are chosen without much tuning to mestmatational and memory requirements
in training.

5.2 Featureextraction

To obtain first layer features for an image patch of size 16x&6torized as a column vecta),
perform a feed-forward operation on datthrough the trained network: (the square and square-root
operations are element-wise, H is a group size 2 poolingixyatr

f1 = €+H(W1LIE)2 (5)

3http://ai.stanford.edu/"wzou/avi/pdeansformations.mov



To obtain second layer features for an image patch of siz8B2erform convolution with the first
layer network on 16x16 sub-images with a stride of 2, combitheesponse maps in a vecter
Obtain feed-forward activations of the network for secamgkl features:

fo= e+ H(Wyz)? (6)

For large images, features are extracted using convolutioa first layer features are extracted
by sampling the image in strides of 2, and second layer featextracted in the same manner on
layer 1 response maps. The recognition architecture idaginoi [27]. We use a two-layer feature

extraction step, contrast-normalize, average pool theufes and apply a standard classifier on
the concatenation of both first and second layer featuress mhthod is simpler than supervised
fine-tuning a conventional convolutional network [23]. Tieature extraction stage is illustrated in
Figure 6 for a 72 by 72 image.
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Figure 6: Feature extraction using a 2-layer model

5.3 Datasets

We evaluate our features learned from video using 3 puldiehflable datasets: COIL-100, Caltech
101 and STL-10.

COIL-100 contains 100 objects placed on turntables. Ea@tbhas 72 views. In our experiments
we followed testing protocols in [28] and use 0, 90, 180, 2@Qrde perspectives of objects as
supervised training set, and the rest as test set. Since low fihne protocol of training only on
related videos, the classification experiment is perfororedll 100 objects.

Caltech 101 contains images of 100 different objects andkdraund class. Our experiments were
performed following the original protocol (30 objects pdass) by [29]: we take 5 images per

class as validation set, randomly pick 30 images per classi(the rest) for training, and randomly

pick 50 per class (from the rest) as test set. This is perfdrifetimes and we report the average
classification accuracy.

STL-10is a newly proposed dataset by Coates et. al. [30eeldping algorithms for unsupervised
feature learning and self-taught learning. There are 1@lpfimed folds of training images, 500 in
each fold. The experiment protocol requires that in eaah Botlassifier is trained on the pre-defined
500 training images, and tested on all 8000 images in thesetstReported accuracy is averaged
across 10 folds. Since the number of supervised trainingldadre small, this procedure tests the
discriminative power of unsupervised learned features.

5.4 Resaults

We report the results on COIL-100, Caltech 101 and STL-18s#in tables 1, 2 and 3 respectively.



Table 1: Results on COIL-100 dataset trained with unrelaig€o

VTU [28] 79.1%
ConvNet regularized with video [23] 79.77%
Our results without video 82.0%
Our results using video 87.0%

Table 2: Results on Caltech 101 dataset

Two-layer ConvNet [31] 66.9%
ScSPM [32] 73.2%
Hierarchical sparse-coding [33] 74.0%
Our results without video 66.5%
Our results using video 74.6%

In all three datasets, the hyper-parameters (temporalrenbe cost, sparsity cost multipliers) are
cross-validated. Despite the features are transferred frompletely unrelated videos, training
with temporal coherence offers a consistent and signifidebfo increase in recognition accuracy,
bringing our results to state-of-the-art and competitexesls.

6 Conclusion

We have shown an unsupervised learning architecture wét-ferward neural network to learn

invariant features from video using the temporal cohergmagciple. The model is able to learn

hierarchically invariant features by convolution and kiag to two layers. We show that learning

from videos, the newly proposed features achieve competigisults on standard object recognition
benchmarks. The learned features are invariant a coltecficomplex transformations. Using a
feed-forward network, our features are easy to use anddastttact from images.
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