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Y Abstract

We apply salient feature detection and tracking in videos to simulate fixations and smooth pursuit in human vision. With
tracked sequences as input, a hierarchical network of modules learns invariant features using a temporal slowness
constraint. The network encodes invariance which are increasingly complex with hierarchy. Although learned from
videos, our features are spatial instead of spatial-temporal, and well suited for extracting features from still images. We
applied our features to four datasets (COIL-100, Caltech 101, STL-10, PubFig), and observe a consistent improvement
of 4% to 5% in classification accuracy. With this approach, we achieve state-of-the-art recognition accuracy 61% on
STL-10 dataset.
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@ Hand-designed features encode
many type of invariances, and
each invariance adds engineering
complexity
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Results

The features are trained once on
the van Hataren video dataset,
and transferred to multiple
object recognition datasets:
COIL-100 (87%), Caltech-101
(74.6%), STL-10 (61%), PubFig
(90%[our split])

Our approach brings results to
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levels
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