EE 364B Convex Optimization
An ADMM Solution to the Sparse Coding Problem

Sonia Bhaskar, Will Zou
Final Project
Spring 2011

I. INTRODUCTION

For our project, we apply the method of the alternating direction of multipliers and sequential convex
optimization to sparse coding of images. The motivation behind sparse coding of images is to model how
the brain is able to efficiently utilize the human visual system for a variety of tasks, such as separating
a car from a background, as well as general classification tasks. Sparse coding aims to determine a
generalized set of overcomplete bases ® to represent any natural image, where we desire that each
image can be represented by a linear combination of a few of these bases, i.e. represented by a sparse
vector of coefficients a. When learned on natural images, the sparse coding bases are localized edge
detectors in space, orientation and frequency.

Feature learning on natural images with sparse coding can be challenging because there can arbitrarily
large input dimensions, dependent on how big the visual field for the algorithm is. Further, in many
situations, an over-complete set of bases is desired [1], which means that the number of features to learn
exceeds the number of input dimensions. Both aspects demands faster algorithms to make the sparse
coding problem feasible, either on a single computer or on multiple in a parallel computing setting.

Among models for natural images, sparse coding is not a convex objective but is convex when fixing
either ® or a. This formulation makes it slow to train especially when the input dimensions are high.
We wish to consider a distributed solution using ADMM, which we believe will speed up the algorithm.
Additionally we wish to try out a heuristic in order to be able to use the desired optimization methods,
which we will soon discuss.

II. PROBLEM DESCRIPTION

First, we present the problem formulation for sparse coding below. The optimization problem, for
2@ e R", & € R™F, and o) € R*, where i refers to the i*" training example, is

m

1 1, o . | _ |
rg{né%%e p. Z <2||3:(1) — ®a |2 +)\||a(1)\1> subject to ||®;[3<1, j=1,...,k (1)

where ®; refers to the columns of @, ay) refers to the j** entry of a(, H(Pj||§ < 1Vj is called the
non-degeneracy constraint, and where we define the objective function f as given in Eqn. (2):

1 & . . 1 /1) . .
— (@) (@) S a0 ()12 (4)
m;l f(@' o', @) m;(zllx a5 + M|« ||1))
Ly~ (1 (4) (g2 (i)
= > | gl = D a5 + Allay 3)
i=1 j=1

Thus this problem answers the question “Given an input z(?), what is the optimal vector of coefficients
o that will give us the best linear reconstruction of the input using the columns of a matrix of the
optimal bases, $?”

Looking at both of these cases, we see that the objective function is not convex if we are solving for
both ® and o()Vi. However, if we only solve for either the bases ® or the coefficients oY) while holding
the other constant, we have a convex problem with convex constraints. Sequential convex programming
can be used here, but it is often slow. So we now explore some solutions to this issue.

III. SEQUENTIAL CONVEX PROGRAMMING

We see that for Eqn. (2), this is not a convex objective, although the constraint on the bases is convex.
Often sequential convex programming is used to solve this problem, that is, the problem is separated into
first solving for the o(9)’s, which is then a least-squares problem regularized by an L1-norm (sparsity),
commonly known as the lasso problem, and then solving for ®, which is a constrained least-squares
problem.

Thus the convex problem would need to be solved sequentially, since when we fix & and solve for
the a(?’s it is convex, and when we fix the a(9’s and then solve for ® it is convex. The sequential
program would go as follows. First, we would optimize for the a(9)’s:

m

1 1., . .
inimi 72 @ — $o®)12 (@)
minimize « + A|a

i m = <2Ha: I | ’1)

Then we would solve for the bases:
1 <=1, ,
mingnize . Z; 5”1‘(’) — da?|3

subject to [|®,[3<1, j=1,...,n.

As mentioned in Section I, this iterative optimization is slow — we now turn to the alternating direction
method of multipliers (ADMM) in order to solve it. Previous methods have used dual decomposition,
but ADMM is a more robust method with faster convergence which we hope to exploit for speed.

IV. ALTERNATING DIRECTION METHOD OF MULTIPLIERS

We can formulate the convex optimizaton problems into their ADMM form, resulting in what we
believe will be a much faster solution.

A. Solving for the coefficients
Solving for the o(!)’s, we have

11, : :
inimize — S (=[2® — da® |2 + Ala®
minimize mZ(2||:U a3 + Ala H1>

i=1
subject to al) = éz(i), 1=1,...,m.

The ADMM algorithm updates would run as follows - note that we have a set of updates for each of
the m training examples. We can do them in parallel we can do them simultaneously in matrix format
(for our implementation we chose the latter):

a(i), k+1 — (@T@ +pI)—1(¢Tx(z) +pdk _ yk)

a0 B <a(i), ket Lok ﬁ’ 0) ~ ax <_a(i), Rt Lop §7 0)
p” p p” p
y(z), k+1 — y(z), k + p(a(z), k+1 d(z), k—l—l)

B. Solving for the bases

Optimizing for the bases ®, where each basis is a column ®;, the problem is cast as in Section III.
Since the problem is convex, we can solve it directly using CVX, however, the found empirically that
solving the problem directly is time-consuming. This is because when we solve for the bases ® € R"*¥,
the number of variables is nk. An alternative solution is given in [2]. Instead for solving nk variables,
we can form the dual problem and solve with only n variables. We implemented this method and report
results in the results section.

3

kFurther, kwe can use the ADMM form for the constrained convex problem. The updates are, where
Ur € R"™*%:
k1. iml(i)_ @2 . Pia _ &k k2
@ argménm;ﬂz PaV[3 + 5|2 — OF + UF|3
(Apk+l = HC((pk+1 + Uk)
UFHL .= Uk 4 kTl _ Rl

where the projection Il¢ is applied to each column of the matrix individually as

X, 5
: 2 for || XG]]F > 1
Ie(X) = e (X)), HC(X]-):{IIXJII el

4
X, for X2 <1 @

and X is the jth column of X. Unfortunately this is very slow to solve for the first step in the iteration,
and CVX cannot handle problems where we have chosen the number of bases to be very large and thus
we did not experience much success because of the amount of time we had to wait for each iteration.
So next we present a heuristic solution which is much faster.

V. ALTERNATIVE SOLUTION TO NON-DEGENERACY CONSTRAINT

In order to employ an ADMM solution to solving for the bases where we are considering the columns
as bases, we recast the minimization problem using a heuristic. We recast the problem given in Eqn.
(1). We replace the non-degeneracy constraint and regularize the least-squares problem with a Frobenius

norm:
m

1 L.) 112 2
minimize — 2@ — 20|32 + g @
imize 3 I3+ 811®|3
=1
This objective function is a convex function with a nice solution. First taking the gradient with respect
to ® we find that

1 <1, .
Vo (Z ~[l2® — @3 +B||<I>II%>
m Py 2
1 m
—ve (L3

=1

M\'—‘

20T 30 _ 20T o) 1 o(OTHT a0y B!@H%)

1 & N N
- = (_xma(z)T i @(ama(z)T)) + 24P

m
1=

1ma T 4281) — =N 20T
o) 5

Solving for the global minimum, we find

m m -1
=1 =1

This heuristic is approximately equivalent to the original problem and gives “relevant” solutions. Using
this heuristic is advantageous because this convex optimization problem is a convex quadratic that has
an analytical solution and the inverse is over a k£ x k matrix, which is not terribly large.

VI. RESULTS

To illustrate the practicality of our methods, experiments are performed by learning a sparse coding
dictionary from natural image patches. Compared to other feature learning algorithms for images, such
as Independent Component Analysis and its variants [3], sparse coding on natural images is much more
computationally expensive. At the same time, multiple papers have shown that sparse coding yields
better results in tasks such as object recognition and detection. We show that our propsed methods are
able to significantly speed up the sparse coding algorithm and our implementation is a useful tool for
computer vision researchers.

A. CPU implementation

In our experiments, 14x14 image patches were extracted from the same image dataset as provided
in the original work on sparse coding [1]. We run sequential convex optimization for 100 iterations
to learn the coefficients and 196 bases. To improve the speed of convergence, the data was split into
minibatches of 1000 and the algorithm iteratively optimizes with respect to each minibatch. For ADMM
we select p = 10 and run for 5-10 iterations in each lasso solve; we found p = 10 to give us the
fastest convergence. Figure 1 shows the bases learned by ADMM lasso solve with (left) Frobenius norm
regularization on bases and (right) dual solve for bases. The two methods yield very nice features (we
desire edge-like features) — note that there is not a 1:1 correspondence between each block in Figure 1.

HHEIIIIIIIF! R L PACE T [S
VT 7 % i 5 L R R P =
el A

1 72 T 2
L 2 S e N A B EI N
RIS et T s O 0 P RN A R
T S) 7 s S I L RN
B A N S e T R T B N
1 T e 5 P S A P
3 20 7 R T =
I S B
IEIHIIIEIIIII

Fig. 1. Bases learned from (left) Frobenius norm regularization on the bases and (right) dual solve for bases combined with
ADMM lasso solve in sequential convex optimization. The regularization parameter is selected as 5 = 5e — 3

For the proposed method of using Frobenius norm regularization to avoid degeneracy of the dictionary,
we plot convergence, sparsity, Frobenius norm, as well as histogram of coefficients in Figure 2. The
objective of the optimization converges smoothly with sequential convex optimization, a significant extent
of sparsity is maintained in the coefficients, and the Frobenius norm is well controlled. We note that
even though the plot shows sparsity at 65%, we look at the histogram and see that we have the desired
distribution with the vast majority of coefficients being zero, and very few of them being greater than
zero. The resulting coefficients form a sparse empirical distribution.

In Table I, timing results are presented for learning the dictionary (®) with 5 bases. Table II shows
timing results for learning the dictionary with the same number of bases as the number of input
dimensions (196). In both tables, evaluation is performed against popular sparse coding algorithms: the
feature-sign algorithm [4] and SPAMS toolbox [5]. In Table II, ‘NF’ indicates not feasible in computation
time or in memory.

TABLE 1
LEARNING 5 BASES: TIME COMPARISON WITH SPAMS AND FEATURE-SIGN
Algorithm time (sec) | speedup
Feature-sign authors’ code [4] 0.07 4.6e5x
SPAMS authors’ code [5] (mex) 0.14 2.2e5x
CVX lasso + CVX Primal solve for bases 32105.1 base
ADMM lasso + CVX Primal solve for bases 14695.0 2.2x
ADMM lasso + Dual solve for bases 8.5 3.8e3x
ADMM lasso + Frobenius norm regularization 24 1.3e4x

x10* histogram plot of coefficients
T T

x 10* Reconstruction error 2
2 T T T T T T T T T
: \]
0 L L L
0 5 10 15 20 25 30 35 40 45 50 i
Sparsity
07 T T T T T T T T T o
Wl W |
05 L L L L L L
0 5 10 15 20 25 30 35 40 45 50
Frobenius norm
T T T T T
200 7/A—f]
200F T
0 L . L L L L L L L i
] 5 10 15 20 25 30 35 40 45 50 ;

0 L L
-2 e &l 05 0 05 i 15 2

Fig. 2. Plots for the Frobenius norm regularization method combined with ADMM lasso solve. On the left we show the
reconstruction cost convergence, sparsity (percentage of zeros) in coefficients, and the Frobenius norm of the dictionary matrix.
On the right, we show the histogram of resulting coefficients.

TABLE II
LEARNING 196 BASES: TIME COMPARISON WITH SPAMS AND FEATURE-SIGN

Algorithm time (sec) | speedup
Feature-sign authors’ code [4] 195.1 base
SPAMS authors’ code [5] (mex) 49 39x
CVX lasso + CVX primal solve for bases NF -
ADMM lasso + CVX primal solve for bases NF -
ADMM lasso + Dual solve for bases 64.3 3%
ADMM lasso + Frobenius norm regularization 20.4 10x

In the lasso solve, using ADMM to quickly solve L1/L2 sub-problems significantly improves the
speed of inferring coefficients. The ADMM lasso solver only needs to run a small number of iterations
(5-10) for efficient learning of the dictionary. As can be seen in rows 4 and 5 in Table I and Table II,
the method of solving for bases using the dual problem with many fewer number of variables is faster
than solving for the primal problem by a large margin. Comparing rows 5 and 6 in both tables, our
method of using Frobenius norm regularization for solving for the bases further further improves speed
by a considerable factor.

From the above results, the speed-up factor of our method compared to the naive implementation is
1.3e4 times.

The Feature-sign algorithm performs well when the number of bases is small. However, it becomes
a lot slower as the number of bases increase (Table II), and in fact we use it as the baseline and our
method perform 10x faster. Of all methods, the SPAMS sparse coding tool box is still fastest. We
note that compared to our simple implementation, SPAMS uses a highly optimized block-coordinate
descent algorithm and with mex implementation. Further, since the algorithm heavily exploits sparsity
with block-coordinate descent, its performance drops when we reduce the value of \. We compare to
our algorithm with different A settings in Figure 3.

To summarize, our method performs reasonably well with a simple implementation. Importantly, it is
not affected by the extent of sparsity or number of feature dimensions. This is advantageous when we
hope to learn an over-complete set of bases to represent natural images.

Further, we can think of two technical ways to speed up our algorithm: GPU and parallel computing
using ADMM. We employed a GPU implementation and obtained a significant speedup.

B. GPU implementation

We implemented our algorithm with ADMM lasso solve and Frobenius norm regularied solver for
the bases with Jacket (http://www.accelereyes.com/), a GPU implementation for MATLAB. The result
is shown in Table III. Since our proposed method iterates between two fast steps with multiple matrix-
vector multiplications, the GPU is able to significantly speed up our algorithm. More concretely, it speeds

200

— SPAMS
Our method

160~ —

180

140 |

elapsed time
=
3
T
i

60 o

401 .

20 - ‘ —

lambda

Fig. 3. Effect of sparsity setting on speed of SPAMS: since SPAMS heavily exploits sparsity, we experiment with a large
range of A values. Our algorithm is unaffected by the sparsity setting

up our algorithm by 8 times. With GPU, our method is 81x faster than the Feature-sign algorithm and
even 2x faster than the state-of-the-art SPAMS toolbox.

TABLE III
LEARNING 196 BASES: TIME COMPARISON WITH SPAMS AND FEATURE-SIGN
Algorithm time (sec) | speedup
Feature-sign authors’ code [4] 195.1 base
SPAMS authors’ code [5] (mex) 4.9 39x
GPU ADMM lasso + Frobenius norm regularization 2.4 81.3x

VII. CONCLUSION

In the report, we analyzed the method of sequential convex optimization to solve the sparse coding
problem applied on natural images. The ADMM lasso solver significantly speeds up the practical
problems of learning the sparse coding dictionary and inferring the sparse representation of images,
when the dictionary is known. Further, we experimented with fast ways of solving the second step,
solving for the bases using the dual as proposed in [4], and developed a method of using the Frobenius
norm regularization on the dictionary. With the regularization method combined with ADMM lasso solve,
we presented a fast implmentation of sparse coding on natural images. When computation is ported on
GPUs, the proposed method achieves state-of-the-art speed-up for sparse coding on natural images.

VIII. FUTURE DIRECTIONS

The methods we experimented with in this report is run on a single computer. The proposed advantage
of the ADMM method extends to the capability of running multiple sub-problems on multiple computers.
This is yet to be explored and we would expect a slightly less than linear-speed up with the number of
computers used, when we use ADMM to parallelize data and solve for the lasso step.

Another interesting future direction is local receptive fields with sparse coding on large images. There
has been recent work in artificial intelligence literature showing encouraging results using this method [6].
The idea of applying ADMM to speed-up and parallelize local sub-problems is rather simple. However,
from our experiments, implementation of this idea is technically challenging.

REFERENCES

[1] B. Olshausen and D. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images.
Nature, 1996.

[2] Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y. Ng. Self-taught learning: Transfer learning
from unlabeled data. In ICML, 2007.

[3] A. Hyvarinen, J. Hurri, and P. Hoyer. Natural Image Statistics. Springer, 2009.

[4] H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse coding algorithms. In NIPS, 2007.

[5] J. Mairal, F. Bachand J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding. Journal of
Machine Learning Research, 2010.

[6] K. Gregor and Y. LeCun. Emergence of complex-like cells in a temporal product network with local receptive fields.
arXiv:1006.0448, 2009.

