Atari-HEAD
Atari Human Eye-Tracking and Demonstration Dataset

Ruohan Zhang*, Calen Walshe, Zhuode Liu, Lin Guan, Karl Muller, Jake Whritner, Luxin Zhang, Mary Hayhoe, Dana Ballard

The University of Texas at Austin
Carnegie Mellon University

*zharu@utexas.edu
Previous work

- Deep Q-Network (Mnih, et al. 2015)
- Rainbow (Hessel, et al. 2018), etc
- Deep Q-learning from demonstration (Hester, et al. 2018)
Motivations

- [AI] How can we collect demonstration data that better suited for training artificial learning agents?
- [Cognitive ergonomics] What is the level of human performance when the Atari gaming environment is made more friendly to human players?
- [Visuomotor control] How do humans play these games? How do they perceive game images and make decisions?
What this is

- **Atari Human Eye-Tracking And Demonstration Dataset**

Eyelink-1000 infrared eye tracker
Basic statistics

20 games, 117 hours of game data

328 million gaze locations

7.97 million actions
Design: Semi-frame-by-frame game playing

- Game pauses until action
 - Players can hold down a key and the game will run continuously at 20Hz
- Eliminates errors due to sensori-motor delays
 - Which is typically ~250ms (~15 frames at 60Hz game speed)
 - Action $a(t)$ could be intended for a state $s(t-\Delta)$ ~250ms ago
 - Ensuring the action (label) matches the state (input) is important for supervised learning algorithms such as behavior cloning
Design: Semi-frame-by-frame game playing

- Game pauses until action
 - Players can hold down a key and the game will run continuously at 20Hz
- Allows multiple eye movements per frame
 - Reduces inattentional blindness
 - Allows sophisticated planning
Design

- Rest for 15 minutes after every trial (15 minutes)
- Display size & brightness
- Comfortable keyboard
Human performance

- A new human performance baseline
 - Previous human baseline*: Expert’s performance in a challenging environment
 - Atari-HEAD baseline: Amateur’s performance in a friendly environment

*Kapturowski, et al. ICLR 2019; Human World Record: Twin Galaxies

2-hour experiment time limit reached before game terminated (potential higher score if continue to play)
Game scores

<table>
<thead>
<tr>
<th>Game</th>
<th>Mnih</th>
<th>Wang</th>
<th>Hester</th>
<th>Kurin</th>
<th>de la Cruz</th>
<th>AtariHEAD 15-min avg.</th>
<th>AtariHEAD 15-min best</th>
<th>AtariHEAD 2-hour</th>
<th>Community Record</th>
<th>RL</th>
</tr>
</thead>
<tbody>
<tr>
<td>alien</td>
<td>6,875</td>
<td>7,127.7</td>
<td>29,160</td>
<td>-</td>
<td>-</td>
<td>27,923</td>
<td>34,980</td>
<td>107,140†</td>
<td>103,583</td>
<td>9,491.7</td>
</tr>
<tr>
<td>asterix</td>
<td>8,503</td>
<td>8,503.3</td>
<td>18,100</td>
<td>-</td>
<td>14,300</td>
<td>110,133.3</td>
<td>135,000</td>
<td>1,000,000‡</td>
<td>1,000,000</td>
<td>428,200.3</td>
</tr>
<tr>
<td>bank_heist</td>
<td>734.4</td>
<td>753.1</td>
<td>7,465</td>
<td>-</td>
<td>-</td>
<td>5,631.3</td>
<td>6,503</td>
<td>66,531†</td>
<td>47,047</td>
<td>1,611.9</td>
</tr>
<tr>
<td>berzerk</td>
<td>-</td>
<td>2,630.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6,799</td>
<td>7,950</td>
<td>55,220*</td>
<td>171,770</td>
<td>2,545.6</td>
</tr>
<tr>
<td>breakout</td>
<td>31.8</td>
<td>30.5</td>
<td>79</td>
<td>-</td>
<td>59</td>
<td>439.7</td>
<td>554</td>
<td>864†</td>
<td>864</td>
<td>612.5</td>
</tr>
<tr>
<td>centipede</td>
<td>11,963</td>
<td>12,017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>45,064</td>
<td>55,932</td>
<td>415,160*</td>
<td>668,438</td>
<td>9,015.5</td>
</tr>
<tr>
<td>demon_attack</td>
<td>3,401</td>
<td>3,442.8</td>
<td>6,190</td>
<td>-</td>
<td>-</td>
<td>7,097.3</td>
<td>10,460</td>
<td>107,045*</td>
<td>108,075</td>
<td>111,185.2</td>
</tr>
<tr>
<td>enduro</td>
<td>309.6</td>
<td>860.5</td>
<td>803</td>
<td>-</td>
<td>-</td>
<td>336.4</td>
<td>392</td>
<td>4,886*</td>
<td>-</td>
<td>2,259.3</td>
</tr>
<tr>
<td>freeway</td>
<td>29.6</td>
<td>29.6</td>
<td>32</td>
<td>-</td>
<td>-</td>
<td>31.1</td>
<td>33</td>
<td>33†</td>
<td>34</td>
<td>34.0</td>
</tr>
<tr>
<td>frostbite</td>
<td>4,335</td>
<td>4,334.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>31,731.5</td>
<td>50,630</td>
<td>453,880*</td>
<td>418,340</td>
<td>9,590.5</td>
</tr>
<tr>
<td>hero</td>
<td>25,763</td>
<td>30,826.4</td>
<td>99,320</td>
<td>-</td>
<td>-</td>
<td>59,999.8</td>
<td>77,185</td>
<td>541,640*</td>
<td>1,000,000</td>
<td>55,887.4</td>
</tr>
<tr>
<td>montezuma</td>
<td>4,367</td>
<td>4,753.3</td>
<td>34,900</td>
<td>27,900</td>
<td>-</td>
<td>38,715</td>
<td>46,000</td>
<td>270,400*</td>
<td>400,000</td>
<td>384.0</td>
</tr>
<tr>
<td>ms_pacman</td>
<td>15,693</td>
<td>15,375.0</td>
<td>55,021</td>
<td>29,311</td>
<td>18,241</td>
<td>28,031</td>
<td>36,064</td>
<td>93,721†</td>
<td>123,200</td>
<td>6,283.5</td>
</tr>
<tr>
<td>name_this_game</td>
<td>4,076</td>
<td>8,049.0</td>
<td>19,380</td>
<td>-</td>
<td>4,840</td>
<td>7,661.5</td>
<td>8,870</td>
<td>21,850†</td>
<td>21,210</td>
<td>13,439.4</td>
</tr>
<tr>
<td>phoenix</td>
<td>-</td>
<td>7,242.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>30,800.5</td>
<td>40,780</td>
<td>485,660*</td>
<td>373,690</td>
<td>108,528.6</td>
</tr>
<tr>
<td>riverraid</td>
<td>13,513</td>
<td>17,118</td>
<td>39,710</td>
<td>-</td>
<td>-</td>
<td>20,048</td>
<td>22,500</td>
<td>59,420†</td>
<td>86,520</td>
<td>-</td>
</tr>
<tr>
<td>road_runner</td>
<td>7,845</td>
<td>7,845</td>
<td>20,200</td>
<td>-</td>
<td>-</td>
<td>78,655</td>
<td>99,400</td>
<td>99,400†</td>
<td>210,200</td>
<td>69,524.0</td>
</tr>
<tr>
<td>seaquest</td>
<td>20,182</td>
<td>42,054.7</td>
<td>101,120</td>
<td>-</td>
<td>-</td>
<td>52,774</td>
<td>64,710</td>
<td>585,570*</td>
<td>294,940</td>
<td>50,254.2</td>
</tr>
<tr>
<td>space_invaders</td>
<td>1,652</td>
<td>1,668.7</td>
<td>3,355</td>
<td>1,840</td>
<td>-</td>
<td>3,527</td>
<td>5,130</td>
<td>49,340*</td>
<td>110,000</td>
<td>18,789.0</td>
</tr>
<tr>
<td>venture</td>
<td>1,188</td>
<td>1,187.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8,335</td>
<td>11,800</td>
<td>28,600†</td>
<td>-</td>
<td>1,107.0</td>
</tr>
</tbody>
</table>
- Eye tracker calibration every 15 minutes
- Average tracking error: 12 pixels (< 1% stimulus size)
- 1000Hz tracking frequency
- Foveated rendering*: Humans have foveal vision with high acuity for only 1-2 visual degrees

*Perry & Geisler, Electronic Imaging 2002
Dataset: Additional measurements

- Decision time
- Immediate and cumulated rewards
- Eyelink software further supports extracting the following from the raw eye-tracking data:
 - Subtypes of eye-movements: Fixations, saccades, smooth pursuits
 - Blinks: Fatigue level/boredness
 - Pupil size (fixed luminance): Arousal level/surprise/excitement
Modeling question I

- [Vision] How well can we model human visual attention in Atari games by leveraging recent progress in saliency research?
Saliency prediction: Previous work

- Visual saliency research*
 - Task-free data: MIT saliency benchmark (Bylinskii et al. 2014), CAT2000 (Borji & Itti 2015), SALICON (Jiang et al. 2015), etc

- What about visual attention in interactive, reward-seeking tasks?

*Itti & Koch, Vision Research 2000
Gaze prediction: Gaze network

- A standard saliency prediction problem
Quantitative results

- Highly accurate
- avg. AUC across 20 games = 0.97
- Significantly better than baseline models
Results & visualization

- Highly accurate, avg. AUC across 20 games = 0.97 (random = 0.5; max = 1)
- Model captures predictive eye movements
- Model identifies the target object from a set of visually identical objects
- Model captures divided attention
Gaze model across subjects
Modeling question II

- [AI] Is human visual attention information a useful signal in training decision learning agents?
Action prediction: Policy network

- Imitation learning: behavior cloning
- Hypothesis: Attention information could help with action prediction

Zhang et al., ECCV 2018
Results

- Incorporating human attention improves human action prediction accuracy
- Average: +0.07
Results

- Incorporating human attention improves task performance (game score)
 - Average: +115.3%
 - Most profound for
 - Games in which the task-relevant objects are very small (e.g., “ball”)
 - Gaze helps extract feature for a neural network during training
 - Games that rely heavily on multitasking

Kurin et al., 2017; Hester et al., 2018
Why visual attention helps

- Resolves ambiguity by indicating the target of the current decision
More imitation learning

- For gaze-assisted inverse reinforcement learning and behavior cloning from observation, please see another paper/poster#22
Related work: Similar datasets

- Human eye tracking + decisions
 - Meal preparation (Li, Liu, & Rehg 2018)
 - Urban driving (Alletto et al. 2016)
Related work: AGIL in cooking, driving & walking

Alleto et al., 2016; Yu et al., 2018; Xia et al., 2019; Chen et al., 2019; Liu et al., 2019; Matthis, Yates, & Hayhoe, 2018
Future work: Human vs. machine attention

- We have methods* to visualize where a deep neural network pays attention to given an input image
- Questions:
 - Is the RL agent’s attention similar to human’s?
 - Especially in the states where it made mistakes
 - Is there anything the agent fails to capture?

*Grimm et al., ICLR 2018; Greydanus et al., ICML 2018
Future work: Attention-guided learning

- Can we improve the performance of learning agents using human attention?
- Example - state compression*: Use human attention as a prior to help identify features that need to be preserved during compression

*Lerch & Sims, arXiv 2018; Abel et al., AAAI 2019
Future work: Attention-guided reinforcement learning
Future work: Attention-guided reinforcement learning
Future work: Attention-guided reinforcement learning

- An exciting possibility: Human attention + AI control
Summary

- [Cognitive ergonomics] A new human performance baseline
- [Vision science] A dataset for studying task-driven saliency
- [AI] A high-quality dataset that is more suited for training learning agents
- [AI] Human attention-guided decision learning algorithms
Acknowledgment

Calen Walshe Zhuode Liu Luxin Zhang Jake Whritner Karl Muller

Dana Ballard Mary Hayhoe