Weak Law of Large Numbers

- Consider I.I.D. random variables \(X_1, X_2, \ldots \)
 - \(X_i \) have distribution \(F \) with \(\text{E}[X_i] = \mu \) and \(\text{Var}(X_i) = \sigma^2 \)
 - Let \(\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \)
 - For any \(\varepsilon > 0 \):
 \[
 P\left(\left| \bar{X} - \mu \right| \geq \varepsilon \right) \rightarrow 0
 \]

 - Proof:
 \[
 \text{E}[\bar{X}] = \text{E}\left[\frac{1}{n} \sum_{i=1}^{n} X_i \right] = \frac{1}{n} \sum_{i=1}^{n} \text{E}[X_i] = \mu
 \]
 \[
 \text{Var}(\bar{X}) = \text{Var}\left(\frac{1}{n} \sum_{i=1}^{n} X_i \right) = \frac{1}{n^2} \sum_{i=1}^{n} \text{Var}(X_i) = \frac{\sigma^2}{n}
 \]
 - By Chebyshev’s inequality:
 \[
 P\left(\left| \bar{X} - \mu \right| \geq \varepsilon \right) \leq \frac{\sigma^2}{n\varepsilon^2} \rightarrow 0
 \]

Strong Law of Large Numbers

- Consider I.I.D. random variables \(X_1, X_2, \ldots \)
 - \(X_i \) have distribution \(F \) with \(\text{E}[X_i] = \mu \)
 - Let \(\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \)
 \[
 \lim_{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} X_i = \mu
 \]
 - Strong Law \(\Rightarrow \) Weak Law, but not vice versa
 - Strong Law implies that for any \(\varepsilon > 0 \), there are only a finite number of values of \(n \) such that condition of Weak Law: \(\left| \bar{X} - \mu \right| \geq \varepsilon \) holds.

Intuitions and Misconceptions of LLN

- Say we have repeated trials of an experiment
 - Let event \(E \) be some outcome of experiment
 - \(E \) occurs on trial \(i \), 0 otherwise
 - Strong Law of Large Numbers (Strong LLN) yields:
 \[
 \frac{X_1 + X_2 + \ldots + X_n}{n} \rightarrow \text{E}[X] = P(E)
 \]
 - Recall first week of class: \(P(E) = \lim_{n \rightarrow \infty} \frac{m(E)}{n} \)
 - Strong LLN justifies “frequency” notion of probability
 - Misconception arising from LLN:
 - Gambler’s fallacy: “I’m due for a win”
 - Consider being “due for a win” with repeated coin flips...

La Loi des Grands Nombres

- History of the Law of Large Numbers
 - 1713: Weak LLN described by Jacob Bernoulli
 - 1835: Poisson calls it “La Loi des Grands Nombres”
 - That would be “Law of Large Numbers” in French
 - 1909: Émile Borel develops Strong LLN for Bernoulli random variables
 - 1928: Andrei Nikolaevich Kolmogorov proves Strong LLN in general case
 - 2011: Another year passes in which Charlie Sheen does not make use of LLN
 - I’m still holding out hope for 2012...

The Central Limit Theorem (CLT)

- Consider I.I.D. random variables \(X_1, X_2, \ldots \)
 - \(X_i \) have distribution \(F \) with \(\text{E}[X_i] = \mu \) and \(\text{Var}(X_i) = \sigma^2 \)
 \[
 \frac{X_1 + X_2 + \ldots + X_n - n\mu}{\sigma\sqrt{n}} \rightarrow N(0, 1)
 \]
 - As \(n \rightarrow \infty \)
 - More intuitively:
 - Let \(\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \)
 \[
 \bar{X} \sim N\left(\mu, \frac{\sigma^2}{n} \right)
 \]
 - Central Limit Theorem: \(\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n} \right) \) as \(n \rightarrow \infty \)
 - Now let \(Z = \frac{\bar{X} - \mu}{\sigma\sqrt{n}} \)
 \[
 \bar{X} \sim N(\mu, \frac{\sigma^2}{n}) \Rightarrow Z \sim N(0, 1)
 \]
 - \(Z \sim N(0, 1) \)
 \[
 Z = \frac{\bar{X} - \mu}{\sigma\sqrt{n}} = \frac{n\left[\frac{1}{n} \sum_{i=1}^{n} X_i \right] - \mu}{\sigma\sqrt{n}} = \frac{\sum_{i=1}^{n} X_i - n\mu}{\sigma\sqrt{n}}
 \]

Silence!!

And now a moment of silence...

...before we present...

...the greatest result of probability theory!
No Limits for Central Limit Theorem

- History of the Central Limit Theorem
 - 1733: CLT for X ~ Ber(1/2) postulated by Abraham de Moivre
 - 1823: Pierre-Simon Laplace extends de Moivre’s work to approximating Bin(n, p) with Normal
 - 1901: Aleksandr Lyapunov provides precise definition and rigorous proof of CLT
 - 2003: Charlie Sheen stars in television series “Two and Half Men”
 - By end of the 7th season (last year), there were 161 episodes
 - Mean quality of subsamples of episodes is Normally distributed (thanks to the Central Limit Theorem)

Central Limit Theorem in Real World

- CLT is why many things in “real world” appear Normally distributed
- Many quantities are sum of independent variables
- Exams scores
 - Sum of individual problems
- Election polling
 - Ask 100 people if they will vote for candidate X (p1 = # “yes”/100)
 - Repeat this process with different groups to get p1, ..., pn
 - Have a normal distribution over pi
 - Can produce a “confidence interval”
 - How likely is it that estimate for true p is correct
 - We’ll do an example like that soon

This is Your Midterm on the CLT

- Start with 180 midterm scores: X1, X2, ..., X180
 - E[X] = 68.9 and Var(X) = 611.37
 - Created 18 disjoint samples of size n = 10
 - Y1 = (X1, ..., X10), Y2 = (X11, ..., X20), Yn = (X101, ..., X110)
 - Prediction by CLT:
 - \(Z = \frac{\overline{Y} - E[Y]}{\sigma/\sqrt{n}} \)
 - \(Z \sim N(0, 1) \) where:
 - \(\overline{Y} = \frac{\sum X_i}{n} \)
 - \(\sigma^2 = \frac{\sum (X_i - \overline{X})^2}{n} \)
 - \(\sigma = \sqrt{\frac{\sum (X_i - \overline{X})^2}{n}} \)
- By Central Limit Theorem, Z ~ N(0, 1), where:
 - \(Z = n \left(\sum_{i=1}^{n} X_i - n \mu \right) \sqrt{n} \)
 - \(Z \sim N(0, 1) \)
 - \(\mu = E[X] \)
 - \(\sigma^2 = Var(X) \)
- CLT is why many things in “real world” appear Normally distributed

Estimating Clock Running Time

- Have new algorithm to test for running time
 - Mean (clock) running time: \(\mu = t \) sec.
 - Variance of running time: \(\sigma^2 = 4 \) sec²
- Run algorithm repeatedly (I.I.D. trials), measure time
 - How many trials so estimated time = \(t \pm 0.5 \) with 95% certainty?
 - \(X_i \sim E[X_i] = t \)
 - \(Y = \frac{1}{n} \sum X_i \)
 - \(\bar{y} = \frac{1}{n} \sum X_i \)
 - \(\bar{Y} = \frac{1}{n} \sum Y_i \)
 - \(Z = \frac{\bar{Y} - E[Y]}{\sigma/\sqrt{n}} \)
 - \(Z \sim N(0, 1) \)
 - By Central Limit Theorem, Z ~ N(0, 1), where:
 - \(Z = n \left(\sum_{i=1}^{n} X_i - n \mu \right) \sqrt{n} \)
 - \(Z \sim N(0, 1) \)
 - \(\mu = E[X] \)
 - \(\sigma^2 = Var(X) \)
- What would Chebyshev say?
 - \(P(|X - \mu| \geq k) \leq \frac{\sigma^2}{k^2} \)
 - \(\mu = \frac{\sum X_i}{n} \)
 - \(\sigma^2 = \frac{\sum (X_i - \overline{X})^2}{n} \)
 - \(\sigma = \sqrt{\frac{\sum (X_i - \overline{X})^2}{n}} \)
 - \(P\left(\left| \frac{\sum X_i}{n} - t \right| \geq 0.5 \right) \leq \frac{4/n}{0.5} = 16/n = 0.05 \Rightarrow n \geq 320 \)
 - Thanks for playing Pafnuty...

Estimating Time With Chebyshev

- Have new algorithm to test for running time
 - Mean (clock) running time: \(\mu = t \) sec.
 - Variance of running time: \(\sigma^2 = 4 \) sec²
- Run algorithm repeatedly (I.I.D. trials), measure time
 - How many trials so estimated time = \(t \pm 0.5 \) with 95% certainty?
 - \(X_i \sim E[X_i] = t \)
 - \(Y = \frac{1}{n} \sum X_i \)
 - \(\bar{y} = \frac{1}{n} \sum X_i \)
 - \(\bar{Y} = \frac{1}{n} \sum Y_i \)
 - \(Z = \frac{\bar{Y} - E[Y]}{\sigma/\sqrt{n}} \)
 - \(Z \sim N(0, 1) \)
 - By Central Limit Theorem, Z ~ N(0, 1), where:
 - \(Z = n \left(\sum_{i=1}^{n} X_i - n \mu \right) \sqrt{n} \)
 - \(Z \sim N(0, 1) \)
 - \(\mu = E[X] \)
 - \(\sigma^2 = Var(X) \)
- What would Chebyshev say?
 - \(P(|X - \mu| \geq k) \leq \frac{\sigma^2}{k^2} \)
 - \(\mu = \frac{\sum X_i}{n} \)
 - \(\sigma^2 = \frac{\sum (X_i - \overline{X})^2}{n} \)
 - \(\sigma = \sqrt{\frac{\sum (X_i - \overline{X})^2}{n}} \)
 - \(P\left(\left| \frac{\sum X_i}{n} - t \right| \geq 0.5 \right) \leq \frac{4/n}{0.5} = 16/n = 0.05 \Rightarrow n \geq 320 \)
 - Thanks for playing Pafnuty...

Crashing Your Web Site

- Number visitors to web site/minute: \(X \sim Poi(100) \)
 - Server crashes if \(\geq 120 \) requests/minute
 - What is P(crash in next minute)?
 - Exact solution: \(P(X \geq 120) = \sum_{i=120}^{\infty} e^{-100}(100/r!) \approx 0.0282 \)
 - Use CLT, where Poi(100) = \(\sum_{i=1}^{n} Poi(100/n) \) (all I.I.D)
 - \(P(X \geq 120) = P(X \geq 119.5) \approx 1 - \Phi(1.95) = 0.0256 \)
 - Note: Normal can be approximated to Poisson
 - I’ll give you one more chance (one-sided) Chebyshev:
 - \(P(X \geq 120) = P(X \geq t \cdot E[X] + \sigma) \leq \frac{\sigma^2}{\sigma^2 + \alpha^2} \approx \frac{100}{100 + 20^2} = 0.2 \)
It's play time!

Sum of Dice

- You will roll 10 6-sided dice (X_1, X_2, \ldots, X_{10})
 - X = total value of all 10 dice = $X_1 + X_2 + \ldots + X_{10}$
 - Win if: $X \leq 25$ or $X \geq 45$
 - Roll!

- And now the truth (according to the CLT):

 \[
 E[X] = 10E[X_i] = 10(3.5) = 35
 \]

 \[
 \text{Var}(X) = 10 \text{Var}(X_i) = 10 \cdot \frac{350}{12} = \frac{350}{12}
 \]

 \[
 1 - P(25.5 \leq X \leq 44.5) = 1 - P \left(\frac{25.5 - 35}{\sqrt{\frac{350}{12}}} \leq \frac{X - 35}{\sqrt{\frac{350}{12}}} \leq \frac{44.5 - 35}{\sqrt{\frac{350}{12}}} \right)
 \]

 \[
 = 1 - 2(\Phi(1.76) - 1) \approx 2(1 - 0.9332) = 0.0784
 \]

- If only Chebyshev were right...

 \[
 P(|X - \mu| \geq k) = P(|X - 35| \geq 10) \leq \frac{\sigma^2}{k^2} = \frac{350/12}{100} = 0.292
 \]