The Tragedy of Conditional Probability

Not Everything is Equally Likely

• Say \(n \) balls are placed in \(m \) urns
 • Each ball is equally likely to be placed in any urn
• Counts of balls in urns are not equally likely!
 • Example: two balls (A and B) placed with equal likelihood in two urns (Urn 1 and Urn 2)

<table>
<thead>
<tr>
<th>Urn 1</th>
<th>Urn 2</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B</td>
<td>-</td>
<td>1/4</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>2/4</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>1/4</td>
</tr>
<tr>
<td>-</td>
<td>A, B</td>
<td>1/4</td>
</tr>
</tbody>
</table>

A Few Useful Formulas

• For any events A and B:
 \[
P(A \cap B) = P(B \cap A) \quad \text{(Commutativity)}
\]
 \[
P(A \cap B) = P(A | B) P(B)
 = P(B | A) P(A) \quad \text{(Chain rule)}
\]
 \[
P(A \cap B^c) = P(A) - P(AB) \quad \text{(Intersection)}
\]
 \[
P(A \cap B) \geq P(A) + P(B) - 1 \quad \text{(Bonferroni)}
\]

Generality of Conditional Probability

• For any events A, B, and E, you can condition consistently on E, and these formulas still hold:
 \[
P(A \cap B | E) = P(B | A \cap E) P(A | E)
\]
 \[
P(A | B \cap E) = \frac{P(B | A \cap E) P(A | E)}{P(B | E)} \quad \text{(Bayes Thm.)}
\]
• Can think of E as "everything you already know"
• Formally, \(P(\cdot | E) \) satisfies 3 axioms of probability

Dissecting Bayes Theorem

• Recall Bayes Theorem (common form):
 \[
P(H | E) = \frac{P(E | H) P(H)}{P(E)}
\]
 • "Posterior" = "Likelihood" \times "Prior"
 • Odds(H | E):
 \[
 \frac{P(H | E)}{P(H^c | E)} = \frac{P(E | H) P(H)}{P(E | H^c) P(H^c)}
 \]
 • How odds of H change when evidence E observed
 • Note that \(P(E) \) cancels out in odds formulation
 • This is a form of probabilistic inference

It Always Comes Back to Dice

• Roll two 6-sided dice, yielding values \(D_1 \) and \(D_2 \)
 • Let E be event: \(D_1 = 1 \)
 • Let F be event: \(D_2 = 1 \)
 • What is \(P(E), P(F), \) and \(P(EF) \)?
 \[
 P(E) = 1/6, \quad P(F) = 1/6, \quad P(EF) = 1/36
 \]
 • \(P(EF) = P(E) P(F) \rightarrow E \) and \(F \) \text{ independent}
 • Let G be event: \(D_1 + D_2 = 5 \) \text{ \{ (1, 4), (2, 3), (3, 2), (4, 1) \}}
 • What is \(P(E), P(G), \) and \(P(EG) \)?
 \[
 P(E) = 1/6, \quad P(G) = 4/36 = 1/9, \quad P(EG) = 1/36
 \]
 \[
 P(EG) \neq P(E) P(G) \rightarrow E \text{ and } G \text{ dependent}
 \]
Independence

- Two events E and F are called independent if:
 \[P(EF) = P(E) P(F) \]
 Or, equivalently: \[P(E | F) = P(E) \]
- Otherwise, they are called dependent events
- Three events E, F, and G independent if:
 \[P(EFG) = P(E) P(F) P(G), \]
 \[P(EF) = P(E) P(F), \]
 \[P(EG) = P(E) P(G), \]
 \[P(FG) = P(F) P(G) \]

Let’s Do a Proof

- Given independent events E and F, prove:
 \[P(E | F) = P(E | F^c) \]
- Proof:
 \[P(E | F^c) = P(E) - P(EF) \]
 \[= P(E) - P(E) P(F) \]
 \[= P(E) [1 - P(F)] \]
 \[= P(E) P(F^c) \]
 So, E and \(F^c \) independent, implying that:
 \[P(E | F^c) = P(E) = P(E | F) \]
- Intuitively, if E and F are independent, knowing whether F holds gives us no information about E

Generalized Independence

- General definition of Independence:
 Events \(E_1, E_2, \ldots, E_n \) are independent if for every subset \(E_{i_1}, E_{i_2}, \ldots, E_{i_r} \) (where \(r \leq n \)) it holds that:
 \[P(E_{i_1} E_{i_2} \ldots E_{i_r}) = P(E_{i_1}) P(E_{i_2}) \ldots P(E_{i_r}) \]
- Example: outcomes of \(n \) separate flips of a coin are all independent of one another
 - Each flip in this case is called a “trial” of the experiment

Two Dice

- Roll two 6-sided dice, yielding values \(D_1 \) and \(D_2 \)
 - Let E be event: \(D_1 = 1 \)
 - Let F be event: \(D_2 = 6 \)
 - Are E and F independent? Yes!
 - Let G be event: \(D_1 + D_2 = 7 \)
 - Are E and G independent? Yes!
 - P(E) = 1/6, P(G) = 1/6, P(E G) = 1/36 [roll (1, 6)]
 - Are F and G independent? Yes!
 - P(F) = 1/6, P(G) = 1/6, P(F G) = 1/36 [roll (1, 6)]
 - Are E, F and G independent? No!
 - P(EFG) = 1/36 ≠ 1/216 = (1/6)(1/6)(1/6)

Generating Random Bits

- A computer produces a series of random bits, with probability \(p \) of producing a 1.
 - Each bit generated is an independent trial
 - E = first \(n \) bits are 1’s, followed by a 0
 - What is \(P(E) \)?
- Solution
 - \[P(\text{first } n \ 1's) = P(1^{\text{st}} \text{ bit}=1) P(2^{\text{nd}} \text{ bit}=1) \ldots P(n^{\text{th}} \text{ bit}=1) = p^n \]
 - \[P(n+1 \text{ bit}=0) = (1-p) \]
 - \[P(E) = P(\text{first } n \ 1's) P(n+1 \text{ bit}=0) = p^n (1-p) \]

Coin Flips

- Say a coin comes up heads with probability \(p \)
 - Each coin flip is an independent trial
- P(\(n \) heads on \(n \) coin flips) = \(p^n \)
- P(\(n \) tails on \(n \) coin flips) = \((1-p)^n \)
- P(first \(k \) heads, then \(n-k \) tails) \(=p^k (1-p)^{n-k} \)
- P(exactly \(k \) heads on \(n \) coin flips) \(= \binom{n}{k} p^k (1-p)^{n-k} \)
Hash Tables
- m strings are hashed (equally randomly) into a hash table with n buckets
 - Each string hashed is an independent trial
 - $E = \text{at least one string hashed to first bucket}$
 - What is $P(E)$?
- Solution
 - $F_i = \text{string } i \text{ not hashed into first bucket}$ (where $1 \leq i \leq m$)
 - $P(F_i) = 1 - 1/n = (n - 1)/n \text{ (for all } 1 \leq i \leq m)$
 - Event $(F_1,F_2,...,F_m) = \text{no strings hashed to first bucket}$
 - $P(E) = 1 - P(F_1,F_2,...,F_m) = 1 - P(F_1)P(F_2)...P(F_m)$

 $$= 1 - (n - 1/n)^m$$
 - Similar to ≥ 1 of m people having same birthday as you

Yet More Hash Table Fun
- m strings are hashed (unequally) into a hash table with n buckets
 - Each string hashed is an independent trial, with probability p_i of getting hashed to bucket i
 - $E = \text{At least one bucket } i \text{ has } \geq 1 \text{ string hashed to it}$
- Solution
 - $F_i = \text{at least one string hashed into } i\text{-th bucket}$
 - $P(E) = P(F_1 \cup F_2 \cup ... \cup F_n) = 1 - P(F_1 \cup F_2 \cup ... \cup F_n)^c$ (DeMorgan’s Law)

 $$= 1 - P(F_1^c F_2^c ... F_n^c)$$
 - $P(F_1^c F_2^c ... F_n^c) = P(\text{no strings hashed to buckets 1 to } k)$

 $$= (1 - p_1 - p_2 - ... - p_k)^m$$
 - $P(E) = 1 - (1 - p_1 - p_2 - ... - p_n)^m$

No, Really, it’s More Hash Table Fun
- m strings are hashed (unequally) into a hash table with n buckets
 - Each string hashed is an independent trial, with probability p_i of functioning (where $1 \leq i \leq n$)
 - $E = \text{Each of buckets 1 to } k \text{ has } \geq 1 \text{ string hashed to it}$
- Solution
 - $F_i = \text{at least one string hashed into } i\text{-th bucket}$
 - $P(E) = P(F_1 \cup F_2 \cup ... \cup F_n) = 1 - P(F_1 \cup F_2 \cup ... \cup F_n)^c$ (DeMorgan’s Law)

 $$= 1 - P(F_1^c F_2^c ... F_n^c)$$
 - $P(F_1^c F_2^c ... F_n^c) = P(\text{all routers fail})$

 $$= (1 - p_1)(1 - p_2)...(1 - p_n)$$
 - $P(E) = 1 - (1 - p_1 - p_2 - ... - p_n)^m$

Reminder of Geometric Series
- Geometric series: $x^0 + x^1 + x^2 + x^3 + ... + x^n = \sum_{i=0}^{n} x^i$
- From your “Calculation Reference” handout:

 $$\sum_{i=0}^{n} x^i = \frac{1-x^{n+1}}{1-x}$$
 - As $n \to \infty$, and $|x| < 1$, then

 $$\sum_{i=0}^{n} x^i = \frac{1-x^{n+1}}{1-x} \to \frac{1}{1-x}$$

Sending Messages Through a Network
- Consider the following parallel network:
- n independent routers, each with probability p_i of functioning (where $1 \leq i \leq n$)
 - $E = \text{functional path from A to B exists. What is } P(E)$?
- Solution:
 - $P(E) = 1 - P(\text{all routers fail})$

 $$= 1 - (1-p_1)(1-p_2)...(1-p_n)$$
 - $P(E) = 1 - \prod_{i=1}^{n} (1 - p_i)$

Simplified Craps
- Two 6-sided dice repeatedly rolled (roll = ind. trial)
 - $E = 5 \text{ is rolled before a 7 is rolled}$
 - What is $P(E)$?
- Solution
 - $F_0 = \text{no 5 or 7 rolled in first } n - 1 \text{ trials}, 5 \text{ rolled on } n\text{th trial}$
 - $P(E) = P(F_0) = \sum_{i=0}^{n-1} P(F_i)$

 $$= P(5 \text{ on any trial}) + (4/36) P(7 \text{ on any trial}) = 6/36$$

 $$= (1 - (10/36)^{n-1}) (4/36) + (26/36)^{n-1} (4/36)$$
 - $P(E) = \frac{4}{36} \sum_{i=0}^{n-1} \left(\frac{26}{36}\right)^i = \frac{4}{36} \sum_{i=0}^{n-1} \left(\frac{26}{36}\right)^{i} = \frac{4}{36} \left(1 - \frac{26}{36}\right)^2 = \frac{2}{3}$
DNA Paternity Testing

- Child is born with (A, a) gene pair (event \(B_{A,a} \))
 - Mother has (A, A) gene pair
 - Two possible fathers: \(M_1: (a, a) \) \quad \(M_2: (a, A) \)
 - \(P(M_1) = p \quad P(M_2) = 1 - p \)
 - What is \(P(M_1 | B_{A,a}) \)?

- Solution
 \[
 P(M_1 | B_{A,a}) = \frac{P(M_1 B_{A,a})}{P(B_{A,a})}
 = \frac{P(M_1)P(B_{A,a} | M_1)}{P(B_{A,a})}
 = \frac{1 \cdot p}{1 - p + \frac{1}{2} (1 - p)} = \frac{2p}{1 + p} > p
 \]
 \(M_1 \) more likely to be father than he was before, since
 \(P(M_1 | B_{A,a}) > P(M_1) \)