Two discrete random variables X and Y are called independent if:

$$p(x, y) = p_X(x) p_Y(y) \quad \text{for all } x, y$$

Intuitively: knowing the value of X tells us nothing about the distribution of Y (and vice versa)

- If two variables are not independent, they are called dependent

- Similar conceptually to independent events, but we are dealing with multiple variables
 - Keep your events and variables distinct (and clear)!

Web Server Requests

- Let $N = \#$ of requests to web server/day
 - Suppose $N \sim \text{Poi}(\lambda)$
 - Each request comes from a human (probability = p) or from a “bot” (probability = $(1 - p)$), independently
 - $X = \#$ requests from humans/day \quad $(X | N) \sim \text{Bin}(N, p)$
 - $Y = \#$ requests from bots/day \quad $(Y | N) \sim \text{Bin}(N, 1 - p)$
 - \(P(X = i, Y = j) = P(X = i, Y = j) \mid X + Y = i + j)P(X + Y = i + j)\)
- Note:
 - $P(X = i, Y = j) = P(X = i, Y = j) \mid X + Y = i + j)P(X + Y = i + j)\)
 - $P(X = i, Y = j) = \binom{i+j}{i} p^i (1-p)^j$
 - $P(X + Y = i + j) = e^{-\lambda} \frac{\lambda^{i+j}}{(i+j)!}$
 - $P(X = i, Y = j) = \binom{i+j}{i} p^i (1-p)^j e^{-\lambda} \frac{\lambda^{i+j}}{(i+j)!}$

Independent Continuous Variables

- Two continuous random variables X and Y are called independent if:
 $$P(X \leq a, Y \leq b) = P(X \leq a) P(Y \leq b) \quad \text{for any } a, b$$
- Equivalently:
 $$f_{X,Y}(a,b) = f_X(a)f_Y(b) \quad \text{for all } a, b$$
- More generally, joint density factors separately:
 $$f_{X,Y}(x,y) = h(x)g(y) \quad \text{where } -\infty < x, y < \infty$$

Coin Flips

- Flip coin with probability p of “heads”
 - Flip coin a total of $n + m$ times
 - Let $X = \#$ of heads in first n flips
 - Let $Y = \#$ of heads in next m flips
 - $P(X = x, Y = y) = \binom{n}{x} p^x (1-p)^{n-x} \binom{m}{y} p^y (1-p)^{m-y}$
 - $= P(X = x)P(Y = y)$
 - X and Y are independent
 - Let $Z = \#$ of total heads in $n + m$ flips
 - Are X and Z independent?
 - What if you are told $Z = 0$?

Web Server Requests (cont.)

- Let $N = \#$ of requests to web server/day
 - Suppose $N \sim \text{Poi}(\lambda)$
 - Each request comes from a human (probability = p) or from a “bot” (probability = $(1 - p)$), independently
 - $X = \#$ requests from humans/day \quad $(X | N) \sim \text{Bin}(N, p)$
 - $Y = \#$ requests from bots/day \quad $(Y | N) \sim \text{Bin}(N, 1 - p)$
 - $P(X = i, Y = j) = e^{-\lambda} \frac{\lambda^{i+j}}{(i+j)!} p^i (1-p)^j e^{-\lambda} \frac{\lambda^{i+j}}{(i+j)!} (\lambda(1-p))^j$
 - $= e^{-\lambda} \frac{(dp)^i}{i!} e^{-\lambda} \frac{(d(1-p))^j}{j!} = P(X = i)P(Y = j)$
 - where $X \sim \text{Poi}(\lambda p)$ and $Y \sim \text{Poi}(\lambda(1 - p))$
 - X and Y are independent!

Pop Quiz (Just Kidding…)

- Consider joint density function of X and Y:
 $$f_{X,Y}(x, y) = 6e^{-3x}e^{-2y} \quad \text{for } 0 < x, y < \infty$$
 - Are X and Y independent? **Yes!**
 - Let $h(x) = 3e^{-3x}$ and $g(y) = 2e^{-2y}$, so $f_{X,Y}(x, y) = h(x)g(y)$
- Consider joint density function of X and Y:
 $$f_{X,Y}(x, y) = 4xy \quad \text{for } 0 < x, y < 1$$
 - Are X and Y independent? **Yes!**
 - Let $h(x) = 2x$ and $g(y) = 2y$, so $f_{X,Y}(x, y) = h(x)g(y)$
 - Now add constraint that: $0 < (x + y) < 1$
 - Are X and Y independent? **No!**
 - Cannot capture constraint on $x + y$ in factorization!
The Joy of Meetings

- Two people set up a meeting for 12pm
 - Each arrives independently at time uniformly distributed between 12pm and 12:30pm
 - X = # min. past 12pm person 1 arrives \(X \sim U(0, 30) \)
 - Y = # min. past 12pm person 2 arrives \(Y \sim U(0, 30) \)
 - What is \(P(\text{first to arrive waits > 10 min. for other}) \)?

\[
P(X + 10 < Y) = 2 \int_{x=0}^{10} f_X(x) f_Y(y) \, dy = 2 \int_{y=10}^{30} f_Y(y) \, dy = 2 \frac{y}{30} \bigg|_{y=10}^{30} = \frac{4}{9}
\]

Independence of Multiple Variables

- \(n \) random variables \(X_1, X_2, \ldots, X_n \), are called \(\text{independent if:} \)
 \[
P(X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n) = \prod_{i=1}^{n} P(X_i = x_i) \quad \text{for all } x_1, x_2, \ldots, x_n
\]
 - Analogously, for continuous random variables:
 \[
P(X_1 \leq a_1, X_2 \leq a_2, \ldots, X_n \leq a_n) = \prod_{i=1}^{n} P(X_i \leq a_i) \quad \text{for all } a_1, a_2, \ldots, a_n
\]

Independence is Symmetric

- If random variables \(X \) and \(Y \) independent, then
 - \(X \) independent of \(Y \), and
 - \(Y \) independent of \(X \)
- Duh!? Duh, indeed...
 - Let \(X_1, X_2, \ldots \) be a sequence of independent and identically distributed (i.i.d.) continuous random vars
 - Say \(X_n > X_i \) for all \(i = 1, \ldots, n-1 \) (i.e. \(X_n = \max(X_1, \ldots, X_n) \))
 - Call \(X_n \) a "record value" (e.g., record temp. for particular day)
 - Let event \(A_n \) be \(X_n \) is "record value"
 - Is \(A_n \) independent of \(A_m \),?
 - Easier to answer: Yes!
 - By symmetry, \(P(A_n) = 1/n \)

(Happily) Choosing a Random Subset

- Good times:

```c
int indicator(double p) {
    if (random() < p) return 1; else return 0;
}

subset rSubset(k, set of size n) {
    subset_size = 0;
    I[1] = indicator((double)k/n);
    for(i = 1; i < n; i++)
        if (indicator((double)k/(n - subset_size)))
            subset_size += I[1];
    return (subset containing element[i] iff I[1] == 1);
}
PARAM k / 10, n / 20,
P[I[1] = 1] = \frac{k}{n} \quad \text{and} \quad P[I[i+1] = 1 | I[1], I[2], \ldots, I[i]] = \frac{k - \sum_{j=1}^{i} I[j]}{n - \sum_{j=1}^{i} I[j]} \quad \text{where } 1 < i < n
```

Choosing a Random Subset

- From set of \(n \) elements, choose a subset of size \(k \) such that all \(\binom{n}{k} \) possibilities are \(\text{equally likely} \)
 - Only have \(\text{random()} \), which simulates \(X \sim U(0, 1) \)
- Brute force:
 - Generate (an ordering of) all subsets of size \(k \)
 - Randomly pick one (divide \(0, 1 \) into \(\binom{n}{k} \) intervals)
 - Expensive with regard to time and space
 - Bad times!

Random Subsets the Happy Way

- Proof (Induction on \(k+n \)): (i.e., why this algorithm works)
 - Base Case: \(k = 1, n = 1 \), \(\text{rSubset returns } \{a\} \) with \(p = \frac{1}{n} \)
 - Inductive Hypoth. (IH): for \(k + x < c \), Given set \(S, |S| = x \) and \(k \leq x \)
 - \(\text{rSubset returns any subset } S' \text{ of } S \text{ where } |S'| = k \text{, with } p = \frac{1}{n} \)
 - Case 1: when \(k + n < c + 1 \)
 - \(|S'| = n - x + 1 \), \(I[1] = 1 \)
 - Elem 1 in subset, choose \(k-1 \) elem from remaining \(n-1 \)
 - By IH: \(\text{rSubset returns subset } S' \text{ of size } k-1 \text{ with } p = \frac{1}{n-1} \)
 - \(P[I[1] = 1, \text{subset } S'] = \frac{k}{n} \frac{1}{n-1} \frac{1}{k-1} \frac{1}{n-1} \)
 - Case 2: when \(k + n < c + 1 \)
 - \(|S'| = n - x + 1 \), \(I[1] = 0 \)
 - Elem 1 not in subset, choose \(k \) elem from remaining \(n-1 \)
 - By IH: \(\text{rSubset returns subset } S' \text{ of size } k \text{ with } p = \frac{1}{n} \)
 - \(P[I[1] = 0, \text{subset } S'] = \left(1 - \frac{1}{n}\right) \frac{n-1}{n} \left(\frac{1}{k-1}\right) (n-1-n) \frac{1}{n-1} \frac{1}{n} \)
Sum of Independent Binomial RVs

- Let X and Y be independent random variables
 - $X \sim \text{Bin}(n_1, p)$ and $Y \sim \text{Bin}(n_2, p)$
 - $X + Y \sim \text{Bin}(n_1 + n_2, p)$

Intuition:
- X has n_1 trials and Y has n_2 trials
- Each trial has same “success” probability p
- Define Z to be $n_1 + n_2$ trials, each with success prob. p
- $Z \sim \text{Bin}(n_1 + n_2, p)$, and also $Z = X + Y$

- More generally: $X_i \sim \text{Bin}(n_i, p)$ for $1 \leq i \leq N$

\[
\sum_{i=1}^{N} X_i \sim \text{Bin} \left(\sum_{i=1}^{N} n_i, p \right)
\]

Sum of Independent Poisson RVs

- Let X and Y be independent random variables
 - $X \sim \text{Poi}(\lambda_1)$ and $Y \sim \text{Poi}(\lambda_2)$
 - $X + Y \sim \text{Poi}(\lambda_1 + \lambda_2)$

Proof: (just for reference)
- Rewrite $(X + Y = n)$ as $(X = k, Y = n-k)$ where $0 \leq k \leq n$
- Noting Binomial theorem:
- $P(X + Y = n) = \sum_{k=0}^{n} P(X = k, Y = n-k) = \sum_{k=0}^{n} P(X = k)P(Y = n-k)$
- \[= \sum_{k=0}^{n} e^{-\lambda_1} \frac{\lambda_1^k}{k!} e^{-\lambda_2} \frac{\lambda_2^{n-k}}{(n-k)!} = e^{-(\lambda_1 + \lambda_2)} \sum_{k=0}^{n} \frac{\lambda_1^k \lambda_2^{n-k}}{k!(n-k)!} \]
- Noting Binomial theorem:
- $(\lambda_1 + \lambda_2)^n = \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \lambda_1^k \lambda_2^{n-k}$
- \[P(X + Y = n) = e^{-(\lambda_1 + \lambda_2)} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \lambda_1^k \lambda_2^{n-k} \]
- $P(X + Y = n) = e^{-(\lambda_1 + \lambda_2)} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \lambda_1^k \lambda_2^{n-k}$
- So, $X + Y \sim \text{Poi}(\lambda_1 + \lambda_2)$