Assignment #1 Solutions

1. (5 points)
 No, these two options are not the same. As a simple example, consider the case of rolling a sum of two. With two 6-sided dice, the probability of this outcome is $1/36$, since the roll $(1, 1)$ is one outcome out of 36 possibilities. With a 4-sided die and an 8-sided die, there are 32 ($= 4 \times 8$) possible outcomes, so the probability of rolling a sum of two (also denoted by the roll $(1, 1)$) is $1/32$. Since the probability mass function is not the same in the case of rolling a sum of two, it cannot be the same across the whole range of rolls.

2. (15 points)
 Let event $A = \text{missing aircraft is discovered}$.
 Let event $B = \text{missing aircraft has emergency locator}$.

 We are told in the problem that $P(A) = 0.7$, $P(B \mid A) = 0.6$, and $P(B^c \mid A^c) = 0.9$.

 We want to compute $P(A^c \mid B)$

 $= 1 - P(A \mid B)$ by complement

 $= 1 - \left[P(B \mid A) P(A) / (P(B \mid A) P(A) + P(B \mid A^c) P(A^c)) \right]$ by Bayes Theorem

 Note that (by complement):

 $P(A^c) = 1 - P(A) = 1 - 0.7 = 0.3$.

 Also, $P(B \mid A^c) = 1 - P(B^c \mid A^c) = 1 - 0.9 = 0.1$

 $= 1 - [(0.6)(0.7) / ((0.6)(0.7) + (0.1)(0.3))]$ substitution of values

 $= 1 - (0.42 / (0.42 + 0.3)) = 1 - (0.42 / 0.45) = 0.0667$ algebra

3. (20 points)
 We have $P(\text{vehicle passing inspection}) = 0.7$, so $P(\text{vehicle failing inspection}) = 1 - 0.7 = 0.3$.

 a. $P(\text{all of the next three vehicles pass inspection}) = (0.7)^3 = 0.343$

 b. $P(\text{at least one of the next three vehicles fails inspection})$

 $= 1 - P(\text{all three vehicles pass inspection}) = 1 - (0.7)^3 = 0.657$

 c. $P(\text{exactly one of the next three vehicles pass inspection})$

 Let X be the number of vehicle passing inspection. $X \sim \text{Bin}(3, 0.7)$. We want to compute $P(X = 1)$.

 $P(X = 1) = \binom{3}{1}(0.7)^1(0.3)^2 = 3(0.7)(0.09) = 0.189$
d. \(P(\text{at most one of the next three vehicles pass inspection}) \)

Let \(X \) be the number of vehicle passing inspection. \(X \sim \text{Bin}(3, 0.7) \). We want to compute \(P(X = 0 \text{ or } X = 1) = P(X = 0) + P(X = 1) \).

\[
P(X = 0) = \binom{3}{0} (0.7)^0 (0.3)^3 = 1(1)(0.027) = 0.027
\]

\[
P(X = 1) = 0.189 \quad \text{(computed in part (c) above)}
\]

\[
P(X = 0) + P(X = 1) = 0.027 + 0.189 = 0.216
\]

e. Given that at least one of the next three vehicles passes inspection, what is the conditional probability that all three pass?

Let \(X \) be the number of vehicle passing inspection. \(X \sim \text{Bin}(3, 0.7) \). We want to compute \(P(X = 3 \mid X \geq 1) = P(X = 3 \text{ and } X \geq 1) / P(X \geq 1) \).

Note that \(P(X = 3 \text{ and } X \geq 1) = P(X = 3) \). Also, note that \(P(X \geq 1) = 1 - P(X = 0) \).

So we want to compute: \(P(X = 3 \mid X \geq 1) = P(X = 3) / (1 - P(X = 0)) \)

\[
P(X = 3) = \binom{3}{3} (0.7)^3 (0.3)^0 = 1(0.343)(1) = 0.343
\]

\[
1 - P(X = 0) = 1 - 0.027 = 0.973 \quad \text{(using computation from part (d))}
\]

Finally, we get: \(P(X = 3 \mid X \geq 1) = 0.343/0.973 = 0.3525 \)

4. (15 points)

a. \(E[X] = (0.2)(16) + (0.5)(64) + (0.3)(128) = 73.6 \)

b. \(E[X^2] = (0.2)(16^2) + (0.5)(64^2) + (0.3)(128^2) = 7014.4 \)

c. \(\text{Var}(X) = E[X^2] - (E[X])^2 = 7014.4 - 5416.96 = 1597.44 \)

d. Expected price paid by a customer is \(5 E[X] + 100 = 5(73.6) + 100 = 468 \)

5. (15 points) Let \(W \) be payoff of the game that has a maximum payoff of $128. The expectation for the game is given by: \(E[W] = \sum_{i=0}^{7} \left(\frac{1}{2} \right)^i \cdot 2^i + \left(1 - \sum_{i=0}^{7} \left(\frac{1}{2} \right)^i \right) \cdot 128 \). The first term in the expectation represents the cases where the number of consecutive heads flipped (denoted by the index \(i \) leads to a payoff of \(2^i \), and \(2^i \) is less than or equal to $128, or equivalently \(i \leq \log_2 128 = 7 \). The second term represents the cases where the payoff of the game is the maximum value $128 (i.e., the player flipped more than 7 “heads” in a row). Note the probability in the second case is the complement of first case: \(1 - P(\text{payoff is } 2^N) \).

We use the equation above to obtain the answer.

\[
E[W] = \sum_{i=0}^{7} \left(\frac{1}{2} \right)^i \cdot 2^i + \left(1 - \sum_{i=0}^{7} \left(\frac{1}{2} \right)^i \right) \cdot 128 = $4.5
\]
6. (15 points)
Let \(X \) = the amount you win. \(P(X = \$2.00) = 4/9 \), since the first ball you draw can be of either color, and then there will be 4 balls left of that color in the remaining 9 balls to get a match on the second draw. So, \(P(X = -\$1.00) = 1 - P(X = \$2.00) = 5/9 \).

a. \(E[X] = (\$2.00)(4/9) + (-\$1.00)(5/9) = $3/9 \approx $0.33. \)

\[\text{b. } \text{Var}(X) = E[X^2] - (E[X])^2 = \left[(\$2.00)^2(4/9) + (-\$1.00)^2(5/9) \right] - \left(\frac{1}{3} \right)^2 = 20/9 \approx 2.2222 \]

7. (15 points)
Student One would assign utilities as follows:

Gamble A: Utility = \(U(\$5,000) \approx 0.0488 \)
Gamble B: Utility = \((0.4)U(\$40,000) + (0.6)U(-\$10,000) \)
\[\approx (0.4)(0.3297) + (0.6)(-0.1052) = 0.0688 \]
Gamble C: Utility = \((1/3)U(\$21,000) + (1/3)U(9,000) + (1/3)U(-\$9,000) \)
\[\approx (1/3)(0.1894) + (1/3)(0.0861) + (1/3)(-0.0942) = 0.0604 \]

Student One would prefer Gamble B as that provides the maximal expected utility.

Student Two would assign utilities as follows:

Gamble A: Utility = \(U(\$5,000) \approx 0.0952 \)
Gamble B: Utility = \((0.4)U(\$40,000) + (0.6)U(-\$10,000) \)
\[\approx (0.4)(0.5507) + (0.6)(-0.2214) = 0.0874 \]
Gamble C: Utility = \((1/3)U(\$21,000) + (1/3)U(9,000) + (1/3)U(-\$9,000) \)
\[\approx (1/3)(0.3430) + (1/3)(0.1647) + (1/3)(-0.1972) = 0.1035 \]

Student Two would prefer Gamble C as that provides the maximal expected utility.