Logic and Artificial Intelligence

Lecture 21

Eric Pacuit

Currently Visiting the Center for Formal Epistemology, CMU

Center for Logic and Philosophy of Science
Tilburg University

ai.stanford.edu/~epacuit
e.j.pacuit@uvt.nl

November 16, 2011
Recap: Logics of Action and Ability

- $F\varphi$: φ is true at some moment in the future
Recap: Logics of Action and Ability

- $F\varphi$: φ is true at some moment in the future
- $\exists F\varphi$: there is a history where φ is true some moment in the future
Recap: Logics of Action and Ability

- $F\varphi$: φ is true at some moment in the future
- $\exists F\varphi$: there is a history where φ is true some moment in the future
- $[\alpha]\varphi$: after doing action α, φ is true
Recap: Logics of Action and Ability

- $F\varphi$: φ is true at some moment in the future
- $\exists F\varphi$: there is a history where φ is true some moment in the future
- $[\alpha]\varphi$: after doing action α, φ is true
- $[\delta \varphi]\psi$: after bringing about φ, ψ is true
Recap: Logics of Action and Ability

- $F\varphi$: φ is true at some moment in the future
- $\exists F\varphi$: there is a history where φ is true some moment in the future
- $[\alpha]\varphi$: after doing action α, φ is true
- $[\delta \varphi] \psi$: after bringing about φ, ψ is true
- $[i stit] \varphi$: the agent can “see to it that” φ is true
Recap: Logics of Action and Ability

- $F\varphi$: φ is true at some moment in the future.
- $\exists F\varphi$: there is a history where φ is true some moment in the future.
- $[\alpha]\varphi$: after doing action α, φ is true.
- $[\delta\varphi]\psi$: after bringing about φ, ψ is true.
- $[i\ stit]\varphi$: the agent can “see to it that” φ is true.
- $\diamond[i\ stit]\varphi$: the agent has the ability to bring about φ.
Group/Collective actions and abilities: for $J \subseteq N$, $[J]\varphi$ means “the group can make φ true...”
Group Actions: Example
Group Actions: Example

Suppose that there are two agents: a server (s) and a client (c). The client asks to set the value of x and the server can either grant or deny the request. Assume the agents make simultaneous moves.
Group Actions: Example

Suppose that there are two agents: a server (s) and a client (c). The client asks to set the value of x and the server can either grant or deny the request. Assume the agents make simultaneous moves.

\[
\begin{array}{c|c|c}
\text{set1} & \text{deny} & \text{grant} \\
\hline
\text{set2} & & \\
\end{array}
\]
Suppose that there are two agents: a server \((s)\) and a client \((c)\). The client asks to set the value of \(x\) and the server can either grant or deny the request. Assume the agents make simultaneous moves.

<table>
<thead>
<tr>
<th></th>
<th>deny</th>
<th>grant</th>
</tr>
</thead>
<tbody>
<tr>
<td>set1</td>
<td></td>
<td>(q_0 \Rightarrow q_0, q_1 \Rightarrow q_0)</td>
</tr>
<tr>
<td>set2</td>
<td></td>
<td>(q_0 \Rightarrow q_1, q_1 \Rightarrow q_1)</td>
</tr>
</tbody>
</table>
Example: Suppose that there are two agents: a server (s) and a client (c). The client asks to set the value of \(x \) and the server can either grant or deny the request. Assume the agents make simultaneous moves.

<table>
<thead>
<tr>
<th>set1</th>
<th>deny</th>
<th>grant</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q \rightarrow q)</td>
<td>(q_0 \rightarrow q_0, q_1 \rightarrow q_0)</td>
<td></td>
</tr>
<tr>
<td>(q \rightarrow q)</td>
<td>(q_0 \rightarrow q_1, q_1 \rightarrow q_1)</td>
<td></td>
</tr>
</tbody>
</table>
Strategy Logics

- **Coalitional Logic**: Reasoning about (local) group power.

 \([C]\varphi\): coalition \(C\) has a **joint action** to bring about \(\varphi\).

Strategy Logics

- **Coalitional Logic**: Reasoning about (local) group power.

 \([C]\varphi\): coalition \(C\) has a **joint action** to bring about \(\varphi\).

- **Alternating-time Temporal Logic**: Reasoning about (local and global) group power:

 \(\langle\langle A\rangle\rangle G \varphi\): The coalition \(A\) has a **joint action** to ensure that \(\varphi\) will remain true.

Multi-agent Transition Systems

\[(P_{x=1} \rightarrow [s]P_{x=1}) \land (P_{x=2} \rightarrow [s]P_{x=2}) \]

\[q_0 \quad x = 1 \]

\[(\text{set2, grant}) \]

\[q_1 \quad x = 2 \]

\[(\text{set1, grant}) \]

\[q_0 \quad (\text{* , deny}) \]

\[q_1 \quad (\text{* , deny}) \]
Multi-agent Transition Systems

\[
P_{x=1} \rightarrow \neg[s]P_{x=2}
\]
Multi-agent Transition Systems

\[P_{x=1} \rightarrow [s, c]P_{x=2} \]

\[\langle *, deny \rangle \]

\[\langle set2, grant \rangle \quad \langle set1, grant \rangle \]

\[q_0 \quad x = 1 \]

\[q_1 \quad x = 2 \]
∃ “something an agent/a group can do” such that ∀ “actions of the other players/nature”...

∃ “something an agent/a group can do” such that ∀ “actions of the other players/nature”...

∀ “(joint) actions of the other players”, ∃ “something the agent/coalition can do”...

Coalitional Logic

Effectivity Functions

Let N be a (finite) set of agents and W a set of worlds.
Effectivity Functions

Let N be a (finite) set of agents and W a set of worlds.

For each $J \subseteq N$, the **effectivity function** for J is $e : \wp(N) \to \wp(\wp(W))$.

$X \in e(J)$ means X is a set of possible outcomes for which J is effective (or J can force the world to be in some state of X at the next step).
e is **playable** (for a set of states \(\mathcal{W} \)) iff

1. \(\emptyset \not\in e(\mathcal{J}) \) (Liveness)
2. \(\mathcal{W} \in e(\mathcal{J}) \) (Safety)
3. if \(\mathcal{W} - X \not\in e(\emptyset) \) then \(X \in e(\mathcal{N}) \) (\(N \)-maximality)
4. if \(X \in e(\mathcal{J}) \) and \(X \subseteq Y \) then \(Y \in e(\mathcal{J}) \) (Outcome monotonicity)
5. If \(J \cap I = \emptyset \), then if \(X_1 \in e(J) \) and \(X_2 \in e(I) \), then \(X_1 \cap X_2 \in e(J \cup I) \) (Super-additivity)
Playable Effectivity Functions

e is the effectivity function of some strategic game provided $X \in e(J)$ if there is a joint strategy for J such that no matter what strategy is chosen by the agents $N - J$, the outcome of the game is in X.

Theorem (Pauly). An effectivity function e is playable iff it is the effectivity function of some strategic game.
Playable Effectivity Functions

\(e \) is the effectivity function of some strategic game provided \(X \in e(J) \) if there is a joint strategy for \(J \) such that no matter what strategy is chosen by the agents \(N - J \), the outcome of the game is in \(X \).

Theorem (Pauly). An effectivity function \(e \) is playable iff it is the effectivity function of some strategic game.

See, also

A coalitional logic model is a tuple $\mathcal{M} = \langle W, E, V \rangle$ where W is a set of states, $E : W \rightarrow (\wp(N) \rightarrow \wp(\wp(W)))$ assigns to each state a playable effectivity function, and $V : \text{At} \rightarrow \wp(W)$ is a valuation function.

$\mathcal{M}, w \models [J]\varphi$ iff $\llbracket \varphi \rrbracket_{\mathcal{M}} = \{ w | \mathcal{M}, w \models \varphi \} \in E(w)(J)$
Coalitional Logic: Axiomatics

- $\neg [J] \bot$
- $[J] \top$
- $(\neg [\emptyset] \neg \phi) \rightarrow [N] \phi$
- $[J] (\phi \land \psi) \rightarrow ([J] \phi \land [J] \psi)$
- $([J_1] \varphi_1 \land [J_2] \varphi_2) \rightarrow [J_1 \cup J_2] (\varphi_1 \land \varphi_2)$, where $J_1 \cap J_2 = \emptyset$
Logics of preference...
Preference (Modal) Logics

\(x, y \) objects

\(x \succeq y: x \) is at least as good as \(y \)
Preference (Modal) Logics

\(x, y \) objects

\(x \succeq y \): \(x \) is at least as good as \(y \)

1. \(x \succeq y \) and \(y \not\succeq x \) (\(x \succ y \))
2. \(x \not\succeq y \) and \(y \succeq x \) (\(y \succ x \))
3. \(x \succeq y \) and \(y \succeq x \) (\(x \sim y \))
4. \(x \not\succeq y \) and \(y \not\succeq x \) (\(x \perp y \))
Preference (Modal) Logics

x, y objects

$x \succeq y$: x is at least as good as y

1. $x \succeq y$ and $y \not\succeq x$ ($x \succ y$)
2. $x \not\succeq y$ and $y \succeq x$ ($y \succ x$)
3. $x \succeq y$ and $y \succeq x$ ($x \sim y$)
4. $x \not\succeq y$ and $y \not\succeq x$ ($x \perp y$)

Properties: transitivity, connectedness, etc.
Preference (Modal) Logics

Modal betterness model \(\mathcal{M} = \langle W, \succeq, V \rangle \)
Preference (Modal) Logics

Modal betterness model $\mathcal{M} = \langle W, \succeq, V \rangle$

Preference Modalities $\langle \succeq \rangle \varphi$: “there is a world at least as good (as the current world) satisfying φ”

$\mathcal{M}, w \models \langle \succeq \rangle \varphi$ iff there is a $v \succeq w$ such that $\mathcal{M}, v \models \varphi$
Preference (Modal) Logics

Modal betterness model $\mathcal{M} = \langle W, \succeq, V \rangle$

Preference Modalities $\langle \succeq \rangle \varphi$: “there is a world at least as good (as the current world) satisfying φ”

$\mathcal{M}, w \models \langle \succeq \rangle \varphi$ iff there is a $v \succeq w$ such that $\mathcal{M}, v \models \varphi$

$\mathcal{M}, w \models \langle \succ \rangle \varphi$ iff there is $v \succeq w$ and $w \not\succeq v$ such that $\mathcal{M}, v \models \varphi$
Preference (Modal) Logics

1. $⟨\neg⟩\varphi \rightarrow ⟨\geq⟩\varphi$
2. $⟨\geq⟩⟨\neg⟩\varphi \rightarrow ⟨\neg⟩\varphi$
3. $\varphi \land ⟨\geq⟩\psi \rightarrow (⟨\neg⟩\psi \lor ⟨\geq⟩(\psi \land ⟨\geq⟩\varphi))$
4. $⟨\neg⟩⟨\geq⟩\varphi \rightarrow ⟨\neg⟩\varphi$

Theorem The above logic (with Necessitation and Modus Ponens) is sound and complete with respect to the class of preference models.

Preference Modalities

\(\varphi \geq \psi \): the state of affairs \(\varphi \) is at least as good as \(\psi \) (ceteris paribus)

Preference Modalities

$\varphi \geq \psi$: the state of affairs φ is at least as good as ψ (ceteris paribus)

$\langle \Gamma \rangle \leq \varphi$: φ is true in “better” world, *all things being equal*.

All Things Being Equal...

- With boots (\(b\)), I prefer my raincoat (\(r\)) over my umbrella (\(u\)).
- Without boots (\(\neg b\)), I also prefer my raincoat (\(r\)) over my umbrella (\(u\)).
- But I do prefer an umbrella and boots over a raincoat and no boots.
All Things Being Equal...

With boots (b), I prefer my raincoat (r) over my umbrella (u).

But I do prefer an umbrella and boots over a raincoat and no boots.

With boots (b), I prefer my raincoat (r) over my umbrella (u).
All Things Being Equal...

- With boots (b), I prefer my raincoat (r) over my umbrella (u).
- Without boots ($\neg b$), I also prefer my raincoat (r) over my umbrella (u).
All Things Being Equal...

- With boots (b), I prefer my raincoat (r) over my umbrella (u)
- Without boots ($\neg b$), I also prefer my raincoat (r) over my umbrella (u)
- But I do prefer an umbrella and boots over a raincoat and no boots
All things being equal, I prefer my raincoat over my umbrella.
All Things Being Equal...

Let Γ be a set of (preference) formulas. Write $w \equiv_{\Gamma} v$ if for all $\varphi \in \Gamma$, $w \models \varphi$ iff $v \models \varphi$.

1. $M, w \models \langle \Gamma \rangle \varphi$ iff there is a $v \in W$ such that $w \equiv_{\Gamma} v$ and $M, v \models \varphi$.

2. $M, w \models \langle \Gamma \rangle \leq \varphi$ iff there is a $v \in W$ such that $w(\equiv_{\Gamma} \cap \leq) v$ and $M, v \models \varphi$.

3. $M, w \models \langle \Gamma \rangle < \varphi$ iff there is a $v \in W$ such that $w(\equiv_{\Gamma} \cap <) v$ and $M, v \models \varphi$.

Key Principles:

$\langle \Gamma' \rangle \varphi \rightarrow \langle \Gamma \rangle \varphi$ if $\Gamma \subseteq \Gamma'$

$\pm \varphi \land \langle \Gamma \rangle \left(\alpha \land \pm \varphi \right) \rightarrow \langle \Gamma \cup \{ \varphi \} \rangle \alpha$
All Things Being Equal...

Let Γ be a set of (preference) formulas. Write $w \equiv_{\Gamma} v$ if for all $\varphi \in \Gamma$, $w \models \varphi$ iff $v \models \varphi$.

1. $\mathcal{M}, w \models \langle \Gamma \rangle \varphi$ iff there is a $v \in W$ such that $w \equiv_{\Gamma} v$ and $\mathcal{M}, v \models \varphi$.

2. $\mathcal{M}, w \models \langle \Gamma \rangle \leq \varphi$ iff there is a $v \in W$ such that $w(\equiv_{\Gamma} \cap \leq) v$ and $\mathcal{M}, v \models \varphi$.

3. $\mathcal{M}, w \models \langle \Gamma \rangle < \varphi$ iff there is a $v \in W$ such that $w(\equiv_{\Gamma} \cap <) v$ and $\mathcal{M}, v \models \varphi$.

Key Principles:

- $\langle \Gamma' \rangle \varphi \rightarrow \langle \Gamma \rangle \varphi$ if $\Gamma \subseteq \Gamma'$
- $\pm \varphi \land \langle \Gamma \rangle (\alpha \land \pm \varphi) \rightarrow \langle \Gamma \cup \{\varphi\} \rangle \alpha$
All Things Being Equal...

Let Γ be a set of (preference) formulas. Write $w \equiv_\Gamma v$ if for all $\varphi \in \Gamma$, $w \models \varphi$ iff $v \models \varphi$.

1. $\mathcal{M}, w \models \langle \Gamma \rangle \varphi$ iff there is a $v \in \mathcal{W}$ such that $w \equiv_\Gamma v$ and $\mathcal{M}, v \models \varphi$.
2. $\mathcal{M}, w \models \langle \Gamma \rangle \leq \varphi$ iff there is a $v \in \mathcal{W}$ such that $w(\equiv_\Gamma \cap \leq) v$ and $\mathcal{M}, v \models \varphi$.
3. $\mathcal{M}, w \models \langle \Gamma \rangle < \varphi$ iff there is a $v \in \mathcal{W}$ such that $w(\equiv_\Gamma \cap <) v$ and $\mathcal{M}, v \models \varphi$.

Key Principles:

- $\langle \Gamma' \rangle \leq \varphi \rightarrow \langle \Gamma \rangle \leq \varphi$ if $\Gamma \subseteq \Gamma'$
- $\pm \varphi \land \langle \Gamma \rangle \leq (\alpha \land \pm \varphi) \rightarrow \langle \Gamma \cup \{\varphi\} \rangle \leq \alpha$
Preference Lifting, I

Given a preference ordering \(\preceq \) over a set of objects \(X \), we want to \textbf{lift} this to an ordering \(\widehat{\preceq} \) over \(\wp(X) \).

Given \(\preceq \), what reasonable properties can we infer about \(\widehat{\preceq} \)?

Preference Lifting, II

- You know that $x \prec y \prec z$
 Can you infer that $\{x, y\} \hat{\prec} \{z\}$?
You know that $x ≺ y ≺ z$
Can you infer that $\{x, y\} ≺ \{z\}$?

You know that $x ≺ y ≺ z$
Can you infer anything about $\{y\}$ and $\{x, z\}$?
Preference Lifting, II

- You know that $x \prec y \prec z$
 Can you infer that $\{x, y\} \hat{\prec} \{z\}$?

- You know that $x \prec y \prec z$
 Can you infer anything about $\{y\}$ and $\{x, z\}$?

- You know that $w \prec x \prec y \prec z$
 Can you infer that $\{w, x, y\} \hat{\preceq} \{w, y, z\}$?
Preference Lifting, II

▶ You know that $x \prec y \prec z$
 Can you infer that $\{x, y\} \sim \{z\}$?

▶ You know that $x \prec y \prec z$
 Can you infer anything about $\{y\}$ and $\{x, z\}$?

▶ You know that $w \prec x \prec y \prec z$
 Can you infer that $\{w, x, y\} \lesssim \{w, y, z\}$?

▶ You know that $w \prec x \prec y \prec z$
 Can you infer that $\{w, x\} \sim \{y, z\}$?
Preference Lifting, III

There are different interpretations of $X \hat{\leq} Y$:

- You will get one of the elements, but cannot control which.
- You can choose one of the elements.
- You will get the full set.