Subgames

Let $H = \langle H_1, \ldots, H_n, u_1, \ldots, u_n \rangle$ be an arbitrary strategic game.
Subgames

Let \(H = \langle H_1, \ldots, H_n, u_1, \ldots, u_n \rangle \) be an arbitrary strategic game.

A restriction of \(H \) is a sequence \(G = (G_1, \ldots, G_n) \) such that \(G_i \subseteq H_i \) for all \(i \in \{1, \ldots, n\} \).

The set of all restrictions of a game \(H \) ordered by componentwise set inclusion forms a complete lattice.
Game Models

Relational models: $\langle W, R_i \rangle$ where $R_i \subseteq W \times W$. Write $R_i(w) = \{ v \mid wR_i v \}$.

Events: $E \subseteq W$

Knowledge/Belief: $\Box E = \{ w \mid R_i(w) \subseteq E \}$

Common knowledge/belief:

$\Box^1 E = \Box E$
$\Box^{k+1} E = \Box \Box^k E$
$\Box* E = \bigcap_{k=1}^{\infty} \Box^k E$

Fact. An event F is called evident provided $F \subseteq \Box F$. $w \in \Box* E$ provided there is an evident event F such that $w \in F \subseteq \Box E$.
Let $G = (G_1, \ldots, G_n)$ be a restriction of a game H.

A **knowledge/belief model of** G is a tuple

$\langle W, R_1, \ldots, R_n, \sigma_1, \ldots, \sigma_n \rangle$ where $\langle W, R_1, \ldots, R_n \rangle$ is a knowledge/belief model and $\sigma_i : W \rightarrow G_i$.
Game Models

Let $G = (G_1, \ldots, G_n)$ be a restriction of a game H.

A knowledge/belief model of G is a tuple $\langle W, R_1, \ldots, R_n, \sigma_1, \ldots, \sigma_n \rangle$ where $\langle W, R_1, \ldots, R_n \rangle$ is a knowledge/belief model and $\sigma_i : W \to G_i$.

Given a model $\langle W, R_1, \ldots, R_n, \sigma_1, \ldots, \sigma_n \rangle$ for a restriction G and a sequence $\overline{E} = \{E_1, \ldots, E_n\}$ where $E_i \subseteq W$, $G_{\overline{E}} = (\sigma_1(E_1), \ldots, \sigma_n(E_n))$
Some Lattice Theory

- \((D, \subseteq)\) is a lattice with largest element \(\top\). \(T : D \to D\) an operator.

- \(T\) is monotonic if for all \(G, G'\), \(G \subseteq G'\) implies \(T(G) \subseteq T(G')\).

- \(G\) is a fixed-point if \(T(G) = G\).

- \(\nu_T\) is the largest fixed point of \(T\).

- \(T_\infty\) is the "outcome of \(T\)":
 \[
 T_0 = \top, \quad T_{\alpha + 1} = T(T_\alpha), \quad T_\beta = \bigcap_{\alpha < \beta} T_\alpha.
 \]
 The outcome of iterating \(T\) is the least \(\alpha\) such that \(T_\alpha + 1 = T_\alpha\), denoted \(T_\infty\).

- Tarski's Fixed-Point Theorem: Every monotonic operator \(T\) has a (least and largest) fixed point \(T_\infty = \nu_T = \bigcup \{G | G \subseteq T(G)\}\).

- \(T\) is contracting if \(T(G) \subseteq G\). Every contracting operator has an outcome (\(T_\infty\) is well-defined).
Some Lattice Theory

- (D, \subseteq) is a lattice with largest element \top. $T : D \to D$ an operator.
- T is monotonic if for all G, G', $G \subseteq G'$ implies $T(G) \subseteq T(G')$
Some Lattice Theory

- \((D, \subseteq)\) is a lattice with largest element \(\top\). \(T : D \to D\) an operator.
- \(T\) is monotonic if for all \(G, G', G \subseteq G'\) implies \(T(G) \subseteq T(G')\)
- \(G\) is a fixed-point if \(T(G) = G\)
Some Lattice Theory

- (D, \subseteq) is a lattice with largest element \top. $T : D \to D$ an operator.
- T is monotonic if for all G, G', $G \subseteq G'$ implies $T(G) \subseteq T(G')$.
- G is a fixed-point if $T(G) = G$.
- νT is the largest fixed point of T.
Some Lattice Theory

- (D, \subseteq) is a lattice with largest element \top. $T : D \to D$ an operator.
- T is monotonic if for all G, G', $G \subseteq G'$ implies $T(G) \subseteq T(G')$.
- G is a fixed-point if $T(G) = G$.
- νT is the largest fixed point of T.
- T^∞ is the “outcome of T: $T^0 = \top$, $T^{\alpha+1} = T(T^\alpha)$, $T^\beta = \bigcap_{\alpha < \beta} T^\alpha$.
 The outcome of iterating T is the least α such that $T^{\alpha+1} = T^\alpha$, denoted T^∞.

Tarski's Fixed-Point Theorem: Every monotonic operator T has a (least and largest) fixed point $T^\infty = \nu T = \bigcup \{G | G \subseteq T(G)\}$.
Some Lattice Theory

- \((D, \subseteq)\) is a lattice with largest element \(\top\). \(T : D \to D\) an operator.
- \(T\) is monotonic if for all \(G, G', G \subseteq G'\) implies \(T(G) \subseteq T(G')\).
- \(G\) is a fixed-point if \(T(G) = G\).
- \(\nu T\) is the largest fixed point of \(T\).
- \(T^\infty\) is the “outcome of \(T\): \(T^0 = \top, T^{\alpha+1} = T(T^\alpha), T^\beta = \bigcap_{\alpha < \beta} T^\alpha\), The outcome of iterating \(T\) is the least \(\alpha\) such that \(T^{\alpha+1} = T^\alpha\), denoted \(T^\infty\).
- **Tarski’s Fixed-Point Theorem**: Every monotonic operator \(T\) has a (least and largest) fixed point \(T^\infty = \nu T = \bigcup\{G \mid G \subseteq T(G)\}\).
Some Lattice Theory

- (D, \subseteq) is a lattice with largest element \top. $T : D \to D$ an operator.
- T is monotonic if for all G, G', $G \subseteq G'$ implies $T(G) \subseteq T(G')$.
- G is a fixed-point if $T(G) = G$.
- νT is the largest fixed point of T.
- T^∞ is the "outcome of T: $T^0 = \top$, $T^{\alpha+1} = T(T^\alpha)$,
 $T^\beta = \bigcap_{\alpha < \beta} T^\alpha$, The outcome of iterating T is the least α such that $T^{\alpha+1} = T^\alpha$, denoted T^∞.
- **Tarski’s Fixed-Point Theorem**: Every monotonic operator T has a (least and largest) fixed point $T^\infty = \nu T = \bigcup \{G \mid G \subseteq T(G)\}$.
- T is contracting if $T(G) \subseteq G$. Every contracting operator has an outcome (T^∞ is well-defined).
Rationality Properties

\(\varphi(s_i, G_i, G_{-i}) \) holds between a strategy \(s_i \in H_i \), a set of strategies \(G_i \) for player \(i \) and strategies \(G_{-i} \) of the opponents. Intuitively \(s_i \) is \(\varphi \)-optimal strategy for player \(i \) in the restricted game \(\langle G_i, G_{-i}, u_1, \ldots, u_n \rangle \) (where the payoffs are suitably restricted).
Rationality Properties

\[\varphi(s_i, G_i, G_{-i}) \] holds between a strategy \(s_i \in H_i \), a set of strategies \(G_i \) for player \(i \) and strategies \(G_{-i} \) of the opponents. Intuitively \(s_i \) is \(\varphi \)-optimal strategy for player \(i \) in the restricted game \(\langle G_i, G_{-i}, u_1, \ldots, u_n \rangle \) (where the payoffs are suitably restricted).

\(\varphi_i \) is **monotonic** if for all \(G_{-i}, G'_{-i} \subseteq H_{-i} \) and \(s_i \in H_i \)

\[G_{-i} \subseteq G'_{-i} \text{ and } \varphi(s_i, H_i, G_{-i}) \text{ implies } \varphi(s_i, H_i, G'_{-i}) \]
If $\varphi = (\varphi_1, \ldots, \varphi_n)$, then define $T_\varphi(G) = G'$ where

- $G = (G_1, \ldots, G_n)$, $G' = (G'_1, \ldots, G'_n)$,
- for all $i \in \{1, \ldots, n\}$, $G'_i = \{s_i \in G_i \mid \varphi_i(s_i, H_i, G_{-i})\}$
Removing Strategies

If \(\varphi = (\varphi_1, \ldots, \varphi_n) \), then define \(T_\varphi(G) = G' \) where

- \(G = (G_1, \ldots, G_n) \), \(G' = (G'_1, \ldots, G'_n) \),
- for all \(i \in \{1, \ldots, n\} \), \(G'_i = \{ s_i \in G_i \mid \varphi_i(s_i, H_i, G_{-i}) \} \)

\(T_\varphi \) is contracting, so it has an outcome \(T_\varphi^\infty \)
Removing Strategies

If $\varphi = (\varphi_1, \ldots, \varphi_n)$, then define $T_\varphi(G) = G'$ where

- $G = (G_1, \ldots, G_n)$, $G' = (G'_1, \ldots, G'_n)$,
- for all $i \in \{1, \ldots, n\}$, $G'_i = \{s_i \in G_i \mid \varphi_i(s_i, H_i, G_{-i})\}$

T_φ is contracting, so it has an outcome T_φ^∞

If each φ_i is monotonic, then νT_φ exists and equals T_φ^∞.
Rational Play

Let $H = \langle H_1, \ldots, H_n, u_1, \ldots, u_n \rangle$ a strategic game and $\langle W, R_1, \ldots, R_n, \sigma_1, \ldots, \sigma_n \rangle$ a model for H.

$\sigma_i(w)$ is the strategy player is using in state w.

$G_{R_i(w)}$ is a restriction of H giving i’s view of the game.
Rational Play

Let $H = \langle H_1, \ldots, H_n, u_1, \ldots, u_n \rangle$ a strategic game and
$\langle W, R_1, \ldots, R_n, \sigma_1, \ldots, \sigma_n \rangle$ a model for H.

$\sigma_i(w)$ is the strategy player is using in state w.

$G_{R_i(w)}$ is a restriction of H giving i’s view of the game.

Player i is φ_i-rational in the state w if $\varphi_i(\sigma_i(w), H_i, (G_{R_i(w)})_{-i})$ holds.
Rational Play

Let \(H = \langle H_1, \ldots, H_n, u_1, \ldots, u_n \rangle \) a strategic game and \(\langle W, R_1, \ldots, R_n, \sigma_1, \ldots, \sigma_n \rangle \) a model for \(H \).

\(\sigma_i(w) \) is the strategy player is using in state \(w \).

\(G_{R_i(w)} \) is a restriction of \(H \) giving \(i \)'s view of the game.

Player \(i \) is \(\varphi_i \)-rational in the state \(w \) if \(\varphi_i(\sigma_i(w), H_i, (G_{R_i(w)})_{-i}) \) holds.

\(\text{Rat}(\varphi) = \{ w \in W \mid \text{each player is } \varphi_i \text{-rational in } w \} \)

\(\Box \text{Rat}(\varphi) \)
\(\Box^* \text{Rat}(\varphi) \)
Theorem (Apt and Zvesper).

- Suppose that each φ_i is monotonic. Then for all belief models for H,
 \[G_{\text{Rat}(\varphi) \cap B^*(\text{Rat}(\varphi))} \subseteq T^\infty \]

- Suppose that each φ_i is monotonic. Then for all knowledge models for H,
 \[G_{K^*(\text{Rat}(\varphi))} \subseteq T^\infty \]

- For some standard knowledge model for H,
 \[T^\infty \subseteq G_{K^*(\text{Rat}(\varphi))} \]

Claim If each φ_i is monotonic, then $G_{\text{Rat}(\varphi) \cap \Box^* \text{Rat}(\varphi)} \subseteq T^\infty$.
Claim If each φ_i is monotonic, then $G_{\text{Rat}(\varphi) \cap \Box^* \text{Rat}(\varphi)} \subseteq T^\infty$.

Let s_i be an element of the ith component of $G_{\text{Rat}(\varphi) \cap \Box^* \text{Rat}(\varphi)}$:

$s_i = \sigma_i(w)$ for some $w \in \text{Rat}(\varphi) \cap \Box^* \text{Rat}(\varphi)$.
Claim If each \(\varphi_i \) is monotonic, then \(G_{\text{Rat}(\varphi) \cap \Box^* \text{Rat}(\varphi)} \subseteq T^\infty \).

Let \(s_i \) be an element of the \(i \)th component of \(G_{\text{Rat}(\varphi) \cap \Box^* \text{Rat}(\varphi)} \):

\[
s_i = \sigma_i(w) \quad \text{for some } w \in \text{Rat}(\varphi) \cap \Box^* \text{Rat}(\varphi)
\]

there is an \(F \) such that \(F \subseteq \Box F \) and

\[
w \in F \subseteq \Box \text{Rat}(\varphi) = \{v \in W \mid \forall i \ R_i(v) \subseteq \text{Rat}(\varphi)\}
\]
Claim If each φ_i is monotonic, then $G_{Rat(\varphi) \cap \Box^*Rat(\varphi)} \subseteq T^\infty$.

Let s_i be an element of the ith component of $G_{Rat(\varphi) \cap \Box^*Rat(\varphi)}$:

$s_i = \sigma_i(w)$ for some $w \in Rat(\varphi) \cap \Box^*Rat(\varphi)$

there is an F such that $F \subseteq \Box F$ and

$$w \in F \subseteq \Box Rat(\varphi) = \{v \in W \mid \forall i \ R_i(v) \subseteq Rat(\varphi)\}$$

Claim. $G_{F \cap Rat(\varphi)}$ is post-fixed point of T_φ

$(G_{F \cap Rat(\varphi)} \subseteq T_\varphi(G_{F \cap Rat(\varphi)}))$.
Claim If each φ_i is monotonic, then $G_{Rat(\varphi) \cap \square^*Rat(\varphi)} \subseteq T^\infty_{\varphi}$.

Let s_i be an element of the ith component of $G_{Rat(\varphi) \cap \square^*Rat(\varphi)}$: $s_i = \sigma_i(w)$ for some $w \in Rat(\varphi) \cap \square^*Rat(\varphi)$

there is an F such that $F \subseteq \square F$ and

$$w \in F \subseteq \square Rat(\varphi) = \{v \in W \mid \forall i R_i(v) \subseteq Rat(\varphi)\}$$

Claim. $G_{F \cap Rat(\varphi)}$ is post-fixed point of T_φ

($G_{F \cap Rat(\varphi)} \subseteq T_\varphi(G_{F \cap Rat(\varphi)})$).

Since each φ_i is monotonic, T_φ is monotonic and by Tarski’s fixed-point theorem, $G_{F \cap Rat(\varphi)} \subseteq T^\infty_\varphi$. But $s_i = \sigma_i(w)$ and $w \in F \cap Rat(\varphi)$, so s_i is the ith component in T^∞_φ.
$F \subseteq \square F$ and $w \in F \subseteq \square \text{Rat}(\varphi) = \{v \in W \mid \forall i \ R_i(v) \subseteq \text{Rat}(\varphi)\}$

Claim. $G_{F \cap \text{Rat}(\varphi)}$ is post-fixed point of T_φ
$(G_{F \cap \text{Rat}(\varphi)} \subseteq T_\varphi(G_{F \cap \text{Rat}(\varphi)}))$.
\(F \subseteq \Box F \) and \(w \in F \subseteq \Box \text{Rat}(\varphi) = \{ v \in W \mid \forall i \ R_i(v) \subseteq \text{Rat}(\varphi) \}\)

Claim. \(G_{F \cap \text{Rat}(\varphi)} \) is post-fixed point of \(T_\varphi \)
\((G_{F \cap \text{Rat}(\varphi)} \subseteq T_\varphi(G_{F \cap \text{Rat}(\varphi)}) \).

Let \(w' \in F \cap \text{Rat}(\varphi) \) and let \(i \in \{1, \ldots, n\} \).
$F \subseteq \square F$ and $w \in F \subseteq \square \text{Rat}(\varphi) = \{v \in W \mid \forall i \ R_i(v) \subseteq \text{Rat}(\varphi)\}$

Claim. $G_{F \cap \text{Rat}(\varphi)}$ is post-fixed point of T_{φ}

$(G_{F \cap \text{Rat}(\varphi)} \subseteq T_{\varphi}(G_{F \cap \text{Rat}(\varphi)})$).

Let $w' \in F \cap \text{Rat}(\varphi)$ and let $i \in \{1, \ldots, n\}$.

Since $w' \in \text{Rat}(\varphi)$, $\varphi_i(\sigma_i(w'), H_i, (G_{R_i(w)})_{-i})$ holds.
\[F \subseteq \Box F \text{ and } w \in F \subseteq \Box \text{Rat}(\varphi) = \{ v \in W \mid \forall i \ R_i(v) \subseteq \text{Rat}(\varphi) \} \]

Claim. \(G_{F \cap \text{Rat}(\varphi)} \) is post-fixed point of \(T_\varphi \)
\((G_{F \cap \text{Rat}(\varphi)} \subseteq T_\varphi(G_{F \cap \text{Rat}(\varphi)})) \).

Let \(w' \in F \cap \text{Rat}(\varphi) \) and let \(i \in \{1, \ldots, n\} \).

Since \(w' \in \text{Rat}(\varphi) \), \(\varphi_i(\sigma_i(w'), H_i, (G_{R_i(w)})^{-i}) \) holds.

\(F \) is evident, so \(R_i(w') \subseteq F \). We also have \(R_i(w') \subseteq \text{Rat}(\varphi) \).
\[F \subseteq \Box F \text{ and } w \in F \subseteq \Box \text{Rat}(\varphi) = \{ v \in W \mid \forall i \ R_i(v) \subseteq \text{Rat}(\varphi) \} \]

Claim. \(G_{F \cap \text{Rat}(\varphi)} \) is post-fixed point of \(T_\varphi \)

\((G_{F \cap \text{Rat}(\varphi)} \subseteq T_\varphi(G_{F \cap \text{Rat}(\varphi)})) \).

Let \(w' \in F \cap \text{Rat}(\varphi) \) and let \(i \in \{1, \ldots, n\} \).

Since \(w' \in \text{Rat}(\varphi), \varphi_i(\sigma_i(w')), H_i, (G_{R_i(w)})_{-i} \) holds.

\(F \) is evident, so \(R_i(w') \subseteq F \). We also have \(R_i(w') \subseteq \text{Rat}(\varphi) \).

Hence, \(R_i(w') \subseteq F \cap \text{Rat}(\varphi) \).
\[F \subseteq \Box F \text{ and } w \in F \subseteq \Box \text{Rat}(\varphi) = \{v \in W \mid \forall i \ R_i(v) \subseteq \text{Rat}(\varphi)\} \]

Claim. \(G_{F \cap \text{Rat}(\varphi)} \) is post-fixed point of \(T_\varphi \)
\((G_{F \cap \text{Rat}(\varphi)} \subseteq T_\varphi(G_{F \cap \text{Rat}(\varphi)}) \).

Let \(w' \in F \cap \text{Rat}(\varphi) \) and let \(i \in \{1, \ldots, n\} \).

Since \(w' \in \text{Rat}(\varphi) \), \(\varphi_i(\sigma_i(w'), H_i, (G_{R_i(w)})_{-i}) \) holds.

\(F \) is evident, so \(R_i(w') \subseteq F \). We also have \(R_i(w') \subseteq \text{Rat}(\varphi) \).

Hence, \(R_i(w') \subseteq F \cap \text{Rat}(\varphi) \).

This implies \((G_{R_i(w')}) \subseteq (G_{F \cap \text{Rat}(\varphi)})_{-i} \), and so by monotonicity of \(\varphi_i, \varphi_i(s_i, H_i, (G_{F \cap \text{Rat}(\varphi)})_{-i}) \) holds.
\[F \subseteq \Box F \text{ and } w \in F \subseteq \Box \text{Rat}(\varphi) = \{v \in W \mid \forall i \ R_i(v) \subseteq \text{Rat}(\varphi)\} \]

Claim. \(G_{F \cap \text{Rat}(\varphi)} \) is post-fixed point of \(T_\varphi \)
\[
(G_{F \cap \text{Rat}(\varphi)} \subseteq T_\varphi(G_{F \cap \text{Rat}(\varphi)}))
\]

Let \(w' \in F \cap \text{Rat}(\varphi) \) and let \(i \in \{1, \ldots, n\} \).

Since \(w' \in \text{Rat}(\varphi), \varphi_i(\sigma_i(w')), H_i, (G_{R_i(w)})_{-i} \) holds.

\(F \) is evident, so \(R_i(w') \subseteq F \). We also have \(R_i(w') \subseteq \text{Rat}(\varphi) \).

Hence, \(R_i(w') \subseteq F \cap \text{Rat}(\varphi) \).

This implies \((G_{R_i(w')}) \subseteq (G_{F \cap \text{Rat}(\varphi)})_{-i} \), and so by monotonicity of \(\varphi_i, \varphi_i(s_i, H_i, (G_{F \cap \text{Rat}(\varphi)})_{-i}) \) holds.

This means \(G_{F \cap \text{Rat}(\varphi)} \subseteq T_\varphi(G_{F \cap \text{Rat}(\varphi)}) \).
sd_i(s_i, G_i, G_{-i}) is \neg \exists s'_i \in G_i, \forall s_{-i} \in G_{-i} u_i(s'_i, s_{-i}) > u_i(s_i, s_{-i})
\[sd_i(s_i, G_i, G_{-i}) \text{ is } \neg \exists s'_i \in G_i, \forall s_{-i} \in G_{-i} u_i(s'_i, s_{-i}) > u_i(s_i, s_{-i}) \]

\[br_i(s_i, G_i, G_{-i}) \text{ is } \exists \mu_i \in B_i(G_{-i}) \forall s'_i \in G_i, U_i(s_i, \mu_i) \geq U_i(s'_i, \mu_i). \]
$sd_i(s_i, G_i, G_{-i})$ is $\neg \exists s_i' \in G_i, \forall s_{-i} \in G_{-i} u_i(s_i', s_{-i}) > u_i(s_i, s_{-i})$

$br_i(s_i, G_i, G_{-i})$ is $\exists \mu_i \in B_i(G_{-i}) \forall s_i' \in G_i, U_i(s_i, \mu_i) \geq U_i(s_i', \mu_i)$.

$U_{\varphi}(G) = G'$ where $G'_i = \{s_i \in G_i \mid \varphi_i(s_i, G_i, G_{-i})\}$.

\[sd_i(s_i, G_i, G_{-i}) \text{ is } \neg \exists s_i' \in G_i, \forall s_{-i} \in G_{-i} u_i(s_i', s_{-i}) > u_i(s_i, s_{-i}) \]

\[br_i(s_i, G_i, G_{-i}) \text{ is } \exists \mu_i \in B_i(G_{-i}) \forall s_i' \in G_i, U_i(s_i, \mu_i) \geq U_i(s_i', \mu_i). \]

\[U_\varphi(G) = G' \text{ where } G'_i = \{ s_i \in G_i \mid \varphi_i(s_i, G_i, G_{-i}) \}. \]

Note: \(U_\varphi \) is \textit{not} monotonic.
Corollary. For all belief models, \(G_{\text{Rat}(br) \cap \Box^* \text{Rat}(br)} \subseteq U_{sd} \). For all \(G \), we have

\[
T_{br}(G) \subseteq T_{sd}(G)
\]

\[
T_{sd}(G) \subseteq U_{sd}(G)
\]

Then, \(T_{sd}^\infty \subseteq U_{sd}^\infty \).
Corollary. For all belief models, \(\mathcal{G}_{\mathbf{Rat}(br) \cap \square^* \mathbf{Rat}(br)} \subseteq U_{sd}^\infty \). For all \(G \), we have

\[
T_{br}(G) \subseteq T_{sd}(G)
\]

\[
T_{sd}(G) \subseteq U_{sd}(G)
\]

Then, \(T_{sd}^\infty \subseteq U_{sd}^\infty \).

Fact. Consider two operators \(T_1, T_2 \) on \((D, \subseteq) \) such that,

- for all \(G \), \(T_1(G) \subseteq T_2(G) \)
- \(T_1 \) is monotonic
- \(T_2 \) is contracting

Then, \(T_1^\infty \subseteq T_2^\infty \).
This analysis does not work for weak dominance...