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Introduction

Cardiovascular diseases range from electrical conduction abnormalities to myocardial
dysfunction and structural abnormalities leading to abnormal blood flow. Due to the diversity of
cardiovascular conditions, many different diagnostic tools and imaging modalities are needed to
gather comprehensive information about an individual patient’s cardiac physiology. To assess
the heart, echocardiograms assess heart motion, electrocardiograms (ECGs) evaluate electrical
conduction, chest X-rays (CXRs) can identify fluid buildup, and angiograms evaluate coronary
artery blockages (examples in Figure 1a). While the data differ greatly in appearance (ranging
from waveforms to images and videos), these modalities share complementary information that
can uncover information not apparent in another modality. In parallel, diseases frequently result
in findings across diagnostic tests (a coronary artery blockage results in electrical changes seen

on ECG as well as myocardial dysfunction on echocardiogram videos).

While all these cardiovascular diagnostic modalities encode information about the heart, prior
work in machine learning predominantly focuses on one modality at a time. In applying deep
learning to cardiology, models have been developed to predict left ventricular ejection fraction
from echocardiograms’, identify rhythm disorders from ECGs?, estimate cardiac size and
pulmonary edema from CXRs?, and interpret angiographic coronary artery stenosis from

angiograms®.

In clinical practice, physicians use orthogonal diagnostic tests because findings can be more
apparent in a particular modality than another (a subtle ECG change can be visualized as an
obvious occlusion on a coronary angiogram). However, modalities vary in cost, availability, and
invasiveness. Given the close relationship of findings for the same disease between these

diagnostic modalities, it is important to have a shared multimodal representation between them.

A recent development in machine learning is the use of contrastive learning to link images and
corresponding text captions®®. These contrastive methods have also been used to link medical
images and text reports in several different areas, including radiology’*, pathology'®', and

cardiac ultrasound'®"3.
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In this work, we introduce Contrasting Learning Embedding Representation of Cardiology
(CLERC), a multimodal model linking diagnostic modalities across cardiovascular testing.
CLERC builds on the key insight that information from the same patient, even of different
modalities, are closely related and, as a result, can be treated as positive pairs in contrastive
learning. CLERC learns encoders for each of the diagnostic modalities, as well as for the
corresponding text reports. On both an internal held-out test set, as well as an external dataset
from another hospital system, we show that the representations learned by CLERC can perform
retrieval across modalities and that the representations can be used to perform important
clinical diagnostic tasks. We additionally release the weights for CLERC, along with code for

evaluating the performance of the weights.

Results

CLERC is a multimodal medical model linking echocardiogram videos, ECG waveforms,
angiogram videos, and CXR images, along with the corresponding clinician text reports into a
shared latent space. CLERC trains separate video convolutional neural networks as encoders
for echocardiogram and angiogram videos, a 1-D convolutional neural network as the encoder
for the ECG waveforms, a vision transformer as the encoder for CXR images, and a shared
transformer for all of the text report modalities. CLERC is trained using a contrastive learning
loss between all pairs of distinct modalities. In each batch, a set of inputs from each modality
from distinct patients is given to CLERC, and the contrastive loss trains the encoders to move
embeddings from the same patient closer together while moving embeddings from distinct

patients further apart.

To train CLERC, we collected a dataset of 384,024 patients from Cedars-Sinai Medical Center
(CSMC) from 2005 to 2022 (details in Table 1). The dataset consisted of four diagnostic
modalities (echocardiograms, EKGs, CXRs, and angiograms), along with the text reports of
clinician interpretations for each of the diagnostic modalities. While sharing some similar
vocabulary, text reports vary tremendously across modalities, so each text report language is
treated as an additional modality. In the dataset, 108,181 patients had echocardiograms,
307,569 patients had EKGs, 226,845 patients had CXRs, and 20,678 patients had angiograms.
The number of patients with each pair of modalities is given in Table 2. The dataset was split by
patient into training, validation, and test sets consisting of 307,219, 38,403, and 38,402 patients

respectively.



We additionally evaluate CLERC on an external dataset from the Beth Israel Deaconess
Medical Center (MIMIC) including echocardiograms, EKGs, and CXRs. This dataset included
172,414 patients, including 4,178 patients with echocardiograms, 160,821 patients with EKGs,
and 65,379 patients with CXRs'*'8. The number of patients with each pair of modalities is given
in Table 3.

Cross-modal retrieval
The latent space learned by CLERC is shared across modalities, allowing us to identify related
concepts or similar findings across modalities. To assess this ability, we use CLERC to match

samples across modalities measured from the same patient (Figure 1b).

For each distinct pair of modalities, we select all patients that have both modalities available and
select one sample from each modality. If multiple samples are available, the pair of samples that
are closest temporally are selected, and patients without a pair within one year are excluded.
Next, CLERC is provided with one sample from the first modality, along with one paired and one
unpaired sample from the second modality. CLERC then attempts to attempt to identify the
matched sample from the same patient based on cosine similarity. This retrieval process is
repeated for all samples from the first modality, and the accuracy of the retrievals is used to
measure CLERC’s performance. This task is then repeated for all distinct pairs of modalities
(Table 3).

The cross-modal retrievals fall into several groups: (1) diagnostic modality and corresponding
text report (ex. echocardiogram video used to retrieve echocardiogram text report), (2)
diagnostic modality to retrieve distinct diagnostic modality (ex. echocardiogram video to retrieve
EKG waveform), (3) diagnostic modality to retrieve mismatched text report (ex. echocardiogram
video to retrieve EKG text report), and (4) text report to retrieve distinct text report (ex.

echocardiogram text report to retrieve EKG text report).

First, we find that diagnostic modality and corresponding text reports can be retrieved with high
accuracy, with all pairs resulting in an accuracy of at least 0.845 for all pairs. Other than the
angiogram modalities, which had the smallest amount of training data and the least variation
between patients, all other diagnostic-to-text and text-to-diagnostic retrievals resulted in a

median percentile of at most 0.932.
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Next, we find that CLERC is able to accurately retrieve across the diagnostic modalities, with
EKG waveform-to-angiogram video retrieval resulting in the worst performance with an accuracy
of 0.874. Similarly, if the angiogram modalities are excluded, the worst performance remaining is

EKG waveform-to-CXR image retrieval with an accuracy of 0.948.

We additionally find that diagnostic modality to mismatched text reports and text-to-text retrieval
perform well above random. However, retrieval using the raw diagnostic data performs better in
all cases, suggesting that the raw diagnostic data contains a substantial amount of information

not present in the text reports.

Predictive tasks

Next, we assess the ability of CLERC’s embeddings to predict various clinical measurements
from each modality (Table 4). We assess this predictive ability in two settings: zero-shot and
linear probing. In the zero-shot setting (Figure 1c), there is no explicit training; instead, the text
encoder is used to generate an embedding for a prompt corresponding to each predictive task,
and its cosine similarity with the embedding of the corresponding diagnostic modality is used as
the prediction (full list of prompts in Supplementary Table 1). In the linear probing setting, the
training set is used to train a linear regression or logistic regression model over the embeddings

of the diagnostic modality.

In the zero-shot setting, CLERC’s embeddings predict all tasks well above the random baseline.
In the linear probing setting, the performance improves on all tasks. The echocardiogram and
EKG prediction tasks perform comparably to prior fully supervised models. The angiogram
predictive tasks are the most challenging: the training set is the smallest, the views are less

standardized than those of echocardiograms, and occlusions are not visible in all videos.

Cross-modality predictions

The shared representation of CLERC allows predictions of measurements using other
modalities, which can allow cheaper and faster modalities to estimate measurements from the
more difficult-to-obtain modalities. To ensure that the measurements are relevant, we filter for
samples with measurements within 30 days. We additionally find that the embeddings are

closely linked to common demographic attributes.



First, we find that the CLERC'’s representations for all modalities are closely linked to the age
(R? of at least 0.598 across all modalities) and gender (AUROC of at least 0.908 across alll
modalities) of patients. Several potential cross-modal predictions are also of potential interest.
First, we find EKGs are able to estimate LVEF with an AUROC of 0.489. While the performance
is lower than that of using echocardiograms, EKGs are much faster to obtain, potentially
allowing EKGs to be used as a screening tool. Similarly, echocardiograms perform relatively well
in predicting occlusion, consolidation, and edemas, potentially enabling their use as a screening

or triage tool to reduce the invasiveness of angiograms or the radiation of CXRs.

Discussion

Leveraging contrastive learning to inform the relationship between medical diagnostics for the
same patient, multimodal models can recapitulate the relationships between complementary
medical tests. Different diagnostic modalities provide distinct insights into the heart, and a joint
embedding from a foundation model can highlight important clinical findings of cardiac diseases.
In this study, we utilize the comprehensive cardiac testing of over 300,000 patients from an

academic medical center to train CLERC, a multimodal cardiovascular model.



Methods

Data curation

We collected a dataset consisting of 384,024 distinct patients from Cedars-Sinai Medical Center
between 2005 and 2022. The dataset was split into training, validation, and test sets by patient.
The training set consisted of 307,219 patients, the validation set consisted of 38,403 patients,

and the test set consisted of 38,402 patients.

For each patient, we collected all available echocardiogram videos, echocardiogram text
reports, EKG waveforms, EKG text reports, angiogram videos, angiogram text reports, chest
X-ray images, and chest X-ray text reports. The echocardiogram videos were cropped to a tight
square around the scanning sector and scaled to 112 x 112 pixels. The EKG were processed as
12-channel waveforms at 500 Hz. The angiogram videos were scaled to 112 x 112 pixels. The

chest X-ray images were cropped to 256 x 256 pixels.

Additionally, a dataset from the Beth Israel Deaconess Medical Center (MIMIC) consisting of
172,414 patients including echocardiogram, EKG, and CXR samples was used as external

validation. The data was preprocessed using the same pipeline as the dataset from CSMC.

This research was approved by the Cedars-Sinai Medical Center Institutional Review Boards.

Encoders

For each modality, we use a deep learning model to encode the samples into 512-dimensional
embeddings. We use separate weights for the echocardiogram, EKG, CXR, and angiogram

modalities, and a shared set of weights for all text modalities.

We used the R(2+1)D-18 architecture, a convolutional neural network with decomposed spatial
and temporal convolutions, as echocardiogram and angiogram encoders’. The models were
initialized with Kinetics-400 weights®°, and trained separately after initialization. For the
echocardiogram videos, clips of 16 frames were generated by sampling every other frame
(videos were natively 30 frames per second). For the angiogram videos, clips of 16 frames were
generated by sampling every frame (videos were natively 15 frames per second). For data
augmentation, both echocardiogram and angiogram videos were padded with 12 pixels per side

and cropped back to 112 x 112 pixels.
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We used a 1D convolutional neural network as the EKG encoder?'. The model was initialized
with random weights. Clips of 2500 samples were sampled as input (waveform is natively 5000

samples at 500 Hz).

We used the ViT-B/32 architecture, a vision transformer, as the CXR encoder??. The model was
initialized with weights trained by CLIP®. For data augmentation, random 224 x 224-pixel crops

were used as input.

We used a masked self-attention transformer as the encoder for all text modalities?. The model
was initialized with weights trained by CLIP®. No data augmentation was applied. We used the

CLIP byte pair encoding as the tokenizer®.

Model training

We train CLERC using the sum of the CLIP losses between all pairs of modalities present in a
batch. We use a stochastic gradient descent optimizer with an initial learning rate of 1e-1, a
momentum of 0.9, and batch size of 76 for 40 epochs. The learning rate is decayed by a factor

of 10 after 20 epochs. The epoch with the lowest validation loss is selected as the final model.

During training, each patient appears once per epoch. If a patient has multiple samples from a
modality, a random sample is selected for that batch. We group the patients into batches based
on the modalities available for that patient. The remaining unmatched patients are randomly

grouped into batches.

Retrieval

We performed pairwise retrieval for each distinct pair of modalities. For each pair, we sampled
all patients with samples from both modalities. If a patient had multiple samples from either
modality, the pair of samples that were the closest temporally was selected. For all samples, the
corresponding encoder is used to generate an embedding. Then, for each sample of the first
modality, the cosine similarity is used to rank all samples of the second modality to retrieve the
sample from the matching patient. This process is repeated in the opposite direction and then

for all pairs of modalities.

Zero-shot predictions
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We perform zero-shot prediction tasks for both regression and binary classification tasks. For
both tasks, we use the encoder to compute the embeddings for all test samples of the selected

modality.

For binary classification tasks, we used a single text prompt and calculated an embedding for it
using the text encoder. The cosine similarity between the embedding of the sample and the

embedding of the text prompt was used as the prediction for the label.

For regression tasks, we used a list of text prompts sweeping the normal range of values for the
parameter. To predict the parameter, we use the embedding of the sample to calculate a
probability distribution over the values, and use the expected value of this distribution as the
estimate. To do this, we generate an embedding for each text prompt using the text encoder. We
then calculate the cosine similarity between the sample embedding and the embedding of each
prompt. We scale the cosine similarities by the temperature learned during training and take the

softmax of the resulting values to generate the distribution.

For both binary classification and regression tasks, we average the predictions over all samples

in a study.

Linear Probing

For both regression and binary classification tasks, we calculate embeddings for all samples in
the training, validation, and test sets. The training embeddings are used to train a linear
regression model for regression tasks and used to train a logistic regression model for binary
classification tasks. The validation set is used to select a regularization value, and the test set is

used to report final performance.

For both binary classification and regression tasks, we average the predictions over all samples

in a study.
For the cross-modal predictions, we select patients with the modality used for making the
prediction, along with the modality used to determine the ground truth label. If multiple labels are

available, the closest label temporally is used.

Data Availability



The dataset from CSMS is not publicly available due to its potentially identifiable nature. The

external dataset from MIMIC is available at http://physionet.org/.
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Our code and model weights are available at https://github.com/bryanhe/clerc/.

Acknowledgements
This work is funded by NIH NHLBI grants ROOHL157421, RO1HL173526, and RO1HL173487 to
DO.



Wi

Y

Echocardiogram EKG Angiogram Chest X-ra

(@)

Select highest
cosine similarity

(b)

Echo density in right
ventricle suggestive of
catheter, pacer lead, or

ICD lead.
(c)

Figure 1: (a) Example diagnostic modalities used in cardiology. (b) Cross-modal retrieval using
CLERC. (c) Zero-shot predictions using CLERC.




Table 2: Patient demographics in the study cohort.

Total Train Validation Test
Patients 384,024 307,219 38,403 38,402
Age (mean = std) 649 +17.7 649 +17.7 64.8+17.8 64.6 £+17.7

Female

Race

Non-Hispanic White

Black
Hispanic
Asian
Other

Unknown

Pacific Islander

Native American

Patients with modality

Echocardiogram
EKG
CXR

Angiogram

Number of studies

Echocardiogram
EKG
CXR

Angiogram

Total samples

Echocardiogram
EKG
CXR

Angiogram

193,229 (50.3%)

215,378 (56.1%)
55,663 (14.5%)
53,612 (14.0%)

26,785 (7.0%)
16,532 (4.3%)
14,390 (3.7%)
936 (0.2%)
728 (0.2%)

108,181
307,569
226,845

20,678

270,427
1,262,828
792,174
29,441

1,402,595
1,262,828
2,050,846

386,895

154,703 (50.4%)

172,347 (56.1%)
44,618 (14.5%)
42,833 (13.9%)

21,430 (7.0%)
13,180 (4.3%)
11,492 (3.7%)
746 (0.2%)
573 (0.2%)

86,534
246,062
181,545

16,624

216,565
1,009,277
633,586
23,733

1,122,972
1,009,277
1,639,757

311,804

19,206 (50.0%)

21,541 (56.1%)
5,462 (14.2%)
5,411 (14.1%)

2,661 (6.9%)
1,708 (4.4%)
1,447 (3.8%)
83 (0.2%)

90 (0.2%)

10,770
30,696
22,671

2,014

26,564
125,871
79,625
2,822

137,462
125,871
206,205

36,830

19,320 (50.3%)

21,490 (56.0%)
5,583 (14.5%)
5,368 (14.0%)

2,694 (7.0%)
1,644 (4.3%)
1,451 (3.8%)
107 (0.3%)
65 (0.2%)

10,877
30,811
22,629

2,040

27,298
127,680
78,963
2,886

142,161
127,680
204,884

38,261




Table 2: Number of patients with each pair of modalities in the CSMC dataset.

Echocardiogram EKG CXR  Angiogram
Echocardiogram | 108,181 |
EKG | 94,018 307,569 |
CXR | 79,865 161,122 226,845 |
Angiogram | 18755 19662 16254 20,678 |

Table 3: Number of patients with each pair of modalities in the MIMIC dataset.

Echocardiogram  EKG CXR

Echocardiogram | 4,178
EKG | 3,754 160,821
CXR | 1797 54,193 65,379




Table 3: Accuracy for retrieving samples from the same patient across modalities in the test set.

Retrieved Modality

Echocardiogram EKG CXR Angiogram
Video Text |Waveform| Text |Image| Text |Video| Text
Video 0.937 0.963 0.859 0.959 0.893 0.876 0.752
Echo
Text 0.938 0.814 0.751 0.816 0.829 0.831 0.824
Waveform | 0.967 0.810 0.926 0.948 0.796 0.874 O.743|
EKG —
Query Text | 0.860 0.756 0.936 0.766 0.723 0.773 O.704|
Modality Image | 0962 0819 0952 0755 0.933 0.941 0.794 |
CXR —
Text | 0.892 0.835 0.800 0.720 0.932 0.884 O.788|
Video | 0.902 0.856 0.882 0.770 0.937 0.865 0.866|
Angiogram |——
Text | 0811 0796 0726 0693 0810 0.794 0.845 |
Retrieved Modality
Echo EKG CXR
Video Waveform Text Image Text
Echo Video 0.946 0.812 0.927 0.755
Waveform |~ 0.94 0.834  0.858 0.69
Query [EKG
; Text 0.784 0.839 0.648 0.563
Modality
Image | 0.928 0.881 0.658 0.825
CXR
Text 0.805 0.723 0.58 0.832




Table 4: Zero-shot and linear probing of CLERC embeddings using standard modalities for

predicting various measurements.

Zero-Shot Linear
Modality Task Metric
CSMC MIMIC CSMC MIMIC
LVEF R2 0.618 0.595 0.789 0.677
Echo
Pacemaker AUROC 0.882 0.836 0.954 0.796
RBBB AUROC 0.966 0.975 0.982 0.985
EKG LBBB AUROC 0.969 0.969 0.986 0.977
Pacemaker AUROC 0.942 0.945 0.974 0.958
oXR Consolidation AUROC 0.725 0.820 0.794 0.883
Edema AUROC 0.825 0.856 0.866 0.878
LAD
Occlusion AUROC 0.627 = - 0.821 -
Angiogram RCA
g9 Occlusion  AUROC 0628 0704
LCX
Occlusion AUROC 0.752 - 0.749 -




Table 5: Cross modal predictions with linear probing.

Echocardiogram EKG CXR Angiogram

Task Metric

CsSMC MIMIC CsMmC MIMIC CsMmC MIMIC CsSMC
Age R2 0.700 0.674 0.598 0.477 0.728 0.700 0.619
Gender AUROC 0.971 0.962 0.908 0.852 0.988 0.986 0.972
LVEF R2 0.789 0.677 0.489 0.341 0.310 - 0.447
Pacemaker AUROC 0.954 0.796 0.974 0.958 0.920 0.904 0.931
RBBB AUROC 0.832 0.875 0.982 0.985 0.667 0.673 0.675
LBBB AUROC 0.904 0.940 0.986 0.977 0.722 0.723 0.757
Consolidati
on AUROC 0.734 - 0.689 0.653 0.794 0.883 0.760
Edema AUROC 0.748 - 0.754 0.661 0.866 0.878 0.708
LAD
Occlusion  AUROC 0.801 - 0.772 - 0.670 - 0.821
RCA
Occlusion  AUROC 0742 - 0727 - 0.667 - 0.704
LCX
Occlusion  AUROC 0.749 - 0560 - 0.577 - 0.749
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Supplementary Table 1: Text prompts used for zero-shot predictions.

Task Prompt
The left ventricular ejection fraction is estimated to be <EF>%. LV ejection fraction is
LVEF <EF>.

Pacemaker (Echo)
RBBB

LBBB

Pacemaker (ECG)
LAD Occlusion
RCA Occlusion
LCX Occlusion
Consolidation

Edema

EF =20, 25, ..., 80

Echo density in right ventricle suggestive of catheter, pacer lead, or ICD lead.
Right bundle branch block.

Left bundle branch block.

Pacemaker.

Conclusion: 1. LAD had an occlusion. 100% occluded left ascending artery.
Conclusion: 1. RCA had an occlusion. 100% occluded right coronary artery.
Conclusion: 1. LCX had an occlusion. 100% occluded left circumflex artery.
There is consolidation in the lung. Consolidation is unchanged.

There is a pulmonary edema in the lung. Edema is unchanged.
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