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Introduction 

 
Cardiovascular diseases range from electrical conduction abnormalities to myocardial 

dysfunction and structural abnormalities leading to abnormal blood flow. Due to the diversity of 

cardiovascular conditions, many different diagnostic tools and imaging modalities are needed to 

gather comprehensive information about an individual patient’s cardiac physiology. To assess 

the heart, echocardiograms assess heart motion, electrocardiograms (ECGs) evaluate electrical 

conduction, chest X-rays (CXRs) can identify fluid buildup, and angiograms evaluate coronary 

artery blockages (examples in Figure 1a). While the data differ greatly in appearance (ranging 

from waveforms to images and videos), these modalities share complementary information that 

can uncover information not apparent in another modality. In parallel, diseases frequently result 

in findings across diagnostic tests (a coronary artery blockage results in electrical changes seen 

on ECG as well as myocardial dysfunction on echocardiogram videos). 

 

 While all these cardiovascular diagnostic modalities encode information about the heart, prior 

work in machine learning predominantly focuses on one modality at a time.  In applying deep 

learning to cardiology, models have been developed to predict left ventricular ejection fraction 

from echocardiograms1, identify rhythm disorders from ECGs2, estimate cardiac size and 

pulmonary edema from CXRs3, and interpret angiographic coronary artery stenosis from 

angiograms4. 

 

In clinical practice, physicians use orthogonal diagnostic tests because findings can be more 

apparent in a particular modality than another (a subtle ECG change can be visualized as an 

obvious occlusion on a coronary angiogram). However, modalities vary in cost, availability, and 

invasiveness. Given the close relationship of findings for the same disease between these 

diagnostic modalities, it is important to have a shared multimodal representation between them.  

 

A recent development in machine learning is the use of contrastive learning to link images and 

corresponding text captions5,6. These contrastive methods have also been used to link medical 

images and text reports in several different areas, including radiology7–9, pathology10,11, and 

cardiac ultrasound12,13.  
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In this work, we introduce Contrasting Learning Embedding Representation of Cardiology 

(CLERC), a multimodal model linking diagnostic modalities across cardiovascular testing. 

CLERC builds on the key insight that information from the same patient, even of different 

modalities, are closely related and, as a result, can be treated as positive pairs in contrastive 

learning. CLERC learns encoders for each of the diagnostic modalities, as well as for the 

corresponding text reports. On both an internal held-out test set, as well as an external dataset 

from another hospital system, we show that the representations learned by CLERC can perform 

retrieval across modalities and that the representations can be used to perform important 

clinical diagnostic tasks. We additionally release the weights for CLERC, along with code for 

evaluating the performance of the weights. 

Results 

CLERC is a multimodal medical model linking echocardiogram videos, ECG waveforms, 

angiogram videos, and CXR images, along with the corresponding clinician text reports into a 

shared latent space. CLERC trains separate video convolutional neural networks as encoders 

for echocardiogram and angiogram videos, a 1-D convolutional neural network as the encoder 

for the ECG waveforms, a vision transformer as the encoder for CXR images, and a shared 

transformer for all of the text report modalities. CLERC is trained using a contrastive learning 

loss between all pairs of distinct modalities. In each batch, a set of inputs from each modality 

from distinct patients is given to CLERC, and the contrastive loss trains the encoders to move 

embeddings from the same patient closer together while moving embeddings from distinct 

patients further apart. 

 

To train CLERC, we collected a dataset of 384,024 patients from Cedars-Sinai Medical Center 

(CSMC) from 2005 to 2022 (details in Table 1).  The dataset consisted of four diagnostic 

modalities (echocardiograms, EKGs, CXRs, and angiograms), along with the text reports of 

clinician interpretations for each of the diagnostic modalities. While sharing some similar 

vocabulary, text reports vary tremendously across modalities, so each text report language is 

treated as an additional modality. In the dataset, 108,181 patients had echocardiograms, 

307,569 patients had EKGs, 226,845 patients had CXRs, and 20,678 patients had angiograms. 

The number of patients with each pair of modalities is given in Table 2. The dataset was split by 

patient into training, validation, and test sets consisting of 307,219, 38,403, and 38,402 patients 

respectively. 



 

We additionally evaluate CLERC on an external dataset from the Beth Israel Deaconess 

Medical Center (MIMIC) including echocardiograms, EKGs, and CXRs. This dataset included 

172,414 patients, including 4,178 patients with echocardiograms, 160,821 patients with EKGs, 

and 65,379 patients with CXRs14–18. The number of patients with each pair of modalities is given 

in Table 3. 

 

Cross-modal retrieval 
The latent space learned by CLERC is shared across modalities, allowing us to identify related 

concepts or similar findings across modalities. To assess this ability, we use CLERC to match 

samples across modalities measured from the same patient (Figure 1b). 

 

For each distinct pair of modalities, we select all patients that have both modalities available and 

select one sample from each modality. If multiple samples are available, the pair of samples that 

are closest temporally are selected, and patients without a pair within one year are excluded. 

Next, CLERC is provided with one sample from the first modality, along with one paired and one 

unpaired sample from the second modality. CLERC then attempts to attempt to identify the 

matched sample from the same patient based on cosine similarity. This retrieval process is 

repeated for all samples from the first modality, and the accuracy of the retrievals is used to 

measure CLERC’s performance. This task is then repeated for all distinct pairs of modalities 

(Table 3). 

 

The cross-modal retrievals fall into several groups: (1) diagnostic modality and corresponding 

text report (ex. echocardiogram video used to retrieve echocardiogram text report), (2) 

diagnostic modality to retrieve distinct diagnostic modality (ex. echocardiogram video to retrieve 

EKG waveform), (3) diagnostic modality to retrieve mismatched text report (ex. echocardiogram 

video to retrieve EKG text report), and (4) text report to retrieve distinct text report (ex. 

echocardiogram text report to retrieve EKG text report). 

 

First, we find that diagnostic modality and corresponding text reports can be retrieved with high 

accuracy, with all pairs resulting in an accuracy of at least 0.845 for all pairs. Other than the 

angiogram modalities, which had the smallest amount of training data and the least variation 

between patients, all other diagnostic-to-text and text-to-diagnostic retrievals resulted in a 

median percentile of at most 0.932. 
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Next, we find that CLERC is able to accurately retrieve across the diagnostic modalities, with 

EKG waveform-to-angiogram video retrieval resulting in the worst performance with an accuracy 

of 0.874. Similarly, if the angiogram modalities are excluded, the worst performance remaining is 

EKG waveform-to-CXR image retrieval with an accuracy of 0.948. 

 

We additionally find that diagnostic modality to mismatched text reports and text-to-text retrieval 

perform well above random. However, retrieval using the raw diagnostic data performs better in 

all cases, suggesting that the raw diagnostic data contains a substantial amount of information 

not present in the text reports. 

 
Predictive tasks 
Next, we assess the ability of CLERC’s embeddings to predict various clinical measurements 

from each modality (Table 4). We assess this predictive ability in two settings: zero-shot and 

linear probing. In the zero-shot setting (Figure 1c), there is no explicit training; instead, the text 

encoder is used to generate an embedding for a prompt corresponding to each predictive task, 

and its cosine similarity with the embedding of the corresponding diagnostic modality is used as 

the prediction (full list of prompts in Supplementary Table 1). In the linear probing setting, the 

training set is used to train a linear regression or logistic regression model over the embeddings 

of the diagnostic modality. 

 

In the zero-shot setting, CLERC’s embeddings predict all tasks well above the random baseline. 

In the linear probing setting, the performance improves on all tasks. The echocardiogram and 

EKG prediction tasks perform comparably to prior fully supervised models. The angiogram 

predictive tasks are the most challenging: the training set is the smallest, the views are less 

standardized than those of echocardiograms, and occlusions are not visible in all videos. 

 
Cross-modality predictions 
The shared representation of CLERC allows predictions of measurements using other 

modalities, which can allow cheaper and faster modalities to estimate measurements from the 

more difficult-to-obtain modalities.  To ensure that the measurements are relevant, we filter for 

samples with measurements within 30 days. We additionally find that the embeddings are 

closely linked to common demographic attributes.  

 



First, we find that the CLERC’s representations for all modalities are closely linked to the age 

(R2 of at least 0.598 across all modalities) and gender (AUROC of at least 0.908 across all 

modalities) of patients. Several potential cross-modal predictions are also of potential interest. 

First, we find EKGs are able to estimate LVEF with an AUROC of 0.489. While the performance 

is lower than that of using echocardiograms, EKGs are much faster to obtain, potentially 

allowing EKGs to be used as a screening tool. Similarly, echocardiograms perform relatively well 

in predicting occlusion, consolidation, and edemas, potentially enabling their use as a screening 

or triage tool to reduce the invasiveness of angiograms or the radiation of CXRs. 

Discussion 

Leveraging contrastive learning to inform the relationship between medical diagnostics for the 

same patient, multimodal models can recapitulate the relationships between complementary 

medical tests. Different diagnostic modalities provide distinct insights into the heart, and a joint 

embedding from a foundation model can highlight important clinical findings of cardiac diseases. 

In this study, we utilize the comprehensive cardiac testing of over 300,000 patients from an 

academic medical center to train CLERC, a multimodal cardiovascular model.    

 



Methods 
Data curation 
We collected a dataset consisting of 384,024 distinct patients from Cedars-Sinai Medical Center 

between 2005 and 2022. The dataset was split into training, validation, and test sets by patient. 

The training set consisted of 307,219 patients, the validation set consisted of 38,403 patients, 

and the test set consisted of 38,402 patients. 

 

For each patient, we collected all available echocardiogram videos, echocardiogram text 

reports, EKG waveforms, EKG text reports, angiogram videos, angiogram text reports, chest 

X-ray images, and chest X-ray text reports. The echocardiogram videos were cropped to a tight 

square around the scanning sector and scaled to 112 x 112 pixels. The EKG were processed as 

12-channel waveforms at 500 Hz. The angiogram videos were scaled to 112 x 112 pixels. The 

chest X-ray images were cropped to 256 x 256 pixels. 

 

Additionally, a dataset from the Beth Israel Deaconess Medical Center (MIMIC) consisting of 

172,414 patients including echocardiogram, EKG, and CXR samples was used as external 

validation. The data was preprocessed using the same pipeline as the dataset from CSMC. 

 

This research was approved by the Cedars-Sinai Medical Center Institutional Review Boards. 

 

Encoders 
 

For each modality, we use a deep learning model to encode the samples into 512-dimensional 

embeddings. We use separate weights for the echocardiogram, EKG, CXR, and angiogram 

modalities, and a shared set of weights for all text modalities. 

 

We used the R(2+1)D-18 architecture, a convolutional neural network with decomposed spatial 

and temporal convolutions, as echocardiogram and angiogram encoders19. The models were 

initialized with Kinetics-400 weights20, and trained separately after initialization. For the 

echocardiogram videos, clips of 16 frames were generated by sampling every other frame 

(videos were natively 30 frames per second). For the angiogram videos, clips of 16 frames were 

generated by sampling every frame (videos were natively 15 frames per second). For data 

augmentation, both echocardiogram and angiogram videos were padded with 12 pixels per side 

and cropped back to 112 x 112 pixels. 

https://www.zotero.org/google-docs/?rj1igJ
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We used a 1D convolutional neural network as the EKG encoder21. The model was initialized 

with random weights. Clips of 2500 samples were sampled as input (waveform is natively 5000 

samples at 500 Hz). 

 

We used the ViT-B/32 architecture, a vision transformer, as the CXR encoder22. The model was 

initialized with weights trained by CLIP6. For data augmentation, random 224 x 224-pixel crops 

were used as input. 

 

We used a masked self-attention transformer as the encoder for all text modalities23. The model 

was initialized with weights trained by CLIP6. No data augmentation was applied. We used the 

CLIP byte pair encoding as the tokenizer24. 
 
Model training 
We train CLERC using the sum of the CLIP losses between all pairs of modalities present in a 

batch. We use a stochastic gradient descent optimizer with an initial learning rate of 1e-1, a 

momentum of 0.9, and batch size of 76 for 40 epochs. The learning rate is decayed by a factor 

of 10 after 20 epochs. The epoch with the lowest validation loss is selected as the final model. 

 

During training, each patient appears once per epoch. If a patient has multiple samples from a 

modality, a random sample is selected for that batch. We group the patients into batches based 

on the modalities available for that patient. The remaining unmatched patients are randomly 

grouped into batches. 

 
Retrieval 
We performed pairwise retrieval for each distinct pair of modalities. For each pair, we sampled 

all patients with samples from both modalities. If a patient had multiple samples from either 

modality, the pair of samples that were the closest temporally was selected. For all samples, the 

corresponding encoder is used to generate an embedding. Then, for each sample of the first 

modality, the cosine similarity is used to rank all samples of the second modality to retrieve the 

sample from the matching patient. This process is repeated in the opposite direction and then 

for all pairs of modalities. 

 

Zero-shot predictions 
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We perform zero-shot prediction tasks for both regression and binary classification tasks. For 

both tasks, we use the encoder to compute the embeddings for all test samples of the selected 

modality. 

 

For binary classification tasks, we used a single text prompt and calculated an embedding for it 

using the text encoder. The cosine similarity between the embedding of the sample and the 

embedding of the text prompt was used as the prediction for the label. 

 

For regression tasks, we used a list of text prompts sweeping the normal range of values for the 

parameter. To predict the parameter, we use the embedding of the sample to calculate a 

probability distribution over the values, and use the expected value of this distribution as the 

estimate. To do this, we generate an embedding for each text prompt using the text encoder. We 

then calculate the cosine similarity between the sample embedding and the embedding of each 

prompt. We scale the cosine similarities by the temperature learned during training and take the 

softmax of the resulting values to generate the distribution. 

 

For both binary classification and regression tasks, we average the predictions over all samples 

in a study. 

 

Linear Probing 
For both regression and binary classification tasks, we calculate embeddings for all samples in 

the training, validation, and test sets. The training embeddings are used to train a linear 

regression model for regression tasks and used to train a logistic regression model for binary 

classification tasks. The validation set is used to select a regularization value, and the test set is 

used to report final performance. 

 

For both binary classification and regression tasks, we average the predictions over all samples 

in a study. 

 

For the cross-modal predictions, we select patients with the modality used for making the 

prediction, along with the modality used to determine the ground truth label. If multiple labels are 

available, the closest label temporally is used. 
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Figure 1: (a) Example diagnostic modalities used in cardiology. (b) Cross-modal retrieval using 

CLERC. (c) Zero-shot predictions using CLERC.  



Table 2: Patient demographics in the study cohort. 

 Total Train Validation Test 

Patients 384,024 307,219 38,403 38,402 

Age (mean ± std) 64.9 ± 17.7 64.9 ± 17.7 64.8 ± 17.8 64.6 ± 17.7 

Female 193,229 (50.3%) 154,703 (50.4%) 19,206 (50.0%) 19,320 (50.3%) 

Race     

    Non-Hispanic White 215,378 (56.1%) 172,347 (56.1%) 21,541 (56.1%) 21,490 (56.0%) 

    Black 55,663 (14.5%) 44,618 (14.5%) 5,462 (14.2%) 5,583 (14.5%) 

    Hispanic 53,612 (14.0%) 42,833 (13.9%) 5,411 (14.1%) 5,368 (14.0%) 

    Asian 26,785 (7.0%) 21,430 (7.0%) 2,661 (6.9%) 2,694 (7.0%) 

    Other 16,532 (4.3%) 13,180 (4.3%) 1,708 (4.4%) 1,644 (4.3%) 

    Unknown 14,390 (3.7%) 11,492 (3.7%) 1,447 (3.8%) 1,451 (3.8%) 

    Pacific Islander 936 (0.2%) 746 (0.2%) 83 (0.2%) 107 (0.3%) 

    Native American 728 (0.2%) 573 (0.2%) 90 (0.2%) 65 (0.2%) 

Patients with modality     

    Echocardiogram 108,181 86,534 10,770 10,877 

    EKG 307,569 246,062 30,696 30,811 

    CXR 226,845 181,545 22,671 22,629 

    Angiogram 20,678 16,624 2,014 2,040 

Number of studies     

    Echocardiogram 270,427 216,565 26,564 27,298 

    EKG 1,262,828 1,009,277 125,871 127,680 

    CXR 792,174 633,586 79,625 78,963 

    Angiogram 29,441 23,733 2,822 2,886 

Total samples     

    Echocardiogram 1,402,595 1,122,972 137,462 142,161 

    EKG 1,262,828 1,009,277 125,871 127,680 

    CXR 2,050,846 1,639,757 206,205 204,884 

    Angiogram 386,895 311,804 36,830 38,261 

 

 

 



Table 2: Number of patients with each pair of modalities in the CSMC dataset. 

 Echocardiogram EKG CXR Angiogram 

Echocardiogram 108,181    

EKG  94,018 307,569   

CXR  79,865 161,122 226,845  

Angiogram  18,755  19,662  16,254  20,678 

 

 

Table 3: Number of patients with each pair of modalities in the MIMIC dataset. 

 Echocardiogram EKG CXR 

Echocardiogram 4,178   

EKG 3,754 160,821  

CXR 1,797  54,193 65,379 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 



Table 3: Accuracy for retrieving samples from the same patient across modalities in the test set. 

 

 

Retrieved Modality 

Echocardiogram EKG CXR Angiogram 

Video Text Waveform Text Image Text Video Text 

Query 
Modality 

Echo 
Video  0.937 0.963 0.859 0.959 0.893 0.876 0.752 

Text 0.938  0.814 0.751 0.816 0.829 0.831 0.824 

EKG 
Waveform 0.967 0.810  0.926 0.948 0.796 0.874 0.743 

Text 0.860 0.756 0.936  0.766 0.723 0.773 0.704 

CXR 
Image 0.962 0.819 0.952 0.755  0.933 0.941 0.794 

Text 0.892 0.835 0.800 0.720 0.932  0.884 0.788 

Angiogram 
Video 0.902 0.856 0.882 0.770 0.937 0.865  0.866 

Text 0.811 0.796 0.726 0.693 0.810 0.794 0.845  

 

 

 

 

Retrieved Modality 

Echo EKG CXR 

Video Waveform Text Image Text 

Query 
Modality 

Echo Video  0.946 0.812 0.927 0.755 

EKG 
Waveform 0.94  0.834 0.858 0.69 

Text 0.784 0.839  0.648 0.563 

CXR 
Image 0.928 0.881 0.658  0.825 

Text 0.805 0.723 0.58 0.832  

 



Table 4: Zero-shot and linear probing of CLERC embeddings using standard modalities for 

predicting various measurements. 

 

Modality Task Metric 
Zero-Shot Linear 

CSMC MIMIC CSMC MIMIC 

Echo 
LVEF R2 0.618 0.595 0.789 0.677 

Pacemaker AUROC 0.882 0.836 0.954 0.796 

EKG 

RBBB AUROC 0.966 0.975 0.982 0.985 

LBBB AUROC 0.969 0.969 0.986 0.977 

Pacemaker AUROC 0.942 0.945 0.974 0.958 

CXR 
Consolidation AUROC 0.725 0.820 0.794 0.883 

Edema AUROC 0.825 0.856 0.866 0.878 

Angiogram 

LAD 
Occlusion AUROC 0.627 ----- 0.821 ----- 

RCA 
Occlusion AUROC 0.628 ----- 0.704 ----- 

LCX 
Occlusion AUROC 0.752 ----- 0.749 ----- 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5: Cross modal predictions with linear probing. 

 

Task Metric 
Echocardiogram EKG CXR Angiogram 

CSMC MIMIC CSMC MIMIC CSMC MIMIC CSMC 

Age R2 0.700 0.674 0.598 0.477 0.728 0.700 0.619 

Gender AUROC 0.971 0.962 0.908 0.852 0.988 0.986 0.972 

LVEF R2 0.789 0.677 0.489 0.341 0.310 ----- 0.447 

Pacemaker AUROC 0.954 0.796 0.974 0.958 0.920 0.904 0.931 

RBBB AUROC 0.832 0.875 0.982 0.985 0.667 0.673 0.675 

LBBB AUROC 0.904 0.940 0.986 0.977 0.722 0.723 0.757 

Consolidati
on AUROC 0.734 ----- 0.689 0.653 0.794 0.883 0.760 

Edema AUROC 0.748 ----- 0.754 0.661 0.866 0.878 0.708 

LAD 
Occlusion AUROC 0.801 ----- 0.772 ----- 0.670 ----- 0.821 

RCA 
Occlusion AUROC 0.742 ----- 0.727 ----- 0.667 ----- 0.704 

LCX 
Occlusion AUROC 0.749 ----- 0.560 ----- 0.577 ----- 0.749 
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Supplementary Table 1: Text prompts used for zero-shot predictions. 

Task Prompt 

LVEF 
The left ventricular ejection fraction is estimated to be <EF>%. LV ejection fraction is 
<EF>. 

 EF = 20, 25, ..., 80 

Pacemaker (Echo) Echo density in right ventricle suggestive of catheter, pacer lead, or ICD lead. 

RBBB Right bundle branch block. 

LBBB Left bundle branch block. 

Pacemaker (ECG) Pacemaker. 

LAD Occlusion Conclusion: 1. LAD had an occlusion. 100% occluded left ascending artery. 

RCA Occlusion Conclusion: 1. RCA had an occlusion. 100% occluded right coronary artery. 

LCX Occlusion Conclusion: 1. LCX had an occlusion. 100% occluded left circumflex artery. 

Consolidation There is consolidation in the lung. Consolidation is unchanged. 

Edema There is a pulmonary edema in the lung. Edema is unchanged. 
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