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Environment33. Environmental Robustness

J. Droppo, A. Acero

When a speech recognition system is deployed
outside the laboratory setting, it needs to handle
a variety of signal variabilities. These may be
due to many factors, including additive noise,
acoustic echo, and speaker accent. If the speech
recognition accuracy does not degrade very much
under these conditions, the system is called robust.
Even though there are several reasons why real-
world speech may differ from clean speech, in this
chapter we focus on the influence of the acoustical
environment, defined as the transformations that
affect the speech signal from the time it leaves the
mouth until it is in digital format.

Specifically, we discuss strategies for dealing
with additive noise. Some of the techniques,
like feature normalization, are general enough to
provide robustness against several forms of signal
degradation. Others, such as feature enhancement,
provide superior noise robustness at the expense of
being less general. A good system will implement
several techniques to provide a strong defense
against acoustical variabilities.
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33.1 Noise Robust Speech Recognition

This chapter addresses the problem of additive noise
at the input to an automatic speech recognition (ASR)
system. Parts H and I in this Handbook address how to
build microphone arrays for superior sound capture, or
how to reduce noise for perceptual audio quality. Both of
these subjects are orthogonal to the current discussion.

Microphone arrays are useful in that improved au-
dio capture should be the first line of defense against

additive noise. However, despite the best efforts of the
system designer, there will always be residual addi-
tive noise. In general, speech recognition systems prefer
linear array algorithms, such as beam forming, to non-
linear techniques. Although nonlinear techniques can
achieve better suppression and perceptual quality, the in-
troduced distortions tend to confuse speech recognition
systems.
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654 Part E Speech Recognition

Furthermore, speech enhancement algorithms de-
signed for improved human perception do not always
help ASR accuracy. Most enhancement algorithms in-
troduce some signal distortion, and the type of distortion
that can be tolerated by humans and computers can be
quite different.

Additive noise is common in daily life, and can be
roughly categorized as either stationary or nonstation-
ary. Stationary noise, such as that made by a computer
fan or air conditioning, has a frequency spectrum that
does not change over time. In contrast, the spectrum of
a nonstationary noise changes over time. Some exam-
ples of nonstationary noise are a closing door, music,
and other speakers’ voices. In practice, no noise is per-
fectly stationary. Even the noises from a computer fan,
an air-conditioning system, or a car will change over
a long enough time period.

33.1.1 Standard Noise-Robust ASR Tasks

When building and testing noise-robust automatic
speech recognition systems, there are a rich set of
standards to test against.

The most popular tasks today were generated by
the European Telecommunications Standards Institute’s
technical committee for Speech, Transmission Planning,
and Quality of Service (ETSI STQ). Their AURORA
digital speech recognition (DSR) working group was
formed to develop and standardize algorithms for
distributed and noise-robust speech recognition. As
a byproduct of their work, they released a series of
standard tasks [33.1] for system evaluation. Each task
consists of all the necessary components for running
an experiment, including data and recipes for building
acoustic and language models, and scripts for running
evaluations against different testing scenarios.

The Aurora 2 task is the easiest to set up and use,
and is the focus of many results in this chapter. The
data was derived from the TIDigits corpus [33.2], which
consists of continuous English digit strings of vary-
ing lengths, spoken into a close-talking microphone.
To simulate noisy telephony environments, these clean
utterances were first downsampled to 8 kHz, and then
additive and convolutional noise was added. The addi-
tive noise is controlled to produce noisy signals with
a range of signal-to-noise ratios (SNRs) of −5–20 dB.

The noise types include both stationary and non-
stationary noises, and are broken down into three sets:
set A (subway, babble, car, and exhibition), set B (restau-
rant, street, airport, and station), and set C (subway and
street). Set C contains one noise from set A, and one

from set B, and also includes extra convolutional noise.
There are two sets of training data, one is clean and the
other is noisy. The noisy training data contains noises
similar to set A. This represents the case where the sys-
tem designers are able to anticipate correctly the types
of noises that the system will see in practice. Test set B,
on the other hand, has four different types of noises.

The acoustic model training recipe that was origi-
nally distributed with Aurora 2 was considered to be
too weak. As a result, many researchers built better
acoustic models to showcase their techniques. How-
ever, this made their results incomparable. To rectify
this problem, a standard complex back-end recipe [33.3]
was proposed, which is the proper model to use when
performing new experiments on this task.

The Aurora 3 task is similar in complexity to the Au-
rora 2 task, but covers four other European languages in
real car noise scenarios. Because the data is a subset of
the SpeechDat car database [33.4], the noise types be-
tween Aurora 2 and Aurora 3 are quite different. The
noise types chosen for Aurora 2 can be impulsive and
nonstationary, but the car noise in Aurora 3 tends to be
well modeled by stationary colored noise. Whereas the
noisy utterances in Aurora 2 are artificially mixed, the
noisy utterances of Aurora 3 were collected in actual
noisy environments. Nevertheless, techniques exhibit
a strong correlation in performance between Aurora 2
and Aurora 3, indicating that digitally simulated noisy
speech is adequate for system evaluation.

The Aurora 4 task was developed to showcase noise-
robust speech recognition for larger-vocabulary systems.
Whereas the previous Aurora tasks have 10 or 11 word
vocabularies, the Aurora 4 task has a 5000-word vo-
cabulary. In much the same way that Aurora 2 was
derived from the clean TIDigits corpus, the Aurora 4
task was derived from the clean Wall Street Journal
(WSJ) corpus [33.5]. Noises are digitally mixed at sev-
eral signal-to-noise ratios. Because of the difficulty in
setting up the larger system, the Aurora 4 task is not
as commonly cited in the literature. The Aurora 4 task
is relevant because some techniques that work well on
Aurora 2 either become intractable or fail on larger-
vocabulary tasks.

Noisex-92 [33.6] is a set of data that is also useful
in evaluating noise robust speech recognition systems. It
consists of two CD-ROMS of audio recordings, suitable
for use in artificially mixing noise with clean speech
to produce noisy speech utterances. There is a great
variety of noises available with the data, including voice
babble, factory noise, F16 fighter jet noise, M109 tank
noise, machine gun noise, and others.
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Table 33.1 Word accuracy for the Aurora 2 test sets using the clean acoustic model baseline

SNR (dB) Test set A Test set B Test set C Average

Clean 99.63 99.63 99.60 99.62
20 95.02 91.71 97.02 94.58

15 85.16 78.10 92.38 85.21

10 64.50 55.75 77.78 66.01
5 34.59 29.21 51.36 38.39

0 13.61 9.75 22.82 15.40
−5 5.87 4.08 11.47 7.14

Average (0–20) 58.58 52.90 68.27 58.25

Another common evaluation task for noise robust
speech recognition systems is the speech in noisy envi-
ronments (SPINE) evaluation [33.7]. It was created for
the Department of Defense digital voice processing con-
sortium, to support the 2000 SPINE1 evaluation. The
corpus contains 9 h 22 min of audio data, collected in
simulated noisy environments where users collaborate
using realistic handsets and communications channels
to seek and shoot targets, similar to the game Battle-
ship.

33.1.2 The Acoustic Mismatch Problem

To understand the extent of the problem of recognizing
speech in noise, it is useful to look at a concrete example.
Many of the techniques in this chapter are tested on
the Aurora 2 task. Table 33.1 contains typical results
from the baseline Aurora 2 system. Here, an acoustic
model is trained on clean, noise-free data, and tested on
data with various digitally simulated noise levels. The
accuracy on clean test data averages 99.62%, which may
be acceptable for some applications.

As soon as any noise is present in the test data,
the system rapidly degrades. Even at a mild 20 dB
signal-to-noise ratio (SNR), the system produces more
than 14 times as many errors compared to clean data.
(The signal-to-noise ratio is defined as the ratio of sig-
nal energy to noise energy in the received signal. It is
typically measured in decibels (dB), and calculated as
10log10[Energy(signal)/Energy(noise)]. An SNR above
30 dB sounds quite noise-free. At 0 dB SNR, the sig-
nal and noise are at the same level.) As the SNR
decreases further, the problem becomes more intense.
Why does an ASR system perform so poorly when pre-
sented with even mildly corrupted signals? The answer
is deceptively simple. Automatic speech recognition is
fundamentally a pattern matching problem. And, when
a system is tested on patterns that are unlike anything
used to train it, errors are likely to occur. The funda-

mental problem is the acoustic mismatch between the
training and testing data.

Figure 33.1 illustrates the severity of the problem. It
compares the histograms for C1 between clean speech
and moderately noisy speech. (C1, the first cepstral co-
efficient, is typical speech feature used by automatic
speech recognition systems.) The two histograms are
quite dissimilar. Obviously, a system trained under one
condition will fail under the other.

33.1.3 Reducing Acoustic Mismatch

The simplest solution to the acoustic mismatch prob-
lem is to build an acoustic model that is a better match
for the test data. Techniques that can be helpful in that
respect are multistyle training and model adaptation.
These types of algorithms are covered in Sect. 33.2.

Another common approach to solving the acous-
tic mismatch problem is to transform the data so that
the training and testing data tend to be more simi-
lar. These techniques concentrate on either normalizing
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Fig. 33.1 Additive noise creates a mismatch between clean
training data and noisy testing data. Here, the histogram for
a clean speech feature is strikingly different from the same
histogram computed from noisy speech
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656 Part E Speech Recognition

out the effects of noise, or learning transformations
that map speech into a canonical noise-free represen-
tation. Examples of such techniques are cepstral mean
normalization and stereo piecewise linear compensa-
tion for environment (SPLICE), which are covered in
Sect. 33.3.

The techniques mentioned so far are powerful, but
limited. They do not assume any form for the acous-
tic mismatch, so they can be applied to compensate
for a wide range of corrupting influences. But, because
they are unstructured, they need a lot of data to han-
dle a new condition. Section 33.4 introduces a model
of how noise corrupts clean speech features. Later, the
model is used to derive powerful data-thrifty adaptation
and normalization algorithms.

Section 33.5 presents the first class of these algo-
rithms, which adapt the parameters of a clean acoustic
model to approximate an acoustic model for noisy

speech. Parallel model combination with a log-normal
approximation is covered, as is vector Taylor-series
(VTS) model adaptation.

The model for how additive noise corrupts clean
speech features can also be used to do speech feature en-
hancement. Section 33.6 covers the classic technique of
spectral subtraction as it can be integrated into speech
recognition. It also covers vector Taylor-series speech
enhancement, which has proven to be an easy and
economical alternative to full model adaptation.

The last set of techniques discussed in this chapter
are hybrid approaches that bridge the space between
model and feature based techniques. In general, the
former are more powerful, but the latter are easier to
compute. Uncertainty decoding and noise adaptive train-
ing are two examples presented in Sect. 33.7, which are
more powerful than a purely feature-based approach, but
without the full cost of model adaptation.

33.2 Model Retraining and Adaptation

The best way to train any pattern recognition system is
to train it with examples that are similar to those it will
need to recognize later.

One of the worst design decisions to make is to train
the acoustic model with data that is dissimilar to the
expected testing input. This usually happens when the
training data is collected in a quiet room using a close-
talking microphone. This data will contain very good
speech, with little reverberation or additive noise, but
it will not look anything like what a deployed system
will collect with its microphone. It’s true that robustness
algorithms can ameliorate this mismatch, but it is hard
to cover up for a fundamental design flaw.

The methods presented in this section demonstrate
that designing appropriate training data can greatly im-
prove the accuracy of the final system.

33.2.1 Retraining on Corrupted Speech

To build an automatic speech recognition system that
works in a particular noise condition, one of the best
solutions is to find training data that matches this con-
dition, train the acoustic model from this data in the
normal way, and then decode the noisy speech without
further processing. This is known as matched condition
training.

If the test conditions are not known precisely, multi-
style training [33.8] is a better choice. Instead of using
a single noise condition in the training data, many dif-

ferent kinds of noises are used, each of which would be
reasonable to expect in deployment.

Matched condition training can be simulated with
sample noise waveforms from the new environments.
These noise waveforms are artificially mixed with clean
training data to create a synthetically noisy training data
set. This method allows us to adapt the model to the new
environment with a relatively small amount of data from
the new environment, yet use a large amount of training
data for the system.

The largest problem with multistyle training is that
it makes components in the acoustic model broader
and less discriminative. As a result, accuracy in any
one condition is slightly worse than if matched con-
dition training were available, but much better than if
a mismatched training were used.

Tables 33.1 and 33.2 present the standard clean con-
dition and multistyle training results from the Aurora 2
tasks. In the clean condition experiments, the acoustic
model is built with uncorrupted data, even though the test
data has additive noise. This is a good example of mis-
matched training conditions, and the resulting accuracy
is quite low.

The multistyle training results in Table 33.2 are much
better than the clean training results of Table 33.1. Even
though the noises from set B are different from the train-
ing set, their accuracy has been improved considerably
over the mismatched clean condition training. Also, no-
tice that the word accuracy of the clean test data is lower

Part
E

3
3
.2



Environmental Robustness 33.3 Feature Transformation and Normalization 657

Table 33.2 Word accuracy for the Aurora 2 test sets using the multistyle acoustic model baseline

SNR (dB) Test set A Test set B Test set C Average

Clean 99.46 99.46 99.46 99.45

20 98.99 98.59 98.78 98.79

15 98.41 97.56 98.12 98.03

10 96.94 94.94 96.05 95.98

5 91.90 88.38 87.92 89.40

0 70.53 69.36 59.35 66.42

−5 30.26 33.05 25.16 29.49

Average (0–20) 91.36 89.77 88.04 90.06

for the multistyle-trained models. This is typical of mul-
tistyle training: whereas before, the clean test data was
matched to the clean training data, now every type of
test data has a slight mismatch.

33.2.2 Single-Utterance Retraining

Taken to the extreme, the retraining approach outlined
above could be used to generate a new acoustic model
for every noisy utterance encountered.

The first step would be to extract exemplar noise sig-
nals from the current noisy utterance. This is then used
to artificially corrupt a clean training corpus. Finally,
an utterance specific acoustic model is trained on this
corrupted data. Such a model should be a good match
to the current utterance, and we would expect excellent
recognition performance.

Of course, this approach would only be feasible for
small systems where the training data can be kept in
memory and where the retraining time is small. It would
certainly not be feasible for large-vocabulary speaker-
independent systems.

The idea of using an utterance-specific acoustic
model can be made more efficient by replacing the rec-
ognizer retraining step with a structured adaptation of
the acoustic model. Each Gaussian component in the
acoustic model is adapted to account for how its pa-
rameters would change in the presence of noise. This

idea is the basis of the techniques such as parallel
model combination (PMC) and VTS model adaptation
in Sect. 33.5, where a model for noise is composed with
the acoustic model for speech, to build a noisy speech
model. Although they are less accurate than the brute-
force method just described, they are computationally
simpler.

33.2.3 Model Adaptation
In the same way that retraining the acoustic model for
each utterance can provide good noise robustness, stan-
dard unsupervised adaptation techniques can be used to
approximate this effect.

Speaker adaptation algorithms, such as maximum
a priori (MAP) or maximum likelihood linear regression
(MLLR), are good candidates for robustness adapta-
tion. Since MAP is an unstructured method, it can
offer results similar to those of matched conditions,
but it requires a significant amount of adaptation data.
MLLR can achieve reasonable performance with about
a minute of speech for minor mismatches [33.9]. For se-
vere mismatches, MLLR also requires a large number of
transformations, which, in turn, require a larger amount
of adaptation data.

In [33.10], it was shown how MLLR works on Au-
rora 2. That paper reports a 9.2% relative error rate
reduction over the multistyle baseline, and a 25% relative
error rate reduction over the clean condition baseline.

33.3 Feature Transformation and Normalization

This section demonstrates how simple feature normal-
ization techniques can be used to reduce the acoustic
mismatch problem. Feature normalization works by re-
ducing the mismatch between the training and the testing
data, leading to greater robustness and higher recogni-
tion accuracies.

It has been demonstrated that feature normalization
alone can provide many of the benefits of noise robust-
ness specific algorithms. In fact, some of the best results
on the Aurora 2 task have been achieved with feature
normalization alone [33.11]. Because these techniques
are easy to implement and provide impressive results,
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they should be included in every noise-robust speech
recognition system.

This section covers the most common feature
normalization techniques, including voice activity de-
tection, automatic gain normalization, cepstral mean and
variance normalization, cepstral histogram normaliza-
tion, and cepstral filtering.

33.3.1 Feature Moment Normalization

The goal of feature normalization is to apply a trans-
formation to the incoming observation features. This
transformation should eliminate variabilities unrelated
to the transcription, while reducing the mismatches be-
tween the training and the testing utterances. Even if you
do not know how the ASR features have been corrupted,
it is possible to normalize them to reduce the effects of
the corruption.

With moment normalization, a one-to-one transfor-
mation is applied to the data, so that its statistical mo-
ments are normalized. Techniques using this approach
include cepstral mean normalization, cepstral mean and
variance normalization, and cepstral histogram normal-
ization. Respectively, they try to normalize the first, the
first two, and all the moments of the data. The more mo-
ments that are normalized, the more data is needed to
prevent loss of relevant acoustic information.

Another type of normalization affects only the
energy-like features of each frame. Automatic gain nor-
malization (AGN) is used to ensure that the speech
occurs at the same absolute signal level, regardless of
the incoming level of background noise or SNR. The
simplest of these AGN schemes subtracts the maximum
C0 value from every frame for each utterance. With this
method, the most energetic frame (which is likely to con-
tain speech) gets a C0 value of zero, while every other
frame gets a negative C0.

When using moment normalization, it is sometimes
beneficial to use AGN on the energy-like features, and
the more-general moment normalization on the rest. For
each of the moment normalization techniques discussed
below, the option of treating C0 separately with AGN is
evaluated.

Cepstral Mean Normalization
Cepstral mean normalization is the simplest feature
normalization technique to implement, and should be
considered first. It provides many of the benefits avail-
able in the more-advanced normalization algorithms.

For our analysis, the received speech signal x[m]
is used to calculate a sequence of cepstral vectors

{x0, x1, . . . , xT−1}. In its basic form, cepstral mean nor-
malization (CMN) (Atal [33.12]) consists of subtracting
the mean feature vector μx from each vector xt to obtain
the normalized vector x̂t :

μx = 1

T

∑

t

xt , (33.1)

x̂t = xt −μx . (33.2)

As a result, the long-term average of any observation
sequence (the first moment) is zero.

It is easy to show that CMN makes the features robust
to some linear filtering of the acoustic signal, which
might be caused by microphones with different transfer
functions, varying distance from user to microphone, the
room acoustics, or transmission channels.

To see this, consider a signal y[m], which is the
output of passing x[m] through a filter h[m]. If the
filter h[m] is much shorter than the analysis window
used to compute the cepstra, the new cepstral sequence
{y0, y1, . . . , yT−1} will be equal to

yt = xt +h . (33.3)

Here, the cepstrum of the filter h is defined as the discrete
cosine transform (DCT) of the log power spectrum of
the filter coefficients h[m]:

h = C
(

ln |H(ω0)|2 . . . ln |H(ωM)|2) . (33.4)

Since the DCT is a linear operation, it is represented
here as multiplication by the matrix C.

The sample mean of the filtered cepstra is also offset
by h, a factor which disappears after mean normaliza-
tion:

μy = 1

T

T−1∑

t=1

yt = μx +h , (33.5)

ŷt = yt −μy = x̂t . (33.6)

As long as these convolutional distortions have
a time constant that is short with respect to the front
end’s analysis window length, and does not suppress
large regions of the spectrum below the noise floor (e.g.,
a severe low-pass filter), CMN can virtually eliminate
their effects. As the filter length h[m] grows, (33.3)
becomes less accurate and CMN is less effective in re-
moving the convolutional distortion. In practice, CMN
can normalize the effect of different telephone channels
and microphones, but fails with reverberation times that
start to approach the analysis window length [33.13].

Tables 33.3 and 33.4 show the effectiveness of
whole-utterance CMN on the Aurora 2 task. In the
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Table 33.3 Word accuracy for Aurora 2, using cepstral mean normalization and an acoustic model trained on clean data.
CMN reduces the error rate by 31% relative to the baseline in Table 33.1

Energy normalization Normalization level Set A Set B Set C Average

CMN Static 68.55 73.51 69.48 70.72

AGN Static 69.46 69.84 74.15 70.55

AGN Full 70.34 70.74 74.88 71.41

CMN Full 68.65 73.71 69.69 70.88

Table 33.4 Word accuracy for Aurora 2, using cepstral mean normalization and an acoustic model trained on multistyle
data. CMN reduces the error rate by 30% relative to the baseline in Table 33.2

Energy normalization Normalization level Set A Set B Set C Average

CMN Static 92.93 92.73 93.49 92.96

AGN Static 93.15 92.61 93.52 93.01

AGN Full 93.11 92.63 93.56 93.01

CMN Full 92.97 92.62 93.32 92.90

best case, CMN reduces the error rate by 31% relative
using a clean acoustic model, and 30% relative using
a multistyle acoustic model.

Both tables compare applying CMN on the energy
feature to using AGN. In most cases, using AGN is better
than applying CMN on the energy term. The failure of
CMN on the energy feature is most likely due to the ran-
domness it induces on the energy of noisy speech frames.
AGN tends to put noisy speech at the same level regard-
less of SNR, which helps the recognizer make sharp
models. On the other hand, CMN will make the energy
term smaller in low-SNR utterances and larger in high-
SNR utterances, leading to less-effective speech models.

There are also two different stages in which CMN
can be applied. One option is to use CMN on the static
cepstra, before computing the dynamic cepstra. Because
of the nature of CMN, this is equivalent to leaving the
dynamic cepstra untouched. The other option is to use
CMN on the full feature vector, after dynamic cepstra
have been computed from the unnormalized static cep-
stra. Tables 33.3 and 33.4 both show that it is slightly
better to apply the normalization to the full feature
vectors.

Cepstral Variance Normalization
Cepstral variance normalization (CVN) is similar to
CMN, and the two are often paired as cepstral mean
and variance normalization (CMVN). CMVN uses both
the sample mean and standard deviation to normalize
the cepstral sequence:

σx
2 = 1

T

T−1∑

t=0

x2
t −μ2

x , (33.7)

xt = xt −μx

σx
. (33.8)

After normalization, the mean of the cepstral se-
quence is zero, and it has a variance of one.

Unlike CMN, CVN is not associated with addressing
a particular type of distortion. It can, however, be shown
empirically that it provides robustness against acoustic
channels, speaker variability, and additive noise.

Tables 33.5 and 33.6 show how CMVN affects
accuracy on the Aurora 2 task. Adding variance nor-
malization to CMN reduces the error rate 8.7% relative
using a clean acoustic model, and by 8.6% relative when
using a multistyle acoustic model.

As with CMN, CMVN is best applied to the full
feature vector, after the dynamic cepstra have been
computed. Unlike CMN, the tables show that apply-
ing CMVN to the energy term is often better than using
whole-utterance AGN. Because CMVN is both shifting
and scaling the energy term, both the noisy speech and
the noise are placed at a consistent absolute levels.

Cepstral Histogram Normalization
Cepstral histogram normalization (CHN) [33.14] takes
the core ideas behind CMN and CVN, and extends them
to their logical conclusion. Instead of only normalizing
the first or second central moments, CHN modifies the
signal such that all of its moments are normalized. As
with CMN and CHN, a one-to-one transformation is in-
dependently applied to each dimension of the feature
vector.

The first step in CHN is choosing a desired dis-
tribution for the data, px(x). It is common to choose
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Table 33.5 Word accuracy for Aurora 2, using cepstral mean and variance normalization and an acoustic model trained
on clean data. CMVN reduces the error rate by 8.7% relative to the CMN results in Table 33.3. CMVN is much better
than AGN at energy normalization, probably because it provides consistent absolute levels for both speech and noise,
whereas AGN only normalizes the speech

Energy normalization Normalization level Set A Set B Set C Average

AGN Static 72.96 72.4 76.48 73.44

CMVN Static 79.34 79.86 80.8 79.84

CMVN Full 84.46 85.55 84.84 84.97

AGN Full 72.77 72.23 77.02 73.40

Table 33.6 Word accuracy for Aurora 2, using cepstral mean and variance normalization and an acoustic model trained
on multistyle data. CVMN reduces the error rate by 8.6% relative to the baseline in Table 33.4. The difference between
CMVN and AGN for energy normalization is less pronounced than in Table 33.5

Energy normalization Normalization level Set A Set B Set C Average

AGN Static 93.34 92.79 93.62 93.18

CMVN Static 93.33 92.57 93.24 93.01

CMVN Full 93.80 93.09 93.70 93.50

AGN Full 93.37 92.76 93.70 93.19

a Gaussian distribution with zero mean and unit covari-
ance. Let py(y) represent the actual distribution of the
data to be transformed.

It can be shown that the following function f (·)
applied to y produces features with the probability
distribution function (PDF) px(x):

f (y) = F−1
x [Fy(y)] . (33.9)

Here, Fy(y) is the cumulative distribution function
(CDF) of the test data. Applying Fy(·) to y transforms the
data distribution from py(y) to a uniform distribution.
Subsequent application of F−1

x (·) imposes a final distri-
bution of px(x). When the target distribution is chosen to
be Gaussian as described above, the final sequence has
zero mean and unit covariance, just as if CMVN were
used. Additionally, every other moment would match
the target Gaussian distribution.

Whole-utterance Gaussianization is easy to imple-
ment by applying (33.9) independently to each feature
dimension.

First, the data is transformed using (33.10) so it has
a uniform distribution. The summation counts how many
frames have the i-th dimension of y less than the value
in frame m, and divides by the number of frames. The
resulting sequence of y′

i [m] has a uniform distribution
between zero and one:

y′
i [m] = 1

M

M∑

m′=1

1
(
yi [m′] < yi [m]) . (33.10)

The second and final step consists of transforming
y′

i [m] so that it has a Gaussian distribution. This can be
accomplished, as in (33.11), using an inverse Gaussian
CDF G−1

x :

yCHN
i [m] = G−1

x

(
y′

i [m]) . (33.11)

Tables 33.7 and 33.8 show the results of applying
CHN to the Aurora 2 task. As with CMVN, it is better to
apply the normalizing transform to a full feature vector,
and to avoid the use of a separate AGN step. In the end,
the results are not significantly better than CMVN.

Analysis of Feature Normalization
When implementing feature normalization, it is very
important to use enough data to support the chosen
technique. In general, with stronger normalization al-
gorithms, it is necessary to process longer segments of
speech.

As an example, let us analyze the effect of CMN on
a short utterance. Consider an utterance contains a single
phoneme, such as the fricative /s/. The mean μx will be
very similar to the frames in this phoneme, since /s/
is quite stationary. Thus, after normalization, μx ≈ 0.
A similar result will happen for other fricatives, which
means that it would be impossible to distinguish these
ultrashort utterances, and the error rate will be very high.
If the utterance contains more than one phoneme but is
still short, the problem is not insurmountable, but the
confusion among phonemes is still higher than if no
CMN had been applied.
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Table 33.7 Word accuracy for Aurora 2, using cepstral histogram normalization and an acoustic model trained on clean
data. As with CMVN, CHN is much better than AGN at energy normalization. The CHN results on Aurora 2 are similar
to the CMVN results presented in Table 33.5

Energy normalization Normalization level Set A Set B Set C Average

AGN Static 70.34 71.14 73.76 71.34

CHN Static 82.49 84.06 83.66 83.35

CHN Full 83.64 85.03 84.59 84.39

AGN Full 69.75 70.23 74.25 70.84

Table 33.8 Word accuracy for Aurora 2, using cepstral histogram normalization and an acoustic model trained on
multistyle data. The CHN results on Aurora 2 are similar to the CMVN results presented in Table 33.8

Energy normalization Normalization level Set A Set B Set C Average

AGN Static 93.19 92.63 93.45 93.02

CHN Static 93.17 92.69 93.04 92.95

CHN Full 93.61 93.21 93.49 93.43

AGN Full 93.29 92.73 93.74 93.16

If test utterances are too short to support the chosen
normalization technique, degradation will be most ap-
parent in the clean-speech recognition results. CMVN
and CHN, in particular, can significantly degrade the
accuracy of the clean speech tests in Aurora 2. In
cases where there is not enough data to support CMN,
Rahim has shown [33.15] that using the recognizer’s
acoustic model to estimate a maximum-likelihood mean
normalization is superior to conventional CMN.

Empirically, it has been found that CMN does not
degrade the recognition rate on utterances from the same
acoustical environment, as long as there are at least four
seconds of speech frames available. CMVN and CHN
require even longer segments of speech.

As we have seen, CMN can provide robustness
against additive noise. It is also effective in normaliz-
ing acoustic channels. For telephone recordings, where
each call has a different frequency response, the use of
CMN has been shown to provide as much as 30% rel-
ative decrease in error rate. When a system is trained
on one microphone and tested on another, CMN can
provide significant robustness.

Interestingly, it has been found in practice that the er-
ror rate for utterances within the same environment can
actually be somewhat lower. This is surprising, given
that there is no mismatch in channel conditions. One
explanation is that, even for the same microphone and
room acoustics, the distance between the mouth and the
microphone varies for different speakers, which causes
slightly different transfer functions. In addition, the cep-
stral mean characterizes not only the channel transfer

function, but also the average frequency response of
different speakers. By removing the long-term speaker
average, CMN can act as sort of speaker normalization.

One drawback of CMN, CMVN, and CHN is that
they do not discriminate between nonspeech and speech
frames in computing the utterance mean. As a result,
the normalization can be affected by the ratio of speech
to nonspeech frames. For instance, the mean cepstrum
of an utterance that has 90% nonspeech frames will be
significantly different from one that contains only 10%
nonspeech frames. As a result, the speech frames will
be transformed inconsistently, leading to poorer acoustic
models and decreased recognition accuracy.

An extension to CMN that addresses this problem
consists in computing different means for noise and
speech [33.16]:

h j+1 = 1

Ns

∑

t∈qs

xt −ms , (33.12)

n j+1 = 1

Nn

∑

t∈qn

xt −mn , (33.13)

i. e., the difference between the average vector for speech
frames in the utterance and the average vector ms for
speech frames in the training data, and similarly for the
noise frames mn. Speech/noise discrimination could be
done by classifying frames into speech frames and noise
frames, computing the average cepstra for each, and sub-
tracting them from the average in the training data. This
procedure works well as long as the speech/noise classi-
fication is accurate. This is best done by the recognizer,
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since other speech detection algorithms can fail in high
background noise.

33.3.2 Voice Activity Detection

A voice activity detection (VAD) algorithm can be used
to ensure that only a small, consistent percentage of
the frames sent to the speech recognizer are nonspeech
frames. These algorithms work by finding and eliminat-
ing any contiguous segments of nonspeech audio in the
input.

VAD is an essential component in any complete
noise-robust speech recognition system. It helps to
normalize the percentage of nonspeech frames in the ut-
terance, which, as discussed above, helps CMN perform
better. It also directly reduces the number of extra words,
or insertion errors produced by the recognition system.
Because these nonspeech frames are never sent to the
speech recognizer, they can not be mistaken for speech.
As a side-effect, because the decoder does not need to
process the eliminated frames, the overall recognition
process is more efficient.

Most standard databases, such as Aurora 2, have
been presegmented to include only a short pause before
and after each utterance. As a result, the benefits of using
VAD are not apparent on that data. Other tasks, such as
Aurora 3, include longer segments of noise before and
after the speech, and need a good VAD for optimal per-
formance. For example, [33.17] shows how a VAD can
significantly improve performance on the Aurora 3 task.

When designing a VAD, it is important to notice
that the cost of making an error is not symmetric. If
a nonspeech frame is mistakenly labeled as speech, the
recognizer can still produce a good result because the
silence hidden Markov model (HMM) may take care of
it. On the other hand, if some speech frames are lost, the
recognizer cannot recover from this error.

Some VAD use a single feature, such as energy,
together with a threshold. More-sophisticated systems
use log-spectra or cepstra, and make decisions based on
Gaussian mixture models (GMMs) or neural networks.
They can leverage acoustic features that the recognizer
may not, such as pitch, zero crossing rate, and duration.
As a result, a VAD can do a better job than the general
recognition system at rejecting nonspeech segments of
the signal.

Another common way to reduce the number of in-
sertion errors is to tune the balance of insertion and
deletion errors with the recognizer’s insertion penalty
parameter. In a speech recognition system, the inser-
tion penalty is a fixed cost incurred for each recognized

word. For a given set of acoustic observations, increas-
ing this penalty causes fewer words to be recognized. In
practice, the number of insertion errors can be reduced
significantly while only introducing a moderate number
of deletion errors.

33.3.3 Cepstral Time Smoothing

CMN, as originally formulated, requires a complete ut-
terance to compute the cepstral mean; thus, it cannot be
used in a real-time system, and an approximation needs
to be used. In this section we discuss a modified version
of CMN that can address this problem, as well as a set of
cepstral filtering techniques that attempt to do the same
thing.

Because CMN removes any constant bias from the
cepstral time series, it is equivalent to a high-pass filter
with a cutoff frequency arbitrarily close to zero. This
insight suggests that other types of high-pass filters may
also be used. One that has been found to work well in
practice is the exponential filter, so the cepstral mean
μx[m] is a function of time:

μx[m] = αx[m]+ (1−α)μx[m −1] , (33.14)

where α is chosen so that the filter has a time constant
of at least 5 s of speech. For example, when the analysis
frame rate is 100 frames per second, an α of 0.999 creates
a filter with a time constant of almost 7 s.

This idea of using a filter to normalizing a sequence
of cepstral coefficients is quite powerful, and can be
extended to provide even better results.

In addition to a high-pass CMN-like filter, it is also
beneficial to add a low-pass component to the cepstral
filter. This is because the rate of change of the speech
spectrum over time is limited by human physiology,
but the interfering noise components are not. Abrupt
spectral changes are likely to contain more noise than
speech. As a result, disallowing the cepstra from chang-
ing too quickly increases their effective SNR. This is
the central idea behind relative spectral (RASTA) and
autoregressive moving average (ARMA) filtering.

The relative spectral processing or RASTA [33.18]
combines both high- and low-pass cepstral filtering into
a single noncausal infinite impulse response (IIR) trans-
fer function:

H(z) = 0.1(z4)
2+ z−1 − z−3 −2z−4

1−0.98z−1
. (33.15)

As in CMN, the high-pass portion of the filter is
expected to alleviate the effect of convolutional noise
introduced in the channel. The low-pass filtering helps to
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smooth some of the fast frame-to-frame spectral changes
present. Empirically, it has been shown that the RASTA
filter behaves similarly to the real-time implementation
of CMN, albeit with a slightly higher error rate.

ARMA filtering is similar to RASTA, in that a linear
time invariant (LTI) filter is applied separately to each
cepstral coefficient. The following equation:

H(z) = (z2)
1+ z−1 + z−2

5− z−1 − z−2
(33.16)

is an example of a second-order ARMA filter. Unlike
RASTA, ARMA is purely a low-pass filter. As a result,
ARMA should be used in conjunction with an additional
explicit CMN operation.

It was shown in [33.11] how this simple tech-
nique can do better than much more-complex robustness
schemes. In spite of its simplicity, those results were the
best of their time.

33.3.4 SPLICE – Normalization Learned
from Stereo Data

The SPLICE technique was first proposed [33.19] as
a brute-force solution to the acoustic mismatch prob-
lem. Instead of blindly transforming the data as CMN,
CHN, or RASTA, SPLICE learns the joint probability
distribution for noisy speech and clean speech, and uses
it to map each received cepstra into a clean estimate.
Like CHN, SPLICE is a nonlinear transformation tech-
nique. However, whereas CHN implicitly assumes the
features are uncorrelated, SPLICE learns and uses the
correlations naturally present in speech features.

The SPLICE transform is built from a model of the
joint distribution of noisy cepstra y and clean cepstra x.
The model is a Gaussian mixture model containing K
mixture components:

p(y, x) =
K∑

k=1

p(x|y, k)p(y, k) . (33.17)

The distribution p(y, k) is itself a Gaussian mixture
model on y, which takes the form

p(y, k) = p(y|k)p(k) = N(y; μk, σk)p(k) . (33.18)

The conditional distribution p(x|y, k) predicts the
clean feature value given a noisy observation and a Gaus-
sian component index k:

p(x|y, k) = N(x; Ak y +bk, Γk) . (33.19)

Due to their effect on predicting x from y, the matrix
Ak is referred to as the rotation matrix, and the vector
bk is called the offset vector. The matrix Γk represents
the error incurred in the prediction.

Even though the relationship between x and y is
nonlinear, this conditional linear prediction is suffi-
cient. Because the GMM p(y, k) effectively partitions
the noisy acoustic space into K regions, each p(x|y, k)
only needs to be accurate in one of these regions.

The SPLICE transform is derived from the joint
distribution p(x, y, k) by finding the expected value
of the clean speech x, given the current noisy
observation y. This approach finds the minimum
mean-squared error (MMSE) estimate for x under
the model, an approach pioneered by the codeword-
dependent cepstral normalization (CDCN) [33.20]
and multivariate-gaussian-based cepstral normalization
(RATZ) [33.21] algorithms:

x̂MMSE = E{x|y} =
K∑

k=1

E{x|y, k}p(k|y)

=
K∑

k=1

(Ak y +bk)p(k|y) , (33.20)

where the posterior probability p(k|y) is given by

p(k|y) = p(y, k)
K∑

k′=1
p(y, k′)

. (33.21)

Another option is to find an approximate maxi-
mum likelihood estimate for x under the model, which
is similar to the fixed codeword-dependent cepstral
normalization algorithm algorithm [33.20]. A good ap-
proximate solution to

x̂ML = maxx p(x|y) (33.22)

is

x̂ML ≈ Ak̂ y +bk̂ , (33.23)

where

k̂ = arg maxk p(y, k) . (33.24)

Whereas the approximate maximum-likelihood
(ML) estimate above involves a single affine transfor-
mation, the MMSE solution requires K transformations.
Even though the MMSE estimate produces more-
accurate recognition results, the approximate ML
estimate may be substituted when the additional com-
putational cost is prohibitive.

Another popular method for reducing the additional
computational cost is to replace the learned rotation ma-
trix Ak with the identity matrix I . This produces systems
that are more efficient, with only a modest degradation
in performance [33.19].
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A number of different algorithms [33.20, 21] have
been proposed that vary in how the parameters μk , Σk,
Ak , bk, and Γk are estimated.

If stereo recordings are available from both the clean
signal and the noisy signal, then we can estimate μk and
Σk by fitting a mixture Gaussian model to y using stan-
dard maximum-likelihood training techniques. Then Ak,
bk, and Γk can be estimated directly by linear regression
of x and y. The FCDCN algorithm [33.20, 22] is a vari-
ant of this approach when it is assumed that Σk = σ2 I ,
Γk = γ 2 I , and Ak = I , so that μk and bk are estimated
through a vector quantization (VQ) procedure and bk is
the average difference (y − x) for vectors y that belong
to mixture component k.

Often, stereo recordings are not available and we
need other means of estimating the parameters μk,
Σk, Ak , bk, and Γk. CDCN [33.22] and VTS enhance-
ment [33.21] are examples of algorithms that use a model
of the environment (Sect. 33.4). This model defines
a nonlinear relationship between x, y and the environ-
mental parameters n for the noise. The CDCN method
also uses an MMSE approach where the correction vec-
tor is a weighted average of the correction vectors for
all classes. Other methods that do not require stereo
recordings or a model of the environment are presented
in [33.21].

Recent improvements in training the transforma-
tion parameters have been proposed using discriminative
training [33.23–25]. In this case, the noisy-speech GMM
is developed from the noisy training data, or from a larger
acoustic model developed from that data. The correction
parameters are then initialized to zero, which corre-
sponds to the identity transformation. Subsequently,
they are trained to maximize a discriminative criterion,
such as minimum classification error (MCE) [33.24],
maximum mutual information (MMI) [33.23], or min-
imum phone error (MPE) [33.25]. It has been shown
that this style of training produces superior results to the
two-channel MMSE approach, and can even increase ac-
curacy in noise-free test cases. The main disadvantage of
this approach is that it is easy to overtrain the transforma-
tion, which can actually reduce robustness of the system
to noise types that do not occur in the training set. This
can be easily avoided by the customary use of regular-
ization and separate training, development, and test data.

Although the SPLICE transform is discussed here,
there are many alternatives available. The function to
map from y to x can be approximated with a neu-
ral network [33.26], or as a mixture of Gaussians
as in probabilistic optimum filtering (POF) [33.27],
FCDCN [33.28], RATZ [33.21], and stochastic vector
mapping (SVM) [33.24].

33.4 A Model of the Environment

Sections 33.2 and 33.3 described techniques that address
the problem of additive noise by blindly reducing the
acoustic mismatch between the acoustic model and the
expected test data. These techniques are powerful and
general, and are often used to solve problems other than
additive noise. However, the more-effective solutions
generally require more data to operate properly.

In this section, we use knowledge of the nature
of the degradation to derive the relationship between
the clean and observed signals in the power-spectrum,
log-filterbank, and cepstral domains. Later, Sects. 33.5
and 33.6 show how several related methods leverage
this model to produce effective noise robust speech
recognition techniques.

In the acoustic environment, the clean speech sig-
nal coexists with many other sound sources. They mix
linearly in the air, and a mixture of all these signals
is picked up by the microphone. For our purposes, the
clean speech signal that would have existed in the ab-
sence of noise is denoted by the symbol x[m], and all of
the other noises that are picked up by the microphone

are represented by the symbol n[m]. Because of the lin-
ear mixing, the observed signal y[m] is simply the sum
of the clean speech and noise:

y[m] = x[m]+n[m] . (33.25)

Unfortunately, the additive relationship of (33.25) is
destroyed by the nonlinear process of extracting cep-
stra from y[m]. Figure 33.2 demonstrates the path that
the noisy signal takes on its way to becoming a cepstral
feature vector observation vector. It consists of dividing
the received signal into frames, performing a frequency
analysis and warping, applying a logarithmic compres-
sion, and finally a decorrelation and dimensionality
reduction.

The first stage of feature extraction is framing. The
signal is split into overlapping segments of about 25 ms
each. These segments are short enough that, within
each frame of data, the speech signal is approximately
stationary. Each frame is passed through a discrete
Fourier transform (DFT), where the time-domain signal
becomes a complex-valued function of discrete fre-
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quency k. Concentrating our analysis on a single frame
of speech Y [k], clean speech and noise are still additive:

Y [k] = X[k]+ N[k] . (33.26)

The next processing step is to turn the observed
complex spectra into real-valued power spectra, through
the application of a magnitude-squared operation. The
power spectrum of the observed signal is

|Y [k]|2 = |X[k]|2 +|N[k]|2 +2|X[k]||N[k]| cos θ ,

(33.27)

a function of the power spectrum of the clean speech and
of the noise, as well as a cross-term. This cross-term is
a function of the clean speech and noise magnitudes, as
well as their relative phase θ. When the clean speech
and noise are uncorrelated, the expected value of the
cross-term is zero:

E{X[k]N∗[k]} = 0 . (33.28)

However, for a particular frame it can have a consider-
able magnitude.
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Fig. 33.2 Clean
speech x and
environmen-
tal noise n
mix to produce
the noisy sig-
nal y, which
is turned into
mel-frequency
cepstral coeffi-
cients (MFCC)
through a se-
quence of
processing steps

It is uncommon to pass the Fourier spectra directly
to the speech recognition system. Instead, it is standard
to apply a mel-frequency filterbank and a logarith-
mic compression to create log mel-frequency filterbank
(LMFB) features. The mel-frequency filterbank imple-
ments dimensionality reduction and frequency warping
as a linear projection of the power spectrum. The rela-
tionship between the i-th LMFB coefficient yi and the
observed noisy spectra Y [k] is given by

yi = ln

(
∑

k

wi
k|Y [k]|2

)
, (33.29)

where the scalar wi
k is the k-th coefficient of the i-th

filter in the filterbank.
Figure 33.3 reveals a typical structure of the matrix

W containing the scalars wi
k . It compresses 128 FFT

bins into 23 mel-frequency spectral features with a res-
olution that varies over frequency. At low frequencies,
high resolution is preserved by using only a small num-
ber of FFT bins for each mel-frequency feature. As the
Fourier frequency increases, more FFT bins are used.

Using (33.29) and (33.27), we can deduce the rela-
tionship among the LMFB for clean speech, noise, and
noisy observation. The noisy LMFB energies are a func-
tion of the two unobserved LMFB, and a cross-term that
depends on a third nuisance parameter αi :

exp(yi ) = exp(xi )+ exp(ni )+2αi exp

(
xi +ni

2

)
,

(33.30)
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Fig. 33.3 A graphical representation of the mel-frequency
filterbank used to compute MFCC features. This filter-
bank compresses 128 spectral bins into 23 mel-frequency
coefficients
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where

αi =
∑
k

wi
k|X[k]N[k]| cos θk

√∑
k

wi
k|X[k]|2

√∑
k

wi
k|N[k]|2

. (33.31)

As a consequence of this model, when we observe
yi there are actually three unobserved random variables.
The first two are obvious: the clean log spectral energy
and the noise log spectral energy that would have been
produced in the absence of mixing. The third variable
αi accounts for the unknown phase between the two
sources.

If the magnitude spectra are assumed constant over
the bandwidth of a particular filterbank, the definition of
αi collapses to a weighted sum of several independent
random variables

αi =
∑
k

wi
k cos θk

∑
j

wi
j

. (33.32)

According to the central limit theorem, a sum of
many independent random variables will tend to be
normally distributed. The number of effective terms in
(33.32) is controlled by the width of the i-th filterbank.
Since filterbanks with higher center frequencies have
wider bandwidths, they should be more nearly Gaussian.
Figure 33.4 shows the true distributions of α for a range
of filterbanks. They were estimated from a joint set of
noise and clean speech, and noisy speech taken from
the Aurora 2 training data by solving (33.30) for the un-
known αi . As expected, because the higher-frequency

'!
�

��

��� (��)
!#"

!

�#"

!'�#& '�#% '�#$ '�# � �# �#$ �#% �#&

��
�"
�!�
�!"
� �

Fig. 33.4 An estimation of the true distribution of α using (33.30)
and data from the Aurora 2 corpus. Higher numbered filterbanks
cover more frequency bins, are more nearly Gaussian, and have
smaller variances

higher-bandwidth filters include more FFT bins, they
produce distributions that are more nearly Gaussian.

After some algebraic manipulation, it can be shown
that

yi = xi + ln
[
1+ exp(ni − xi )+2αi exp

( ni−xi
2

)]
.

(33.33)

Many current speech enhancement algorithms ig-
nore the cross-term entirely, as in

yi = xi + ln[1+ exp(ni − xi )] . (33.34)

This is entirely appropriate in situations where the ob-
served frequency component is dominated by either
noise or speech. In these cases, the cross-term is in-
deed negligible. But, in cases where the speech and noise
components have similar magnitudes, the cross-term can
have a considerable effect on the observation.

To create cepstral features from these LMFB fea-
tures, apply a discrete cosine transform. The j-th cepstral
coefficient is calculated with the following sum, where
cij are the DCT coefficients:

yMFCC
j =

∑

i

c ji yLMFB
i . (33.35)

By convention, this transform includes a truncation of
the higher-order DCT coefficients, a process historically
referred to as cepstral liftering. For example, the Au-
rora 2 system uses 23 LMFB and keeps only the first 13
cepstral coefficients.

Due to this cepstral truncation, the matrix C created
from the scalars cij is not square and cannot be inverted.
But, we can define a right-inverse matrix D with ele-
ments dij , such that CD = I. That is, if D is applied to
a cepstral vector, an approximate spectral vector is pro-
duced, from which the projection C will recreate the
original cepstral vector. Using C and D, (33.34) can be
expressed for cepstral vectors x, n, and y as:

y = x+ g(x−n) , (33.36)

g(z) = C ln[1+ exp(−Dz)] . (33.37)

Although CD = I, it is not the case that DC = I. In
particular, (33.37) is not exactly correct as it needs an
extra term D̄z̄ that contains the missing columns from D
and higher-order cepstral coefficients from z. If only the
truncated cepstrum z is available, then D̄z̄ is a random
error term that is generally ignored.

In (33.37), the nonlinearity g was introduced, which
maps the signal-to-noise ratio (x−n) into the difference
between clean and noisy speech (y − x). When the noise
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cepstrum n has significantly less energy than the speech
vector x, the function g(x−n) approaches zero, and

y ≈ x. Conversely, when noise dominates speech, g(x−
n) ≈ n− x, and y ≈ n.

33.5 Structured Model Adaptation

This section compares two popular methods for struc-
tured model adaptation: log-normal parallel model
combination and vector Taylor-series adaptation. Both
can achieve good adaptation results with only a small
amount of data.

By using a set of clean-speech acoustic models and
a noise model, both methods approximate the model
parameters that would have been obtained by training
with corrupted speech.

33.5.1 Analysis of Noisy Speech Features

Figures 33.5 and 33.6 depict how additive noise can
distort the spectral features used in ASR systems. In
both figures, the simulated clean speech x and noise n
are assumed to follow Gaussian distributions:

px(x) = N(x; μx, σx) ,

pn(n) = N(n; μn, σn) .

After mixing, the noisy speech y distribution is
a distorted version of its clean speech counterpart. It is
usually shifted, often skewed, and sometimes bimodal.
It is clear that a pattern recognition system trained on
clean speech will be confused by noisy speech input.

In Fig. 33.5, the clean speech and noise mix to pro-
duce a bimodal distribution. We fix μn = 0 dB, since
it is only a relative level, and set σn = 2 dB, a typical
value. We also set μx = 25 dB and see that the resulting
distribution is bimodal when σx is very large. Fortu-
nately, for modern speech recognition systems that have
many Gaussian components, σx is never that large and
the resulting distribution is often unimodal.

Figure 33.6 demonstrates the more-common skew
and offset distortions. Again, the noise parameters are
μn = 0 dB and σn = 2 dB, but a more-realistic value
for σx = 5 dB is used. We see that the distribution is
always unimodal, although not necessarily symmetric,
particularly for low SNR (μx −μn).

33.5.2 Log-Normal Parallel
Model Combination

Parallel model combination (PMC) [33.29] is a general
method to obtain the distribution of noisy speech given

the distribution of clean speech and noise as mixtures of
Gaussians.

As discussed in Sect. 33.5.1, even if the clean
speech and noise cepstra follow Gaussian distribu-
tions, the noisy speech will not be Gaussian. The
log-normal PMC method nevertheless assumes that
the resulting noisy observation is Gaussian. It trans-
forms the clean speech and noise distributions into
the linear spectral domain, mixes them, and trans-
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Fig. 33.5 Distributions of the corrupted log-spectra y (solid lines)
from uncorrupted log-spectra x (dashed lines) using simulated data
and (33.27). The distribution of the noise log-spectrum n is Gaussian
with mean 0 dB and standard deviation of 2 dB. The distribution of
the clean log-spectrum x is Gaussian with mean 25 dB and standard
deviations of 25, 20, and 15 dB, respectively (the x-axis is expressed
in dB). The first two distributions are bimodal, whereas the 15 dB
case is more approximately Gaussian
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Fig. 33.6 Distributions of the corrupted log-spectra y (solid lines)
from uncorrupted log-spectra x (dashed lines) using simulated data
and (33.27). The distribution of the noise log-spectrum n is Gaussian
with mean 0 dB and standard deviation of 2 dB. The distribution of
the clean log-spectrum is Gaussian with standard deviation of 5 dB
and means of 10, 5, and 0 dB, respectively. As the average SNR
decreases, the Gaussian experiences more shift and skew
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forms them back into a distribution on noisy speech
cepstra.

If the mean and covariance matrix of the cepstral
noise vector n are given by μc

n and Σc
n, respectively, its

mean and covariance matrix in the log spectral domain
can be approximated by

μl
n = Dμc

n , (33.38)

Σl
n = DΣc

nDT . (33.39)

As in Sect. 33.4, D is a right inverse for the noninvertible
cepstral rotation C.

In the linear domain N = en , the noise distribution
is log-normal, with a mean vector μN and covariance
matrix ΣN given by

μN[i] = exp

(
μl

N[i]+ 1

2
Σl

N[i, i]
)

, (33.40)

ΣN[i, j] = μN[i]μN[ j][ exp
(
Σl

N[i, j])−1
]
.

(33.41)

As a result, we have the exact parameters for the dis-
tribution of noise features in the linear spectral domain.
The cepstral Gaussian distribution for the clean speech
can be transformed from μc

x and Σc
x to μX and ΣX using

expressions similar to (33.38) through (33.41).
Using the basic assumption that the noise and speech

waveforms are additive, the spectral vector Y is given by
Y = X + N. Without any approximation, the mean and
covariance of Y is given by

μY = μX +μN , (33.42)

ΣY = ΣX +ΣN . (33.43)

Although the sum of two log-normal distributions is
not log-normal, the log-normal approximation [33.29]
consists in assuming that Y is log-normal. In this case we
can apply the inverse formulae of (33.40) and (33.41) to
obtain the mean and covariance matrix in the log-spectral
domain:

Σl
y ≈ ln

(
ΣY[i, j]

μY[i]μY[ j] +1

)
, (33.44)

μl
y[i] ≈ ln(μy[i])− 1

2
ln

(
ΣY[i, j]

μY[i]μY[ j] +1

)
,

(33.45)

and finally return to the cepstrum domain applying the
inverse of (33.38) and (33.39):

μc
y = Cμl

y , (33.46)

Σc
y = CΣl

yCT . (33.47)

The log-normal approximation cannot be used di-
rectly for the delta and delta–delta cepstrum. Another
variant that can be used in this case and is more accurate
than the log-normal approximation is the data-driven
parallel model combination (DPMC) [33.29]. DPMC
uses Monte Carlo simulation to draw random cepstrum
vectors from both the clean-speech HMM and noise
distribution to create cepstrum of the noisy speech by
applying (33.36) to each sample point. The mean and co-
variance of these simulated noisy cepstra are then used as
adapted HMM parameters. In that respect, it is similar
to other model adaptation schemes, but not as accu-
rate as the matched condition training from Sect. 33.2.1
because the distribution is only an approximation.

Although it does not require a lot of memory,
DPMC carries with it large computational burden.
For each transformed Gaussian component, the recom-
mended number of simulated training vectors is at least
100 [33.29]. A way of reducing the number of random
vectors needed to obtain good Monte Carlo simulations
is proposed in [33.30].

33.5.3 Vector Taylor-Series
Model Adaptation

Vector Taylor-series (VTS) model adaptation is similar
in spirit to the log-normal PMC in Sect. 33.5.2, but in-
stead of a log-normal approximation it uses a first-order
Taylor-series approximation of the model presented
from Sect. 33.4.

This model described the relationship between the
cepstral vectors x, n, and y of the clean speech, noise,
and noisy speech, respectively:

y = x+ g(n− x) , (33.48)

where the nonlinear function g(z) is given by

g(z) = C ln[1+ exp(Dz)] . (33.49)

As in Sect. 33.4, C and D are the cepstral rotation and
its right inverse, respectively.

Moreno [33.31] first suggested the use of Taylor se-
ries to approximate the nonlinearity in (33.49), though
he applies it in the spectral instead of the cepstral do-
main. Since then, many related techniques have appeared
that build upon this core idea [33.32–37]. They mainly
differ in how speech and noise are modeled, as well
as which assumptions are made in the derivation of the
nonlinearity to approximate [33.38].

To apply the vector Taylor-series approximation,
first assume that x and n are Gaussian random vectors
with means {μx, μn} and covariance matrices {Σx,Σn},
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Table 33.9 Word accuracy for Aurora 2, using VTS model adaptation on an acoustic model trained on clean data

SNR (dB) Test set A Test set B Test set C Average

Clean 99.63 99.63 99.63 99.63

20 97.86 97.59 98.17 97.88

15 96.47 95.64 96.99 96.37

10 93.47 91.98 93.30 92.91

5 86.87 85.48 85.49 85.94

0 71.68 68.90 68.72 69.77

−5 36.84 33.04 39.04 35.97

Average (0–20) 89.27 87.92 88.53 88.58

and furthermore that x and n are independent. After
algebraic manipulation it can be shown that the Jaco-
bian of (33.48) with respect to x and n evaluated at
{x = μx, n = μn} can be expressed as:

∂y
∂x

∣∣∣∣
(μx,μn)

= G , (33.50)

∂y
∂n

∣∣∣∣
(μx,μn)

= I−G , (33.51)

where the matrix G is given by

G = CFD . (33.52)

In (33.52), F is a diagonal matrix whose elements are
given by vector f (μ), which in turn is given by

f (μn −μx) = 1

1+ exp[D(μn −μx)] . (33.53)

Using (33.50) and (33.51) we can then approximate
(33.48) by a first-order Taylor-series expansion around
{μn, μx} as

y ≈ μx + g(μn −μx)+G(x−μx)

+ (I−G)(n−μn) . (33.54)

The mean of y, μy, can be obtained from (33.54) as

μy ≈ μx + g(μn −μx) , (33.55)

and its covariance matrix Σy by

Σy ≈ G(Σx)GT + (I−G)Σn(I−G)T . (33.56)

Note that, even if Σx and Σn are diagonal, Σy is not.
Nonetheless, it is common to make a diagonal assump-
tion. That way, we can transform a clean HMM to
a corrupted HMM that has the same functional form
and use a decoder that has been optimized for diagonal
covariance matrices.

To compute the means and covariance matrices of the
delta and delta–delta parameters, let us take the deriva-
tive of the approximation of y in (33.54) with respect to
time:

∂y
∂t

≈ G
∂x
∂t

, (33.57)

so that the delta cepstrum computed through
Δxt = xt+2 − xt−2, is related to the derivative [33.39]
by

Δx ≈ 4
∂x
∂t

, (33.58)

so that

μΔy ≈ GμΔx , (33.59)

and similarly

ΣΔy ≈ GΣΔxGT + (I−G)ΣΔn(I−G)T . (33.60)

Similarly, for the delta–delta cepstrum, the mean is
given by

μΔ2 y ≈ GμΔ2x , (33.61)

and the covariance matrix by

ΣΔ2 y ≈ GΣΔ2xGT + (I−G)ΣΔ2n(I−G)T .

(33.62)

Table 33.9 demonstrates the effectiveness of VTS
model adaptation on the Aurora 2 task. For each test
noise condition, a diagonal Gaussian noise model was
estimated from the first and last 200 ms of all the test
data. Then, each Gaussian component in the acoustic
model was transformed according to the algorithm pre-
sented above to create a noise condition specific acoustic
model. In theory, better results could have been obtained
by estimating a new noise model from each utterance and
creating an utterance specific acoustic model. However,
the computational cost would be much greater.
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Fig. 33.7 Magnitude of the spectral subtraction filter gain
as a function of the input instantaneous SNR for A = 10 dB,
for the spectral subtraction of (33.68), magnitude sub-
traction of (33.71), and over-subtraction of (33.72) with
β = 2 dB

Compared to the unadapted results of Table 33.1, the
performance of the VTS adapted models is improved at
each SNR level on every test set. At 20 dB SNR, the
VTS model adaptation reduces the number of errors by
61%. Averaged over 0–20 dB, the adapted system has
an average of 73% fewer errors.
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Fig. 33.8a,b Mean and standard deviation of noisy speech y in dB.
The distribution of the noise log-spectrum n is Gaussian with mean
0 dB and standard deviation of 2 dB. The distribution of the clean
speech log-spectrum x is Gaussian, having a standard deviation of
10 dB and a mean varying from −25 to 25 dB. The first-order VTS
approximation is a better estimate for a Monte Carlo simulation of
(33.27) when the cross-term is ignored (b), although both VTS and
lognormal PMC underestimate the standard deviation compared to
when the cross-term is included (a)

The VTS model adaptation results also better than
any feature normalization technique using clean training
data from Sect. 33.3. This is a direct result of using the
model from Sect. 33.4 to make better use of the available
adaptation data.

33.5.4 Comparison of VTS
and Log-Normal PMC

It is difficult to visualize how good the VTS approxi-
mation is, given the nonlinearity involved. To provide
some insight, Figs. 33.8 and 33.9 provide a compar-
ison between the log-normal approximation, the VTS
approximation, and Monte Carlo simulations of (33.27).
For simplicity, only a single dimension of the log spectral
features are shown.

Figure 33.8 shows the mean and standard deviation
of the noisy log-spectral energy y in dB as a function
of the mean of the clean log-spectral energy x with
a standard deviation of 10 dB. The log-spectral energy
of the noise n is Gaussian with mean 0 dB and standard
deviation 2 dB.

We see that the VTS approximation is more accurate
than the log-normal approximation for the mean, espe-
cially in the region around 0 dB SNR. For the standard
deviation, neither approximation is very accurate. Be-
cause the VTS models fail to account for the cross-term
of (33.27), both tend to underestimate the true noisy
standard deviation.

Figure 33.9 is similar to Fig. 33.8 except that the
standard deviation of the clean log-energy x is only 5 dB,
a more-realistic number for a speech recognition system.
In this case, both the log-normal approximation and the
first-order VTS approximation are good estimates of the
mean of y. Again, mostly because they ignore the cross-
term, neither approximation gives a reliable estimate for
the standard deviation of y in the region between −20 dB
and 20 dB.

33.5.5 Strategies
for Highly Nonstationary Noises

So far, this section has dealt only with stationary noise.
That is, it assumed the noise cepstra for a given utterance
are well modeled by a Gaussian distribution. In practice,
though, there are many nonstationary noises that do not
fit that model. What is worse, nonstationary noises can
match a random word in the system’s lexicon better
than the silence model. In this case, the benefit of using
speech recognition vanishes quickly.
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Environmental Robustness 33.6 Structured Feature Enhancement 671

One solution to the problem of nonstationary noise is
to use a more-complex noise model with standard model
adaptation algorithms. For instance, the Gaussian noise
model can be replaced with a Gaussian mixture model
(GMM) or hidden Markov model (HMM).

With a GMM noise model, the decoding becomes
more computationally intensive. Before, a Gaussian
noise model transformed each component of the clean
speech model into one component in the adapted noisy
speech model. Now, assume that the noise is independent
of speech and is modeled by a mixture of M Gaus-
sian components. Each Gaussian component in the clean
speech model will mix independently with every compo-
nent of the noise GMM. As a result, the acoustic model
will grow by a factor of M.

An HMM noise model can provide a much better
fit to nonstationary noises [33.40, 41]. However, to ef-
ficiently use an HMM noise model, the decoder needs
to be modified to perform a three-dimensional Viterbi
search which evaluates every possible speech state and
noise state at every frame. The computational complex-
ity of performing this speech/noise decomposition is
very large, though in theory it can handle nonstationary
noises quite well.

Alternatively, dedicated whole-word garbage mod-
els can bring some of the advantages of an HMM
noise model without the additional cost of a three-
dimensional Viterbi search. In this technique [33.42],
new words are created in the acoustic and language
models to cover nonstationary noises such as lip
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Fig. 33.9a,b Mean and standard deviation of noisy speech y in dB.
The distribution of the noise log-spectrum n is Gaussian with mean
of 0 dB and standard deviation of 2 dB. The distribution of the clean
log-spectrum x is Gaussian with a standard deviation of 5 dB and
a mean varying from −25 dB to 25 dB. Both log-normal PMC and
the first-order VTS approximation make good estimates compared to
a Monte Carlo simulation of (33.27) when the cross-term is ignored
(b), although the standard deviation is revealed as an underestimate
when the cross-term is included (a)

smacks, throat clearings, coughs, and filler words
such as uhm and uh. These nuisance words can
be successfully recognized and ignored during non-
speech regions, where they tend to cause the most
damage.

33.6 Structured Feature Enhancement

This section presents several popular methods for struc-
tured feature enhancement. Whereas the techniques of
Sect. 33.5 adapt the recognizer’s acoustic model param-
eters, the techniques discussed here use mathematical
models of the noise corruption to enhance the features
before they are presented to the recognizer.

Methods in this class have a rich history. Boll [33.43]
pioneered the use of spectral subtraction for speech en-
hancement almost thirty years ago, and it is still found
in many systems today. Ephraim and Malah [33.44] in-
vented their logarithmic minimum mean-squared error
short-time spectral-amplitude (logMMSE STSA) esti-
mator shortly afterwards, which forms the basis of
many of today’s advanced systems. Whereas these ear-
lier approaches use weak speech models, today’s most
promising systems use stronger models, coupled with
vector Taylor series speech enhancement [33.45].

Some of these techniques were developed for speech
enhancement for human consumption. Unfortunately,
what sounds good to a human can confuse an auto-
matic speech recognition system, and automatic systems
can tolerate distortions that are unacceptable to human
listeners.

33.6.1 Spectral Subtraction

Spectral subtraction is built on the assumption that the
observed power spectrum is approximately the sum of
the power spectra for the clean signal and the noise.
Although this assumption holds in the expected sense,
as we have seen before, in any given frame it is only
a rough approximation (Sect. 33.4):

|Y ( f )|2 ≈ |X( f )|2 +|N( f )|2 . (33.63)
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Using (33.63), the clean power spectrum can be esti-
mated by subtracting an estimate of the noise power
spectrum from the noisy power spectrum:

|X̂( f )|2 = |Y ( f )|2 −|N̂( f )|2 = |Y ( f )|2 H2
ss( f ) ,

(33.64)

where the equivalent spectral subtraction filter in the
power spectral domain is

H2
ss( f ) = 1− 1

SNR( f )
, (33.65)

and the frequency-dependent signal-to-noise ratio
SNR( f ) is

SNR( f ) = |Y ( f )|2
|N̂( f )|2 . (33.66)

The weakest point in many speech enhancement al-
gorithms is the method for estimating the noise power
spectrum. More advanced enhancement algorithms can
be less sensitive to this estimate, but spectral subtrac-
tion is quite sensitive. The easiest option is to assume
the noise is stationary, and obtain an estimate using the
average periodogram over M frames that are known to
be just noise

|N̂( f )|2 = 1

M

M−1∑

i=0

|Yi ( f )|2 . (33.67)

In practice, there is no guarantee that the spectral
subtraction filter in (33.65) is nonnegative, which vio-
lates the fundamental nature of power spectra. In fact, it
is easy to see that noise frames do not comply. To en-
force this constraint, Boll [33.43] suggested modifying
the filter as

H2
ss( f ) = max

(
1− 1

SNR( f )
, a

)
(33.68)

with a ≥ 0, so that the filter is always positive.
This implementation results in output speech that has

significantly less noise, though it exhibits what is called
musical noise [33.46]. This is caused by frequency bands
f for which |Y ( f )|2 ≈ |N̂( f )|2. As shown in Fig. 33.7,
a frequency f0 for which |Y ( f0)|2 < |N̂( f0)|2 is atten-
uated by A dB, whereas a neighboring frequency f1,
where |Y ( f1)|2 > |N̂( f1)|2, has a much smaller attenua-
tion. These rapid changes of attenuation over frequency
introduce tones at varying frequencies that appear and
disappear rapidly.

The main reason for the presence of musical noise is
that the estimates of SNR( f ) are poor. This is partly be-
cause the SNR( f ) are computed independently for every
time and frequency, even though it would be more rea-
sonable to assume that nearby values are correlated. One

possibility is to smooth the filter in (33.68) over time,
frequency, or both. This approach suppresses a smaller
amount of noise, but it does not distort the signal as
much, and thus may be preferred. An easy way to smooth
over time is to mix a small portion of the previous SNR
estimate into the current frame:

SNR( f, t) = γSNR( f, t −1)+ (1−γ )
|Y ( f )|2
|N̂( f )|2 .

(33.69)

This smoothing yields more-accurate SNR measure-
ments and thus less distortion, at the expense of reduced
noise suppression.

Other enhancements to the basic algorithm have
been proposed to reduce the musical noise. Sometimes
(33.68) is generalized to

fms(x) =
[

max

(
1− 1

x
α
2
, a

)] 1
α

, (33.70)

where α = 2 corresponds to the power spectral sub-
traction rule in (33.64), and α = 1 corresponds to the
magnitude subtraction rule (plotted in Fig. 33.7 for
A = 10 dB):

gms(x)=max
[
20 log10

(
1−10− x

5

)
,−A

]
. (33.71)

Another variation, called oversubtraction, consists
of multiplying the estimate of the noise power spectral
density |N̂( f )|2 in (33.67) by a constant 10

β
10 , where

β > 0, which causes the power spectral subtraction rule
to be transformed to another function

gms(x) = max
{

10 log10

[
1−10− (x−β)

10

]
,−A

}
.

(33.72)

This causes |Y ( f )|2 < |N̂( f )|2 to occur more of-
ten than |Y ( f )|2 > |N̂( f )|2 for frames for which
|Y ( f )|2 ≈ |N̂( f )|2, and thus reduces the musical noise.

Since the normal cepstral processing for speech
recognition includes finding the power spectrum for each
frame of data, spectral subtraction can be performed di-
rectly in the feature extraction module, without the need
for resynthesis. Instead of operating directly on the full-
resolution power spectrum, a popular alternative is to
use the mel-frequency power spectrum. This does not
change the motivation or derivation for spectral sub-
traction, but the mel-frequency power spectrum is more
stable and less susceptible to musical noise.

Because spectral techniques like spectral subtrac-
tion can be implemented with very little computational
cost, they are popular in embedded applications. In
particular, the advanced front-end (AFE) standard pro-
duced by the ETSI DSW working group [33.47, 48]
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Table 33.10 ETSI advanced front-end word accuracy for Aurora 2. This low-resource front end produces respectable
results on the task

Acoustic model Test set A Test set B Test set C Average

Clean 89.27 87.92 88.53 88.58

Multistyle 93.74 93.26 92.21 93.24

uses a variation of this technique in its noise reduction
module. The complete AFE noise reduction process con-
sists of a two-stage time-smoothed frequency-domain
filtering [33.49], time-domain noise reduction [33.50],
SNR-dependent waveform processing [33.51], and an
online variant of CMN [33.52].

Table 33.10 presents the performance of the ETSI
AFE on the Aurora 2 clean and multistyle tasks. De-
spite its low computational cost, the multistyle AFE has
only 10% more errors than the best system described in
this chapter (Table 33.15). It achieves a average word
accuracy of 88.19% when trained with clean data, and
93.24% when trained with multistyle data.

33.6.2 Vector Taylor-Series
Speech Enhancement

As shown in Sect. 33.5.3, the VTS approximation can
be used to create a noisy speech model from a clean
speech model. But, adapting each Gaussian component
in a large speech model can be quite computationally
expensive.

A lightweight alternative is to leverage a smaller
model for speech into a separate enhancement step. The
VTS approximation is applied to this smaller model,
which is then used to estimate the enhanced features that
are sent to an unmodified recognition system. A good
comprehensive summary of this approach can be found
in [33.45], and the literature is rich with implementa-
tions [33.38, 53].

Typically, the clean speech model is a multivariate
Gaussian mixture model, and the noise model is a single
Gaussian component. The parameters of this prior model
include the state-conditional means and variances, μx

s ,
σ x

s , μn and σn, as well as the mixture component weights
p(s):

p(x) =
∑

s

N
(
x; μx

s , σ
x
s

)
p(s) , (33.73)

p(n) = N(n; μn, σn) . (33.74)

These models are tied together by the nonlinear mixing
represented by (33.36), recast as a probability distribu-
tion:

p(y|x, n) ≈ N[y; x+ g(x−n), Ψ 2] . (33.75)

Here, the variance Ψ 2 chiefly represents the error in-
curred in ignoring the cross-term produced by mixing the
speech and noise (Sect. 33.4), and is in general a func-
tion of (x−n). For an overview of three reasonable
approximations for Ψ 2 [33.38].

This Chapter uses the approximation Ψ 2 = 0, which
is equivalent to ignoring the effects of the cross-term
entirely. We call this approximation the zero-variance
model (ZVM). This yields a good fit to the data at the
extreme SNR regions, and a slight mismatch in the x ≈ n
region.

If the VTS techniques from Sect. 33.5.3 were applied
directly to the variables x and n for VTS enhancement,
the result would be quite unstable [33.38]. Instead, the
problem is reformulated in terms of r, the instantaneous
signal-to-noise ratio, defined as

r = x−n .

By performing VTS on the new variable r, the stabil-
ity problems are circumvented. In the end, an estimate
for the instantaneous SNR can be mapped back into
estimates of x and n through

x = y − g(r) , (33.76)

n = y − g(r)−r . (33.77)

These formulas satisfy the intuition that as the SNR r
becomes more positive, x approaches y from below. As
the SNR r becomes more negative, n approaches y from
below.

The joint PDF for the ZVM is a distribution over the
clean speech x, the noise n, the observation y, the SNR
r, and the speech state s:

p(y, r, x, n, s) = p(y|x, n)p(r|x, n)p(x, s)p(n) .

The observation and SNR are both deterministic
functions of x and n. As a result, the conditional prob-
abilities p(y|x, n) and p(r|x, n) can be represented by
Dirac delta functions:

p(y|x, n) = δ[ln(ex + en)− y] , (33.78)

p(r|x, n) = δ(x−n−r) . (33.79)
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Table 33.11 Word accuracy for Aurora 2, using VTS speech enhancement and an acoustic model trained on clean data.
Enhancement is performed on static cepstra, which are then used to compute the dynamic coefficients used in recognition.
This enhancement technique does better than any of the normalization techniques

Acoustic model Iterations Set A Set B Set C Average

Clean 0 88.59 88.06 86.92 88.04

Clean 1 89.67 89.05 87.37 88.96

Clean 2 89.92 89.39 87.28 89.18

Clean 3 89.99 89.48 87.05 89.20

Table 33.12 Word accuracy for Aurora 2, using VTS speech enhancement and an acoustic model trained on enhanced
multistyle data. As in Table 33.11, the dynamic coefficients are calculated from enhanced static coefficients. In the end,
the result is not as good as simple feature normalization alone on a multistyle acoustic model

Acoustic model Iterations Set A Set B Set C Average

Multistyle 0 92.58 91.14 92.52 91.99

Multistyle 1 92.79 91.27 92.24 92.07

Multistyle 2 92.86 91.35 92.10 92.11

Multistyle 3 92.82 91.35 91.94 92.06

This allows us to marginalize the continuous variables
x and n, as in

p(y, r, s) =
∫

dx
∫

dnp(y, r, x, n, s)

= N[y − g(r); μx
s , σ

x
s ]p(s)

× N[y − g(r)−r; μn, σn] . (33.80)

After marginalization, the only remaining continuous
hidden variable is r, the instantaneous SNR. The behav-
ior of this joint PDF is intuitive. At high SNR,

p(y, r, s) ≈ N(y; μx
s , σ

x
s )p(s)N(y −r; μn, σn) .

That is, the observation is modeled as clean speech, and
the noise is at a level r units below the observation. The
converse is true for low SNR:

p(y, r, s) ≈ N(y −r; μx
s , σ

x
s )p(s)N(y; μn, σn) .

To solve the MMSE estimation problem, the non-
linear function g(r) in (33.80) is replaced by its
Taylor-series approximation, as in Sect. 33.5.3. For now,
the expansion point is the expected a priori mean of r:

r0
s = E{r|s} = E{x−n|s} = μx

s −μn .

Using (33.80) and the VTS approximation, it can
be shown that p(y|s) has the same form derived in
Sect. 33.5.3. Essentially, we perform VTS adaptation of
the clean speech GMM to produce a GMM for noisy
speech:

p(y|s) = N(y; μy|s, σy|s) , (33.81)

μy|s = μx
s + g

(−r0
s

)+Gs
(
μx

s −μn
s −r0

s

)
, (33.82)

σy|s = Gsσ
x
s GT

s + (I−Gs)σn(I−Gs)T . (33.83)

When using the recommended expansion point, (33.82)
simplifies to

μy|s = μx + g
(
μn −μx

s

)
.

It is also straightforward to derive the conditional
posterior p(r|y, s), as in (33.84). As in the other iter-
ative VTS algorithms, we can use the expected value
E[r|y, s] = μr

s as a new expansion point for the vector
Taylor-series parameters and iterate.

p(r|y, s) = N
(
r; μr

s, σ
r
s

)
,

(
σr

s

)−1 = (I−Gs)T(
σ x

s

)−1(I−Gs)

+ (Gs)T(σn)−1Gs ,

μr
s = μx

s −μn +σr
s

[
(Gs − I)T(

σ x
s

)−1

+ (Gs)T(σn)−1](y −μy|s) . (33.84)

After convergence, we compute an estimate of x
from the parameters of the approximate model:

x̂ =
∑

s

E[x|y, s]p(s|y) ,

E[x|y, s] ≈ y − ln(eμr
s +1)+μr

s .

Here, (33.76) has been used to map E[r|y, s] = μr
s to

E[x|y, s]. Since the transformation is nonlinear, our
estimate for x̂ is not the optimal MMSE estimator.

Tables 33.11–33.14 evaluate accuracy on Aurora 2
for several different VTS speech enhancement config-
urations. For all experiments, the clean speech GMM
consisted of 32 diagonal components trained on the clean
Aurora 2 training data.
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Table 33.13 Word accuracy for Aurora 2, using VTS speech enhancement and an acoustic model trained on clean data.
Unlike Table 33.11, the static cepstral coefficients are enhanced and then concatenated with noisy dynamic coefficients.
The end result is worse than computing the dynamic coefficients from enhanced static coefficients

Acoustic model Iterations Set A Set B Set C Average

Clean 0 83.56 84.60 82.52 83.77

Clean 1 84.38 85.48 82.82 84.51

Clean 2 84.60 85.72 82.76 84.68

Clean 3 84.68 85.81 82.65 84.73

Table 33.14 Word accuracy for Aurora 2, using VTS speech enhancement and an acoustic model trained on enhanced
multistyle data. Unlike Table 33.12, the static cepstral coefficients are enhanced and then concatenated with noisy dynamic
coefficients. The end result is better than computing the dynamic coefficients from enhanced static coefficients

Acoustic model Iterations Set A Set B Set C Average

Multistyle 0 93.64 93.05 93.05 93.29

Multistyle 1 93.76 93.14 92.81 93.32

Multistyle 2 93.72 93.19 92.79 93.32

Multistyle 3 93.57 92.95 92.70 93.15

Table 33.15 Word accuracy for Aurora 2, adding CMVN after the VTS speech enhancement of Table 33.14. The result is
a very high recognition accuracy

Acoustic model Normalization Set A Set B Set C Average

Multistyle None 93.72 93.19 92.79 93.32

Multistyle CMVN 94.09 93.46 94.01 93.83

Of course, using the multistyle training data pro-
duces better accuracy. Comparing Tables 33.11 and
33.12, it is apparent that multistyle data should be
used whenever possible. Note that the result with the
clean acoustic model is better than all of the feature
normalization techniques explored in this chapter, and
better than the VTS adaptation result of Table 33.9. Be-
cause VTS enhancement is fast enough to compute new
parameters specific to each utterance, it is able to bet-
ter adapt to the changing conditions within each noise
type.

Although the speech recognition features consist of
static and dynamic cepstra, the VTS enhancement is
only defined on the static cepstra. As a result, there
are two options for computing the dynamic cepstra.
In Tables 33.11 and 33.12, the dynamic cepstra were
computed from the enhanced static cepstra. In the cor-
responding Tables 33.13 and 33.14, the dynamic cepstra
were computed from the noisy static cepstra. In the for-

mer case, the entire feature vector is affected by the
enhancement algorithm, and in the latter, only the static
cepstra are modified.

Using the noisy dynamic cepstra turns out to be bet-
ter for the multistyle acoustic model, but worse for the
clean acoustic model. Under the clean acoustic model,
the benefit of the enhancement outweighs the distortion
it introduces. However, the multistyle acoustic model is
already able to learn and generalize the dynamic coef-
ficients from noisy speech. Table 33.14 shows that the
best strategy is to only enhance the static coefficients.

Finally, consider the effect of adding feature normal-
ization to the system. Normalization occurs just after the
full static and dynamic feature vector is created, and be-
fore it is used by the recognizer. Table 33.15 presents the
final accuracy achieved by adding CMVN to the result
of Table 33.14. Even though the accuracy of the multi-
style model was already quite good, CMVN reduces the
error rate by another 7.6% relative.

33.7 Unifying Model and Feature Techniques

The front- and back-end methods discussed so
far can be mixed and matched to good per-

formance. This section introduces two techniques
that achieve better accuracy through a tighter in-

Part
E

3
3
.7



676 Part E Speech Recognition

tegration of the front- and back-end robustness
techniques.

33.7.1 Noise Adaptive Training

Section 33.2 discussed how the recognizer’s HMMs can
be adapted to a new acoustical environment. Section 33.6
dealt with cleaning the noisy feature without retraining
the HMMs. It is logical to consider a combination of
both, where the features are cleaned to remove noise
and channel effects and then the HMMs are retrained to
take into account that this processing stage is not perfect.

It was shown in [33.19] that a combination of
feature enhancement and matched condition training
can achieve a lower word error rate than feature en-
hancement alone. This paper demonstrated how, by
introducing a variant of the enhancement algorithm from
Sect. 33.3.4, very low error rates could be achieved.

These low error rates are hard to obtain in prac-
tice, because they assume preknowledge of the exact
noise type and level, which in general is difficult to
obtain. On the other hand, this technique can be effec-
tively combined with the multistyle training discussed
in Sect. 33.2.1.

33.7.2 Uncertainty Decoding
and Missing Feature Techniques

Traditionally, the speech enhancement algorithms from
Sect. 33.6 output an estimate of the clean speech to be
used by the speech recognition system. However, the
accuracy of the noise removal process can vary from
frame to frame and from dimension to dimension in the
feature stream.

Uncertainty decoding [33.54] is a technique where
the feature enhancement algorithm associates a confi-
dence with each value that it outputs. In frames with
a high signal-to-noise ratio, the enhancement can be
very accurate and would be associated with high con-
fidence. Other frames, where some or all of the speech
has been buried in noise, would have low confidence.

The technique is implemented at the heart of
the speech recognition engine, where many Gaussian
mixture components are evaluated. When recognizing
uncorrupted speech cepstra, the purpose of these eval-
uations is to discover the probability of each clean
observation vector, conditioned on the mixture index,
px|m(x|m), for each Gaussian component in the speech
model used by the recognizer.

If the training and testing conditions do not match,
as is the case in noise-corrupted speech recognition,

one option is to ignore the imperfections of the noise
removal, and evaluate px|m(x̂|m). This is the classic case
of passing the output of the noise removal algorithm
directly to the recognizer.

With the uncertainty decoding technique, the joint
conditional PDF p(x, y|m) is generated and marginal-
ized over all possible unseen clean-speech cepstra:

p(y|m) =
∞∫

−∞
p(y, x|m)dx . (33.85)

Under this framework, instead of just providing
cleaned cepstra, the speech enhancement process also
estimates the conditional distribution p(y|x, m), as
a function of x. For ease of implementation, it is gener-
ally assumed that p(y|x) is independent of m:

p(y|x, m) ≈ p(y|x) = αN
(
x; x̂(y), σ2

x̂ (y)
)
, (33.86)

where α is independent of x, and therefore can be ig-
nored by the decoder. Note that x̂ and σ2

x̂ are always
functions of y; the cumbersome notation is dropped for
the remainder of this discussion.

Finally, the probability for the observation y, con-
ditioned on each acoustic model Gaussian mixture
component m, can be calculated:

p(y|m) =
∞∫

−∞
p(y|x, m)p(x|m)dx

∝
∞∫

−∞
N

(
x̂; x, σ2

x̂

)
N

(
x; μm, σ2

m

)
dx

= N
(
x̂; μm, σ2

m +σ2
x̂

)
. (33.87)

This formula is evaluated for each Gaussian mixture
component in the decoder, p(x|m) = N(x,μm, σ2

m).
As can be observed in (33.87), the uncertainty output

from the front end increases the variance of the Gaussian
mixture component, producing an effective smoothing
in cases where the front end is uncertain of the true value
of the cleaned cepstra.

Two special cases exist for uncertainty decoding. In
the absence of uncertainty information from the noise
removal process, we can either assume that there is no
uncertainty or that there is complete uncertainty.

If there were no uncertainty, then σ2
x̂ = 0. The prob-

ability of the observation y for each acoustic model
Gaussian mixture component m simplifies to:

p(y|m) = p(x̂|m) = N
(
x̂; μm, σ2

m

)
. (33.88)

This is the traditional method of passing features directly
from the noise removal algorithm to the decoder.
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If there were complete uncertainty of any of the cep-
stral coefficients, the corresponding σ2

x̂ would approach
infinity. That coefficient would have no effect on the cal-
culation of p(y|m). This is desirable behavior, under the
assumption that the coefficient could not contribute to
discrimination.

Both of these extreme cases are similar to the
computations performed when using hard thresholds
with missing-feature techniques [33.55]. There has been
some success in incorporating heuristic soft thresholds
with missing-feature techniques [33.56], but without the
benefits of a rigorous probabilistic framework.

33.8 Conclusion

To prove a newly developed system, it can be tested
on any one of a number of standard noise-robust speech
recognition tasks. Because a great number of researchers
are publishing systematic results on the same tasks,
the relative value of complete solutions can be easily
assessed.

When building a noise-robust speech recognition
system, there exist several simple techniques that should
be tried before more-complex strategies are invoked.
These include the feature normalization techniques of
Sect. 33.3, as well as the model retraining methods of
Sect. 33.2.

If state-of-the-art performance is required with
a small amount of adaptation data, then the structured
techniques of Sects. 33.5 and 33.6 can be imple-
mented. Structured model adaptation carries with it
an expensive computational burden, whereas struc-
tured feature enhancement is more lightweight but less
accurate.

Finally, good compromises between the accu-
racy of model adaptation and the speed of feature
enhancement can be achieved through a tighter in-
tegration of the front and back end, as shown in
Sect. 33.7.
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