TISC docucmentation

Roger Grosse

September 15, 2007

Contents
1 About 1
2 Running the code 2
2.1 Notation 2
2.2 Overview e e 3
2.3 Solving for the coefficients 3
231 Example. o 4
2.3.2 Parameters 4
2.3.3 What if it’s tooslow? 4
2.4 Getting the reconstruction from Aand S 5
2.5 Learning bases)
2.6 Runningonebatch 0.)
2.7 Running the visioncode oL 6
2.7.1 Parameters 6
3 Code files 7
1 About

This is the code which implements the algorithms described in “Shift-invariant
sparse coding for audio classification.” Because some of the algorithms take
time to implement, we are providing this subset of our code base which imple-
ments the core inference routines. We also provide example code which uses
SISC to learn a set of shift-invariant basis functions from Olshausen and Field’s
Sparsenet collection of natural images. We hope our code is modular enough
that it will be easy to plug in your own data into our inference code.

Because the code is written in MATLAB and C, we expect it to be portable
between machines. However, we should note that we have only run the code
on 64-bit dual core AMD Opteron(tm) processors running Linux, and with
MATLAB 7.4, and we can’t guarantee that everything will run smoothly on
other systems.

In this documentation, for simplicity, I describe all of the processing in terms
of images, but nothing here is specific to images. In section 2.2, we briefly
describe how to apply the code to other kinds of data.

Note: although all of the code here is our own, we have previously worked
with Bruno Olshausen’s SPARSENET package. There may be a few uninten-
tional similarities in the overall organization of the code. SPARSENET can be
found at http://redwood.berkeley.edu/bruno/sparsenet/.

2 Running the code

First, you need to run make to compile all of the C code. Our makefile is written
for Linux, but if you are running on other platforms, you can compile each of
the files individually (from the MATLAB command window) with

mex -g —largeArrayDims file.c sisc_lib.C

The makefile is set by default with the -g flag so that the C functions perform
consistency checks on the parameters you pass in. If you wish to turn on code
optimization, simply remove the -g flag. (MATLAB enables optimization by
default.)

To run the demo, start MATLAB from this directory and type run_sisc.
This will learn a set of 16 basis functions from the SPARSENET images, and
should take roughly 45 minutes with code optimization turned off.

2.1 Notation

For convenience, I list the notations I will use in this paper.
e M and N, the number of rows and columns in each image.
e M and N, the number of rows and columns in a basis function.

e (), the number of channels (e.g. colors) in the data.

m, the number of images

n, the number of basis functions
o X the it" image.

S0i:7) the computed coefficients for the j* basis function for the i image.

o AU the j* basis function.

2.2 Overview

Let X be image i, AY) be the jth basis, and S*7) be the activation matrix
for basis j in image 4. SISC minimizes the following objective function:

minimize DOIXD =" AW w SEDZ 4 8N 5Dy
i=1 j=1]
subject to laill3 < ¢, Vi,

with respect to A and S.

Each image X is stored as an M x N x C array!, where M is the number of
rows, N the number of columns, and C' the number of “channels.” In the case
of images, channels could represent color or stereo, so for the black and white
Sparsenet images, there is only a single channel. The algorithm is shift-invariant
with respect to the first two dimensions, but not the third. The set of all images
will, naturally, be stored as an M x N x C' x m array. (The code currently only
handles equal-sized images.)

The coefficient array S for a single image is an M x N X n array (where n is
the number of basis functions). All of the entries which cause a basis function
to fall off the side of the image (e.g. a row larger than M — M + 1 or a column
larger than N — N + 1) are constrained to always be zero. The basis functions
are an M x N x C x n array.

Although I describe everything here in terms of images, remember that there
is nothing here that is specific to vision. For processing raw time-series audio,
we take M to be the length of the signal, and N = C' = 1. For processing
spectrograms, since we do not intend the algorithm to be shift-invariant in
frequency, we take M to be the length of the signal (in spectrogram windows)
and C to be the number of frequencies, and let N = 1. In other words, each
frequency is represented as a channel.

By reading run_sisc.m and run_batch.m, you can probably get a good feel
for how to use the code for your own data. I also describe the key functions in
the following sections.

2.3 Solving for the coefficients

The most useful thing to be able to do is probably to compute the coefficients
S for a given image. The function which does this is get_responses:

[S, coef_stats] = get_responses(X, A, beta, coef_pars,
patch_num, S_init);

The first three arguments are what you’d expect. X is the image, A is the basis
functions, and beta is the sparsity penalty.

coef_pars is a data structure containing all of the other required param-
eters, most of which you probably want to ignore. You can get the default

1Here I use the term array rather than matrix, since we do not use operations such as
matrix multiplication. However, arrays and matrices are a single data type in MATLAB.

settings with default_coef_pars, as shown in the example below. For more
information on parameter settings, run help default_coef_pars.

The last two arguments are optional. patch_num is the patch number, used
only for printing, and S_init is an initial value for S. (The default is all zeros.)

The function returns S, the activations, as well as coef_stats, a bunch of
statistics such as the time elapsed and the objective function after each iteration.
S will be a (full) 3-dimensional matrix, where the first two dimensions are the
(m,n) coordinates and the third is the basis ID.

2.3.1 Example

To reconstruct a single image using the default parameters:

coef_pars = default_coef_pars(struct);
S = get_responses(X, A, beta, coef_pars);

2.3.2 Parameters

There are two ways you can set the optional parameters: by passing fields to
default_coef_pars and by setting the fields directly. There are three options
which can be passed as fields to default_coef_pars: exact, verbosity, and
tile. exact, which is set to true by default, specifies that FS_EXACT should
be used to compute the coefficients. (The alternative is a coordinate descent
procedure which will not generally find the exact solution, but may sometimes
work faster for large problem sizes.) verbosity is what the name describes;
higher values produce more output. Finally, if tile is set to true, that means
that FS_WINDOW wraps around FS_EXACT as described in the paper. If it is false,
as is the default setting, FS_EXACT is used directly. We recommend setting tile
to false for learning basis functions, since it is best to use small image excerpts
anyway. However, if you want to reconstruct a large image from a fixed set of
basis functions, it pays to set tile to true.

The other parameters can be set with pars.foo = bar. Here are some you
might use:

e coeff_iter gives the maximum number of iterations to run before the
algorithm gives up. (It’ll stop earlier if it finds the exact answer.) 20 is
usually pretty reasonable, but you can decrease this if it’s taking too long.

e num_coords is the number of variables to add to the active set in each
iteration of FS_EXACT. To achieve good performance, you might want to
try a few different values of this, since the best value might depend on the
data set or the system you are running on.

2.3.3 What if it’s too slow?

Try raising the sparsity penalty. This will mean fewer nonzero activations, and
therefore less to solve for.

2.4 Getting the reconstruction from A and S
Once you have S, you can get the reconstruction of the image with
rec = reconstruction(S,A);
To compute the objective function as well as each of the components, use:

err = X - rec;

fres = sum(sum(sum(err.”~2)));
fspars = beta*sum(sum(sum(abs(S)));
fobj = fres + fspars;

2.5 Learning bases
The best way to solve for the bases is probably to call
[A, lambda] = get_bases(X_all, S_all, basis_M, basis_N, verbosity, lambda);

X_all is a set of images of size M by N by numimages+. S_all is the set of all
activations for all of the patches. It must be a sparse matrix, and since MATLAB
requires that all sparse matrices are 2-dimensional, each column contains all of
the activations for one image. You can get the sparse representation with

S_all(:,i) = sparse(reshape(S, M * N * num_bases, 1));

To retrieve the full array of activations for a single patch from the sparse S_all,
you can use

S = reshape(full(S_all(:,i)), M, N, num_bases));

The other parameters are straightforward: basis_M and basis_N are the di-
mensions of the bases, verbosity is the amount of printed output, and lambda
is an optional parameter specifying the initial value for the dual problem. The
return value A is as described in Section 2.3.

If basis learning takes too long, it’s probably because the images are too
large. The dual learning algorithm scales badly in the size of the images (as
opposed to the size of the bases), so you might consider using smaller images.

2.6 Running one batch

If you want to compute all the activations for one batch, and then possibly solve
for the bases, you can use run_batch:

[A, stats, lambda, s_all] = run_batch(X_all, A, pars, coef_pars,
batch_num, learn, ones(num_bases,1), s_all);

X_all is the set of images, as in Section 2.5. A is the set of bases, as in Section
2.3. pars and coef_pars are the parameters described in Sections 2.7.1 and
2.3.2, respectively. batch_num is the batch ID, only used for printing. Set
learn to true if you want it to learn bases. Finally, you can pass the optional
parameter s_all, which is the initial value for all of the activations, as described
in Section 2.5.

2.7 Running the vision code

The great big function that does everything is run_tisc, and you can call it
with the default parameters using

pars = default_pars(struct);
coef_pars = default_coef_pars(struct);
run_tisc(pars, coef_pars);

The two parameter sets are described in Sections 2.7.1 and 2.3.2, respectively.

I should mention that, although the code can take images of any size, I found
that in practice it’s faster to learn bases by splitting the data up into patches
of, say, 80 pixels on a side.

After every batch, the basis functions are displayed, and the objective func-
tion is plotted with respect to number of patches and running time. To reduce
bias, the objective function is computed on a separate “test batch” which does
not overlap the training batches.

2.7.1 Parameters

These are the parameters for running the TISC code in its entirety. As with the
coefficient parameters, you can get the default parameters with the default_pars
function, and then set particular fields of the result. Here are some fields you
may find useful:

e num_trials The number of batches to run.

e batch_size The number of images in a batch.

e patch_M and patch_N The dimensions of an image (see Section 2.7).
e beta The sparsity penalty.

e num_bases

e basis_M and basis_N, the size of the bases.

e display_bases_every Display bases after this many batches.

e save_bases_every Save bases (as a .m file) after this many iterations.
Zero if you do not want to save anything.

e basedir and savename: everything will be saved in basedir/savenamex.
Do not include the .mat extension in savename.

e verbosity The level of printed output.

3 Code files

e General

run_batch.m Wrapper function which solves for the activations for
all of the images in a given batch, and possibly solves for the bases
too.

run_sisc.m Main loop for learning bases from Sparsenet.
default_pars.m Gives the default parameters for running Sparsenet.

sisc_lib.c Various utility functions used by all of our C code.

e For computing activations

get_responses.m Wrapper for all of the other functions which com-
pute activations.

default_coef_pars.m Gives the default parameters for computing
activations.

get_responses_mex.c A C implementation of feature sign search.
Only implements a subset of the features in get_responses2.m, and
doesn’t produce much by way of output.

solve_fs.m Performs feature sign search. Solves for x to minimize
the following objective function:

2T Az + 0"z 4+ ¢+)|z

Note that A here has nothing to do with the basis set A.

e For learning basis functions

get_bases.m Wrapper function for solving for bases.

basis_compute_CtC.C Precomputes S't*S't and .SA't*it as described in
the paper.

basis_dual_objective.c Computes the objective function, gradi-
ent, and Hessian of the dual problem.

basis_solve_mex.c Solves for A to minimize the following objective
function:

SO IXD =30 AD % SEDJE 4+ 37 A 14D B,
i J J

where A should be the Lagrange multipliers solved for in the dual
problem.

