Algorithms for Inverse Reinforcement Learning

Andrew Y. Ng
Stuart Russell

ANGQCS.BERKELEY.EDU
RUSSELLQCS.BERKELEY.EDU

Computer Science Division, U.C. Berkeley, Berkeley, CA 94720 USA

Abstract

This paper addresses the problem of inverse
reinforcement learning (IRL) in Markov de-
cision processes, that is, the problem of ex-
tracting a reward function given observed,
optimal behavior. IRL may be useful for
apprenticeship learning to acquire skilled be-
havior, and for ascertaining the reward func-
tion being optimized by a natural system. We
first characterize the set of all reward func-
tions for which a given policy is optimal. We
then derive three algorithms for TRL. The
first two deal with the case where the entire
policy is known; we handle tabulated reward
functions on a finite state space and linear
functional approximation of the reward func-
tion over a potentially infinite state space.
The third algorithm deals with the more re-
alistic case in which the policy is known only
through a finite set of observed trajectories.
In all cases, a key issue is degeneracy—the
existence of a large set of reward functions
for which the observed policy is optimal. To
remove degeneracy, we suggest some natu-
ral heuristics that attempt to pick a reward
function that maximally differentiates the ob-
served policy from other, sub-optimal poli-
cies. This results in an efficiently solvable
linear programming formulation of the IRL
problem. We demonstrate our algorithms on
simple discrete/finite and continuous/infinite
state problems.

1. Introduction

The inverse reinforcement learning (IRL) problem can
be characterized informally as follows (Russell, 1998):

Given 1) measurements of an agent’s behavior over
time, in a variety of circumstances, 2) if needed,
measurements of the sensory inputs to that agent;
3) if available, a model of the environment.

Determine the reward function being optimized.

We can identify two sources of motivation for this
problem. The first arises from the potential use
of reinforcement learning and related methods as
computational models for animal and human learn-
ing (Watkins, 1989; Schmajuk & Zanutto, 1997;
Touretzky & Saksida, 1997). Such models are sup-
ported both by behavioral studies and by neurophys-
iological evidence that reinforcement learning occurs
in bee foraging (Montague et al., 1995) and in song-
bird vocalization (Doya & Sejnowski, 1995). This lit-
erature assumes, however, that the reward function is
fixed and known—for example, models of bee forag-
ing assume that the reward at each flower is a simple
saturating function of nectar content. Yet it seems
clear that in examining animal and human behavior
we must consider the reward function as an unknown
to be ascertained through empirical investigation. This
is particularly true of multiattribute reward functions.
Consider, for example, that the bee might weigh nectar
ingestion against flight distance, time, and risk from
wind and predators. It is hard to see how one could
determine the relative weights of these terms a pri-
ori. Similar considerations apply to human economic
behavior, for example. Hence, inverse reinforcement
learning is a fundamental problem of theoretical biol-
ogy, econometrics, and other fields.

A second motivation arises from the task of construct-
ing an intelligent agent that can behave successfully
in a particular domain. An agent designer (or indeed
the agent itself) may have only a very rough idea of
the reward function whose optimization would gener-
ate “desirable” behavior, so straightforward reinforce-
ment learning may not be usable. (Consider, for ex-
ample, the task of “driving well.”) One source of infor-
mation for learning is the behavior of other “expert”
agents, as used in imitation learning and apprentice-
ship learning. In this setting, it is commonly assumed
that the purpose of observation is to learn a policy,
i.e., a direct representation of a mapping from states
to actions. We propose instead to recover the expert’s
reward function and to use this to generate desirable
behavior. We suggest that the reward function of-
ten provides a much more parsimonious description

of behavior. After all, the entire field of reinforcement
learning is founded on the presupposition that the re-
ward function, rather than the policy, is the most suc-
cinct, robust, and transferable definition of the task.
Hence, it seems likely that inverse reinforcement learn-
ing may, in some domains, provide an effective form of
apprenticeship learning.

To our knowledge, this computational task has not
been well-studied in computer science, control theory,
psychology, or biology. The closest work is in eco-
nomics, where the task of multiattribute utility assess-
ment has been studied in depth—that is, how does a
person actually combine the various attributes of each
available choice when making a decision. The theory
is well-developed (Keeney & Raiffa, 1976), and the ap-
plications numerous. However, this field studies only
one-shot decisions where a single action is taken and
the outcome is immediate. The sequential case was
first considered by Sargent (1978), who tried to ascer-
tain the effective hiring cost for labor by examining
a firm’s hiring behavior over time, assuming it to be
rational. In the last decade, the area of structural es-
timation of Markov decision processes in econometrics
has grown rapidly (Rust, 1994). Some of the basic
ideas carry over to our setting. IRL also appeared
briefly in control theory: in the early 1960s, Kalman
posed the problem of recovering the objective function
for a deterministic linear system with quadratic costs.
It was recently solved as a semidefinite program (Boyd
et al., 1994).

In this paper, we address the IRL problem in settings
more familiar to the machine learning community, be-
ginning with finite Markov decision processes (MDPs).
Section 2 gives formal definitions of MDPs and the IRL
problem; we focus initially on the setting in which the
model is known and the complete policy is given. Sec-
tion 3 characterizes the set of all reward functions for
which a given policy is optimal. We demonstrate that
the set contains many degenerate solutions, including,
for example, the reward function that is identically
zero everywhere. We resolve this difficulty via heuris-
tics that attempt to identify a reward function that
maximally differentiates between the observed policy
and other, sub-optimal policies. This can be done effi-
ciently in the discrete case using linear programming.

Section 4 deals with the case of large or infinite state
spaces, for which an explicit, tabular representation of
the reward function would be infeasible. We show that
if the fitted reward function is represented as a linear
combination of arbitrary, fixed basis functions, then
the IRL problem remains in the class of linear pro-
grams and can again be solved efficiently. Section 5
deals with the more realistic case in which the policy
is known only through a finite set of observed trajecto-
ries; for this, we present a simple iterative algorithm.

The three algorithms we develop are then applied, in
Section 6, to some simple examples including both dis-
crete and continuous stochastic navigation problems,
and the “mountain—car” problem. In all cases, we are
able to recover a reward function that “explains” the
observed behavior fairly well. Finally, Section 7 sum-
marizes our findings and describes directions for future
work.

2. Notation and Problem Formulation

In this section, we introduce some notation, defini-
tions, and basic theorems for Markov decision pro-
cesses. We then define the version of the IRL problem
that we will address.

2.1 Markov Decision Processes
A (finite) MDP is a tuple (S, A, {Psa},7, R), where

e S is a finite set of N states.

o A={ay,...,ar} is a set of k actions.

Py, (-) are the state transition probabilities
upon taking action a in state s.

v € 10,1) is the discount factor.

R : S — R is the reinforcement function,
bounded in absolute value by Rmax-

For simplicity in exposition, we have written rewards
as R(s) rather than R(s,a); the extension is trivial.

A policy is defined as any map 7 : S — A, and the
value function for a policy 7, evaluated at any state
s1 is given by

V™(s1) =E [R(Sl) +vR(s2) + ’72R(83) N |ﬂ-]

where the expectation is over the distribution of the
state sequence (s1, 82,...) we pass through when we
execute the policy 7 starting from s;. We also define
the Q-function according to

Q"(s,a) = R(s) + YEyup,, () [V™(s')]

(where the notation s’ ~ Ps,(-) means the ex-
pectation is with respect to s’ distributed accord-
ing to Psu(-)). The optimal value function is
V*(s) = sup, V™(s), and the optimal Q-function
is @ (s, a) = sup, Q" (s, a).

For discrete, finite spaces, all these functions can be
represented as vectors indexed by state, for which we
adopt boldface notation. More precisely, fix some enu-
meration from 1 to NV of the finite state space S. The
rewards may then be written as an N-dimensional vec-
tor R, whose ith element is the reward at the ¢th state

of the MDP. Similarly, V" is a vector whose ith ele-
ment is the value function for = evaluated at state
i. For each action a, we also let P, be the N-by-N
matrix in which element (4,) gives the probability of
transitioning to state j upon taking action a in state
i. Finally, we let the symbols < and < denote strict
and non-strict vectorial inequality—i.e., x < y if and
only if Vi z; < y;.

The goal of standard reinforcement learning is to find
a policy 7 such that V7™ (s) is maximized. And indeed,
it can be shown (e.g., see (Sutton & Barto, 1998; Bert-
sekas & Tsitsiklis, 1996)) that there does exist at least
one optimal policy 7* such that V7 (s) is simultane-
ously maximized for all s € S by 7 = 7*.

2.2 Basic Properties of MDPs

For our solution to the IRL problem, we will need two
of the classical results concerning MDPs (Sutton &
Barto, 1998; Bertsekas & Tsitsiklis, 1996).

Theorem 1 (Bellman Equations) Let an MDP
M = (S,A,{Ps.},v,R) and a policy m : S — A be
giwen. Then, for all s € S,a € A, V™ and Q™ satisfy

V™(s) = R(s)+7)_ Pur(s)(s)V"(s") (1)

Q" (s,a) R(s)+7)_ Pu(shV™(s') (2)

Theorem 2 (Bellman Optimality) Let an MDP
M = (S,A,{Ps.},7,R) and a policy m : S — A be
given. Then 7 is an optimal policy for M if and only
if, for all s € S,

m(s) € argmax Q" (s, a) 3)

2.3 Inverse Reinforcement Learning

The inverse reinforcement learning problem is to find
a reward function that can explain observed behavior.
We begin with the simple case where the state space
is finite, the model is known, and the complete policy
is observed. More precisely, we are given a finite state
space S, a set of k actions A = {ay,...,ax}, tran-
sition probabilities {P,,}, a discount factor «, and a
policy m; we then wish to find the set of possible re-
ward functions R such that 7 is an optimal policy in
the MDP (S, A,{Ps},7,R). (We may then wish to
identify functions within this set satisfying additional
criteria.) By renaming actions if necessary, we will as-
sume without loss of generality that m(s) = a;. This
trick is used only to simplify our notation.

3. IRL in Finite State Spaces

In this section, we give a simple characterization of
the set of all reward functions for which a given policy

is optimal. We then show that the set contains many
degenerate solutions and propose a simple heuristic
for removing this degeneracy, resulting in a linear pro-
gramming solution to the IRL problem.

3.1 Characterization of the Solution Set

Our main result characterizing the set of solutions is
the following;:

Theorem 3 Let a finite state space S, a set of ac-
tions A = {ay,... ,ay}, transition probability matrices
{P.}, and a discount factor v € (0,1) be given. Then
the policy 7 given by w(s) = a1 is optimal if and only
if, for all a = as,. .. ,ay, the reward R satisfies

(P, — Po) (I_'YPal)_lR =0 (4)

Proof. Since 7(s) = a1, Equation (1) may be written
V™ =R+~P, V™. Thus!

V" =(I~-vP,) 'R (5)

Substituting Equation (2) into (3) from Theorem 2,
we see that m = a; is optimal if and only if

— ! T]
ay =7(s) € argrgleajczlPsa(s WT(s') VseS

& ZPW (s"hV™(s")

ZZPSG(S')V”(S') Vse S,ae A
&SP, VT =P, V™ Vae A\ ay
& P, (I-vP,)™ 'R

> P,(I —yP,) 'R Va€A\a

where the last implication in this derivation used
Equation (5). This completes the proof. O

Remark. Using a very similar argument, it is easy
to show (essentially by replacing all inequalities in the
proof above with strict inequalities) that the condi-
tion (Py, — P,) (I —yP,,) 'R > 0 is necessary and
sufficient for # = a; to be the unique optimal policy.

For finite-state MDPs, this result characterizes the set
of all reinforcement functions that are solutions to the
inverse reinforcement learning problem. However, we
immediately see two problems: First, R = 0 (and in-
deed any other constant vector) is always a solution—if

'Here, I — vP,, is always invertible. To see this, first
note that P,,, being a transition matrix, has all eigenval-
ues in the unit circle in the complex plane. Since vy < 1,
this implies that the matrix yP,, has all eigenvalues in the
interior of the unit circle (and in particular that 1 is not an
eigenvalue). This means I —yP,, has no zero eigenvalues,
and is thus not singular.

the reward is the same no matter what action we take,
then any policy, including © = ay, is optimal. De-
manding that 7 be the unique optimal policy would
alleviate this problem, but is not entirely satisfying
since usually some reward vectors arbitrarily close to
0 would still be solutions. Second, for most MDPs, it
also seems likely that there are many choices of R that
meet the criteria (4). How do we decide which one of
these many reinforcement functions to choose? The
answers are not to be found in the original statement
of the IRL problem; but in the next section, we de-
scribe some natural criteria that will suggest solutions
to both of these problems.

3.2 LP Formulation and Penalty Terms

Clearly, linear programming can be used to find a fea-
sible point of the constraints in Equation (4). But as
discussed in the previous section, some of these points
may be less “meaningful” than others, and we desire
to find some way to choose between solutions satisfy-
ing Equation (4). The proposals outlined in this sec-
tion were to a large extent chosen because they can be
incorporated into a linear program, but nonetheless
should seem fairly natural.

One natural way to choose R is to first demand that it
makes 7 optimal (and hence solves the IRL problem),
and moreover to favor solutions that make any single-
step deviation from 7 as costly as possible. Thus, of all
the functions R satisfying (4) (and |R(s)| < Rmax Vs),
we might choose one so as to maximize

> (0o - max) ©)

A
scs a€A\a1

In other words, we seek to maximize the sum of the
differences between the quality of the optimal action
and the quality of the next-best action. (Other cri-
teria, such as 3 g > 4ca\q, @7(5,01) — Q"(s,a) are
also possible, but for the sake of concreteness, let us
remain with (6) for now.)

In addition, if we believe that, all other things being
equal, solutions with mainly small rewards are “sim-
pler” and therefore preferable, we may optionally add
to the objective function a weight decay-like penalty
term such as —\||R||1, where)\ is an adjustable penalty
coefficient that balances between the twin goals of hav-
ing small reinforcements, and of maximizing (6). A
side-effect of using such an ¢;-penalty term is that, for
sufficiently large A, R will often be nonzero in only
a few states, consistent with our idea of a “simple”
reward function. Moreover, while it is common prac-
tice in many applications to hand-tune penalty coef-
ficients, it can also be shown (assuming the solution
is not already degenerate at A = 0) that as A is in-
creased, there will be a phase transition at some point

Ao, such that the optimal R is bounded away from 0
for A < Ag, and R = 0 for A > Ag. Thus, if we wanted
to choose X\ automatically, A = Ay (a value just before
the phase transition, perhaps found via binary search
on A) would be an appealing choice, since it is gives
the “simplest” R (largest penalty coefficient) such that
R is not zero everywhere (and in particular so that R
does at least partially “explain” why = is optimal).

Putting it all together, our optimization problem is:

maximize Y1) MiNge(ay,... an) {(Pas () — Pa(i))
(I —vP,,) 'R} — \|R]||x
— Pa) (I — fyPal)_lR >0
Vae A \ ai
|RZ| < Rmax: i=1,... JN

st. (Pq,

where P, (i) denotes the ith row of P,. Clearly, this
may easily be formulated as a linear program and
solved efficiently. Section 6 reports on simple experi-
ments using this algorithm.

4. Linear Function Approximation in
Large State Spaces

We now consider the case of infinite state spaces.
Apart from some measure-theoretic assumptions and
minor regularity conditions (which we will ignore in
this paper), infinite-state MDPs may be defined in
much the same way as finite-state MDPs were in Sec-
tion 2. For the sake of concreteness, we restrict our-
selves to the case of S = R™. We will assume the avail-
ability of a subroutine for approximating the value of
a policy, V™, for any particular MDP.

In this setting, the reward function R is now a function
from S = R™ into the reals, and a general solution to
inverse reinforcement learning would require working
with this space of all functions R* — R. While the
calculus of variations does give us some tools for opti-
mizing over this space, it is often difficult to work with
algorithmically. Hence, we choose instead to use a lin-
ear approximation for the reward function, expressing
R according to

R(s) = a1¢1(s) + aza(s) + -+ + aaga(s) (8)

where ¢1,...,¢4 are fixed, known, bounded basis
functions mapping from S into R, and the a;s are the
unknown parameters that we want to “fit.”

Since R is again linear in the variables being optimized,
it is no surprise that a linear programming formulation
applies here as well. Let V" denote the value function
of the policy 7 in the MDP when the reward func-
tion is R = ¢;. By the linearity of expectations, the
value function when the reward function R is given by

Equation (8) is therefore
Vi=a V" + -+ aqV]. 9)

Using this fact and Theorem 2, the reader may easily
verify (using essentially the argument in Theorem 3’s
proof) that for R to make the policy 7(s) = a1 optimal,
the appropriate generalization of (4) is the condition
that

Egnp,, V()] 2 Eynp,, V()] (10)

for all states s and all actions a € A\ a1. From Equa-
tion (9), we know V™ (s) is linear in the coefficients «;.
Hence, we have a set of linear constraints on the q;s.

There are however two problems with the current for-
mulation. The first is that, for infinite state spaces,
there are infinitely many constraints of the form in
Equation (10), making it hard or impossible to check
them all. Algorithmically, we circumvent this problem
by sampling only a large but finite subset Sy of the
states, and using this constraint only at those states
s € Sp. The second problem, which is a more sub-
tle one, is that since we have restricted ourselves to
use the linear function approximator in Equation (8)
to express R, we may no longer be able to express
any reward function (other than the trivial R = 0) for
which 7 is optimal. Nevertheless, even in this case, we
would like to do as well as we can using the linear func-
tion approximator class, and so as a compromise, we
may be willing to relax some of the constraints (10),
paying a penalty when they are violated.

Our final linear programming formulation is then:

maximize ESESO Min,e{a,,... a3
P(Es~p,,, [VT(s)] = Esnp, [VT(s')])}
st les| <1, i=1,...,d

where we remind the reader that V™ is an implicit
function of the a;s as given by Equation (9), and Sy is
the subsample of states. Here, p is given by p(z) = =
if z > 0, p(x) = 2z otherwise, and penalizes viola-
tions of the constraints (10) (where 2 is penalty weight
that was heuristically chosen; this was a parameter to
which our results did not seem very sensitive, with
moderately larger values usually giving quite similar
results).

5. IRL from Sampled Trajectories

This section addresses the IRL problem for the more
realistic case where we have access to the policy « only
through a set of actual trajectories in the state space.
For this, we also do not require an explicit model of
the MDP, though we do assume the ability to find an
optimal policy under any reward of our choice.

We fix some initial state distribution D, and assume
that for the (unknown) policy =, our goal is to find R
such that 7 maximizes Es ~p[V ™ (s0)]. To simplify no-
tation, we’ll assume that there is only one fixed start
state so. (This is in fact without loss of generality,
since s can be a “dummy” state whose next-state dis-
tribution under any action is D.) As with the previous
algorithm for infinite state spaces, we assume R will be
expressed using a linear function-approximator class.

We assume that we have the ability to simulate tra-
jectories in the MDP (from the initial state sg) under
the optimal policy, or under any policy of our choice.
For each policy 7 that we will consider (including the
optimal one), we will need a way of estimating V™ (sg)
for any setting of the a;s. To do this, we first execute
m Monte Carlo trajectories under . Then, for each
i=1,...,d, define V;"(s¢) to be what the average em-
pirical return would have been on these m trajectories
if the reward had been R = ¢;. For example, if we take
only m = 1 trajectories, and if that trajectory visited
the sequence of states (sg, s1,-- -), then we have:

Vi (s0) = ¢i(s0) + vi(s1) + V2 hi(s2) + -

In general, V" (sq) would be the average over the em-
pirical returns of m such trajectories.? Then, for any
setting of the a;s, a natural estimate of V™(sq) is:

V™ (s0) = a1V (s0) + - - - + aaV,F (s0) (11)

As in the previous algorithm’s derivation, this is jus-
tified by the fact that V7™(so) = a1V (so) + --- +
aqV] (so). We now describe the algorithm.

To start off the algorithm, we first find value estimates
as described above for the (assumed optimal) policy 7*
that we are given, and for the “base case” policy 71,
which is in our case a randomly chosen policy.

The “inductive step” of the algorithm is as follows:
We have some set of policies {my,... , 7}, and want
to find a setting of the a;s so that the resulting reward
function (hopefully) satisfies

V™ (s0) > V™(sq), i=1,...,k (12)

As in the previous algorithm, we modify the objective

In practice, we also truncate the trajectories after a
large but finite number H of steps. Because of discount-
ing, this introduces only a small error into the approxima-
tion; for example, if H = He = log, (e(1 — v)/Rmax), the
e-horizon time, then this truncation introduces at most €
error into the estimates. If one is unhappy with this ap-
proximation, there is also a way to execute only a finite-
length trajectory of expected length O(H.), but so that
we still obtain an unbiased estimate of the true infinite-
horizon reward (Kearns et al., 1999); that method can also
be used here.

VY=t

+—>—>—>+
— | | |

~ = §
b=t

Figure 1. Top: 5x5 grid world with optimal policy. Bottom:
True reward function.

slightly, so that the optimization becomes:

maximize Zle D (V”* (so) — Vi (so))
st Jes| <1, i=1,...,d

where, as before, p(z) = z if x > 0, and p(z) = 2z
if £ < 0, so that violations of the constraints (12) are
penalized. (Here 2 is, once more, a heuristically chosen
parameter, to which our results again did not seem
extremely sensitive.) Note that V™ (so) and V™ (sq)
above are just (implicit) linear functions of the a;s
as given in Equation (11), and hence this problem is
easily solved via linear programming.

The above optimization gives a new setting of the «;s,
and hence a new reward function R = o3¢ + --- +
aq¢pq. We then find a policy 741 that maximizes
V™ (so) under R, add 7y to the current set of poli-
cies, and continue (for some large number of iterations,
until we find an R with which we are “satisfied”).

6. Experiments

In our first experiment, we used a 5 x5 grid world
where the agent starts from the lower-left grid square,
and has to make its way to the (absorbing) upper-right
grid square, whereupon it receives a reward of 1. The
actions correspond to trying to move in the four com-
pass directions, but are noisy and have a 30% chance of

Figure 2. Inverse RL on the 5 x 5 grid. Top: A = 0. Bot-
tom: X = 1.05.

resulting in moving in a random direction instead. An
optimal policy is shown in Figure 1, together with the
true reward function. The inverse reinforcement prob-
lem is that of recovering the reward structure given
the policy and problem dynamics.

Running the algorithm described in Section 3.2 with
no penalty term, we obtain the reward function shown
in Figure 2 (top). While it has clearly recovered most
of the reward structure, it is still slightly “bumpy.”
Some of this bumpiness is hard to avoid, and comes
from arbitrary symmetry-breaking in the chosen pol-
icy. However, with the penalty coefficient A set to a
value just below the phase transition as discussed ear-
lier, we obtain the second reward function in Figure 2,
which is very close to the true reward.?

Our next experiment was run on the well-known
“mountain—car” task, a cartoon of which is shown in
Figure 3. The true, undiscounted, reward is -1 per-
step until we reach the goal at the top of the hill, and
the state is the car’s z-position and velocity. Since the
state space is continuous, we used the version of our
algorithm described in Section 4. We chose the func-
tion approximator class for the reward to be functions
of the car’s z-position only, with the class consisting of

3Interestingly, intermediate values of A such as 0.5 did
not give “smooth” looking functions at all. In retrospect,
this is not too surprising: small A results in many values
near +1; large A results in many values near 0; and inter-
mediate A has a mix of the two.

Goal

Figure 3. Cartoon of the mountain—car problem (not
shown to scale).

all linear combinations of 26 evenly spaced Gaussian-
shaped basis functions. Giving the optimal policy* to
our algorithm, a typical reward function found by it is
shown in Figure 4 (top). (Note the scale on the y axis.)
Clearly, the solution has nearly perfectly captured the
R = —c structure of the reward.

For a more challenging problem, we also reran the ex-
periment with the true reward changed to be 1 in an
interval [-0.72, -0.32] centered around the bottom of
the hill and 0 everywhere else, and v = 0.99. In this
problem, the optimal policy is to go as quickly as pos-
sible to the bottom of the hill and park there. (This
is not always possible because if, for example, we are
near the top of the hill on the right and moving too
quickly, then we may shoot off the right end of the hill
and enter the absorbing state no matter how hard we
braked.) Running our algorithm on this new problem,
a typical solution is shown in Figure 4 (bottom). By
and large, it has successfully recovered the main struc-
ture of the reward being large and positive around the
specified interval; it also has an artifact on the right
side, we believe from the effect of unavoidably “shoot-
ing off” the right end sometimes. Nevertheless, we
think the solution shown is a fairly good one for the
problem.

Our final experiment applied the sample-based algo-
rithm to a continuous version of the 5 x 5 grid world.
More precisely, the state was [0,1] x [0,1], and the ef-
fect of each of the four compass-direction actions is
to move the agent 0.2 in the intended direction, after
which uniform noise in [-0.1,0.1] is added to each co-
ordinate, and the state is finally truncated if necessary
to keep it within the unit square. The true reward was
1 in the (non-absorbing) square [0.8,1] x [0.8,1], and
0 everywhere else, and v = 0.9. The function approx-

4This is as determined by a fine 120x120 discretization
of the state space. The functions V;" needed by the algo-
rithm were also found this way. To run the algorithm, we
used a sample of states of size |So| = 5000, not counting
states that did not give nontrivial constraints.

~2.50

-2.5063

-2.5064

-2.5064

-2.5065

Fitted Reward

-2.5065

~2.5085[

~2.5066 -

-2.5067
-12

-1 -08 -06 -04 02 0 0.2 04 06
car's x—position

Fitted Reward

.
-12 -1 -08 -06 -04 -02 0 0.2 0.4 0.6
car's x—position

Figure 4. Typical solutions found by IRL for the
mountain—car. Top: Original problem (note scale on y
axis). Bottom: Problem of parking at bottom of hill.

imator class consisted of all linear combinations of a
15 x 15 array of two-dimensional Gaussian basis func-
tions. The initial state distribution D was uniform
over the state space, and our algorithm was run using
m = 5000 trajectories, each of 30 steps, to evaluate
each policy. When needed (such as to find the “op-
timal” policy for comparison), the MDP was solved
based on a 50 x 50 discretization of the state space.

Running this experiment, the solution found by our al-
gorithm was usually already reasonable after just 1 it-
eration, and by about 15 iterations, the algorithm had
usually settled on fairly good solutions. We compared
the fitted reward’s optimal policy with the true opti-
mal policy, calculating the fraction of the state space
on which their action choices disagree (Figure 5, top).
We found discrepancies typically between 3% and 10%;
with many distinct near-optimal policies, such varia-
tion is to be expected. Perhaps a more appropriate
measure of our algorithm’s performance is to compare
the quality of the fitted reward’s optimal policy with
the quality of the true optimal policy. (Quality is of
course measured using the true reward function!) Usu-
ally by about 15 iterations of the algorithm, our evalu-
ations (which used 50000 Monte Carlo trials of 50 steps
each) were unable to detect a statistically significant
difference between the value of the true “optimal pol-
icy” (about 6.65) and the value of the fitted reward’s
optimal policy (Figure 5, bottom).

o
=3

o o
> ~

o
o

o o
N w

Fraction of states on which actions disagree
o o
[S

o

Iteration number

Value of policy

.
1 5 20 25
Iteration number

Figure 5. Results on the continuous grid world, for 5 runs.
Top: Fraction of states on which the fitted reward’s opti-
mal policy disagrees with the true optimal policy, plotted
against iteration number. Bottorn: The value of the fitted
reward’s optimal policy. (Estimates are from 50000 Monte
Carlo trials of length 50 each; negligible errorbars).

7. Conclusions and Future work

Our results show that the inverse reinforcement learn-
ing problem is soluble, at least for moderate-sized dis-
crete and continuous domains. A number of open ques-
tions remain to be addressed:

e Potential-based shaping rewards (Ng et al., 1999)
can produce reward functions that make it dra-
matically easier to learn a solution to an MDP,
without affecting optimality. Can we design IRL
algorithms that recover “easy” reward functions?

e In real-world empirical applications of IRL, there
may be substantial noise in the observer’s mea-
surements of the agent’s sensor inputs and ac-
tions; moreover, the agent’s own action selection
process may be noisy and/or suboptimal. Finally,
there may be many optimal policies, of which only
a few are observed. What are appropriate metrics
for fitting such data?

e If behavior is strongly inconsistent with optimal-
ity, can we identify “locally consistent” reward
functions for specific regions in state space?

e How can experiments be designed to maximize the
identifiability of the reward function?

e How well does our algorithmic approach carry to
the case of partially observable environments?

Acknowledgments

A. Ngis supported by a Berkeley fellowship. This work
was also supported by NSF grant ECS-9873474.

References

Bertsekas, D. P., & Tsitsiklis, J. (1996). Neuro-dynamic
programming. Athena Scientific.

Boyd, S., Ghaoui, L. E., Feron, E., & Balakrishnan, V.
(1994). Linear matriz inequalities in system and control
theory. STAM.

Doya, K., & Sejnowski, T. (1995). A novel reinforcement
model of birdsong vocalization learning. Advances in
Neural Information Processing Systems 7 (pp. 101-108).
Denver, CO: MIT Press.

Kearns, M., Mansour, Y., & Ng, A. Y. (1999). Approxi-
mate planning in large POMDPs via reusable trajecto-
ries. (extended version).

Keeney, R. L., & Raiffa, H. (1976). Decisions with multiple
objectives: Preferences and value tradeoffs. New York:
Wiley.

Montague, P. R., Dayan, P., Person, C., & Sejnowski, T. J.
(1995). Bee foraging in uncertain environments using
predictive hebbian learning. Nature, 377, 725-728.

Ng, A. Y., Harada, D., & Russell, S. (1999). Policy invari-
ance under reward transformations: Theory and applica-
tion to reward shaping. Proceedings of the Sizteenth In-
ternational Conference on Machine Learning (pp. 278—
287). Bled, Slovenia: Morgan Kaufmann.

Russell, S. (1998). Learning agents for uncertain environ-
ments (extended abstract). Proceedings of the Eleventh
Annual Conference on Computational Learning Theory.
ACM Press.

Rust, J. (1994). Do people behave according to Bellman’s
principal of optimality? Submitted to Journal of Eco-
nomic Perspectives.

Sargent, T. J. (1978). Estimation of dynamic labor de-
mand schedules under rational expectations. Journal of
Political Economy, 86, 1009-1044.

Schmajuk, N. A., & Zanutto, B. S. (1997). Escape, avoid-
ance, and imitation: a neural network approach. Adap-
tive Behavior, 6, 63-129.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learn-
ing. MIT Press.

Touretzky, D. S., & Saksida, L. M. (1997). Operant condi-
tioning in Skinnerbots. Adaptive Behavior, 5, 219-47.

Watkins, C. J. (1989). Models of delayed reinforcement
learning. Doctoral dissertation, Psychology Department,
Cambridge University, Cambridge, United Kingdom.

