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Abstract

Many human actions, such as “playing violin” and “taking a photo”, can be well

described by still images, because of the specific spatial relationship between humans

and objects, as well as the specific human and object poses involved in these actions.

Recognizing human actions in still images will potentially provide useful informa-

tion in image indexing and visual search, since a large proportion of available images

contain people. Progress on action recognition is also beneficial to object and scene

understanding, given the frequent human-object and human-scene interactions. Fur-

ther, as video processing algorithms often rely on some form of initialization from

individual video frames, understanding human actions in still images will help recog-

nize human actions in videos. However, understanding human actions in still images

is a challenging task, because of the large appearance and pose variation in both

humans and objects even for the same action.

In the first part of this thesis, we treat action understanding as an image classifi-

cation task, where the goal is to correctly assign a class label such as “playing violin”

or “reading book” to each human. Compared with traditional vision tasks such as

object recognition, we show that it is critical to utilize detailed and structured visual

information for action classification. To this end, we extract dense and structured vi-

sual descriptors for image representation, and propose to combine randomization and

discrimination for image classification. The performance of our classification system

can be further improved by integrating with other high-level features such as action

attributes and objects.

The second part of this thesis aims at having a deeper understanding of human

actions. Considering the specific types of human-object interactions for each action,
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we first propose a conditional random field model which allows objects and human

poses to serve as context of each other, and hence mutually improve each other’s

recognition results. Then, we move on to discover object functionality in a weakly

supervised setting. For example, given a set of images containing human-violin inter-

actions, where a human is either playing violin or holding a violin but not playing,

our method builds a model of “playing violin” that corresponds to the functionality

of the object, and clusters the input images accordingly.

Finally, we summarize our work and show our vision and preliminary results of how

our work can benefit some new vision tasks, including fine-grained object recognition,

video event categorization, and social role understanding.
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Chapter 1

Introduction

1.1 Background: understanding humans

The ability to understand humans is one of the central functions of modern computer

vision systems. Among the tens of thousands categories [34] of objects, human is the

most important one in both real world and the vision world. Statistical studies have

shown that almost 30% of internet images contain humans [114], and more than 40%

pixels of YouTube videos are about humans [70].

In the past few decades, considerable research effort has been devoted to under-

standing humans in computer vision. Great advances have been achieved in human

face detection [119, 57], recognition [139], and pedestrian detection [16, 37]. Human

pose estimation is a challenging task in still images [38, 124], but depth sensors have

made human pose estimation systems commercialized [106]. Thanks to these achieve-

ments, the research focus of understanding humans has been shifted to a higher level

task in the past ten years – human action recognition.

Research on action recognition has been focusing on the scope of video sequences in

the past decade. Before 2008, most work only deals with simple and repetitive actions

such as walking, jogging, etc [105, 45]. Recently, recognizing actions in less contrived

videos are attracting more and more attention, such as the work on the Hollywood

dataset [69], the UCF YouTube dataset [77], the Olympic sports dataset [86], and

the TRECVID MED dataset [110]. However, the goal of most research on these

1
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(a) riding horse (b) reading book

(c) phoning (d) playing violin

Figure 1.1: Humans can easily recognize many human actions from just still images.

datasets is to simply assign a class label to each video sequence, where no detailed

understanding is offered.

Despite the importance of motion cues in visual perception, humans can recognize

many common actions from still images without difficulty, such as “reading a book”,

“playing a violin”, etc. There can be a wide range of applications if computers have

the same ability. Recognizing human actions in still images is expected to benefit im-

age indexing and search, given the large amount of images containing humans. Given

the frequent interactions of humans with objects and scenes, action recognition in

still images will also potentially benefit other related problems such as object recog-

nition and scene understanding. However, this problem has received little attention

in computer vision community.

This thesis focuses its attention on understanding human actions in still images.
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We propose a series of approaches, including feature representation and classifier

design, which lead to a recognition system that achieves very promising performance

on our collected datasets and the action classifier task of PASCAL VOC challenge [28,

29]. Further, we do not limit our scope to classifying human actions. We also aim at

having a detailed understanding of human poses and objects manipulated by humans,

of which the interactions constitute a human action as a whole.

1.2 Contributions and thesis outline

In Chapter 2, 3, and 4, we treat action recognition as an image classification problem,

and propose approaches that achieve very promising performance. In Chapter 5, 6,

and 7, we go beyond action classification and aim at having a detailed understanding

of human actions. We highlight our contributions in every chapter of this thesis.

Chapter 2 – Grouplet: A Structured Image Representation. We propose

a new image representation for human actions called grouplet. Grouplet captures

the structured information of an image by encoding a number of discriminative vi-

sual features and their spatial configurations. Using a dataset of different actions of

people interacting with musical instruments, we show that grouplets are more effec-

tive in classifying and detecting human-object interactions than other state-of-the-art

methods. In particular, our method can make a robust distinction between humans

playing the instruments and humans co-occuring with the instruments without the

playing action.

Chapter 3 – Combining Randomization and Discrimination. This chap-

ter shows the importance of exploring fine image statistics and identifying discrimi-

native image patches for action recognition. We achieve this goal by combining two

ideas, discriminative feature mining and randomization. Discriminative feature min-

ing allows us to model the detailed information that distinguishes different classes of

images, while randomization allows us to handle the huge feature space and prevents

over-fitting. We propose a random forest with discriminative decision trees algorithm,

where every tree node is a discriminative classifier that is trained by combining the

information in this node as well as all upstream nodes. Experimental results show
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that our method identifies semantically meaningful visual information and outper-

forms state-of-the-art algorithms on various datasets. With this method, we won the

action classification competition of the PASCAL VOC challenge in both 2011 and

2012.

Chapter 4 – Action Attributes and Parts. In this chapter, we propose to

use attributes and parts for recognizing human actions in still images. We define

action attributes as the verbs that describe the properties of human actions, while

the parts of actions are objects and poselets that are closely related to the actions.

We jointly model the attributes and parts by learning a set of sparse bases that are

shown to carry much semantic meaning. Then, the attributes and parts of an action

image can be reconstructed from sparse coefficients with respect to the learned bases.

This dual sparsity provides theoretical guarantee of our bases learning and feature

reconstruction approach. On the PASCAL action dataset and a new Stanford 40

Actions dataset, we show that our method extracts meaningful high-order interac-

tions between attributes and parts in human actions while achieving state-of-the-art

classification performance.

Chapter 5 – Mutual Context Model I: Single Object. We observe that

objects and human poses can serve as mutual context to each other C recognizing one

facilitates the recognition of the other. In this chapter we propose a new random field

model to encode the mutual context of objects and human poses in human-object

interaction activities. We then cast the model learning task as a structure learning

problem, of which the structural connectivity between the object, the overall human

pose, and different body parts are estimated through a structure search approach,

and the parameters of the model are estimated by a new max-margin algorithm. On

a sports data set of six classes of human-object interactions, we show that our mutual

context model significantly outperforms state-of-the-art in detecting very difficult

objects and human poses.

Chapter 6 – Mutual Context Model II: Multiple Objects. This chapter

makes the mutual context model proposed in Chapter 5 able to deal with the actions

in which humans interact with any number of objects. Besides the conventional tasks

of action classification, object detection, and human pose estimation, we consider a
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new problem where we measure the similarity between action images. Experimental

results show that our method not only improves action classification accuracy, but

also learns a similarity measure that is largely consistent with human perception.

Chapter 7 – Discovering Object Functionality. Object functionality refers

to the quality of an object that allows humans to perform some specific actions. In

this chapter, we propose a weakly supervised approach to discover all possible object

functionalities. This is different from most previous work on functionality that either

assumes exactly one functionality for each object, or requires detailed annotation of

human poses and objects. Our method takes any possible human-object interaction

into consideration, and evaluates image similarity in 3D rather than 2D in order to

cluster human-object interactions more coherently. Experimental results on a dataset

of people interacting with musical instruments show the effectiveness of our approach.

1.3 Previously published work

Most contributions described in this dissertation have first appeared as various publi-

cations. These publications are: [126] (Chapter 2), [132] (Chapter 3), [130] (Chapter

4), [127] (Chapter 5), [131] (Chapter 6), [129] (Chapter 5 and 6), [133] (Chapter 7).

Besides the above publications, I also have the following publications during my

PhD: [134, 128, 125, 99, 111]. However, they are beyond the scope of this dissertation,

and therefore are not discussed in detail here.



Chapter 2

Grouplet: A Structured Image

Representation

2.1 Introduction

In recent years, the computer vision field has made great progress in recognizing

isolated objects, such as faces and cars. But a large proportion of our visual experience

involves recognizing the interaction between objects. For example, seeing a human

playing violin delivers a very different story than seeing a person chopping up a

violin - one is a musician, the other is probably a contemporary artist. Psychologists

have found that different brain areas are involved in recognizing different scenes of

multiple objects [64] and in particular, there are neurons that react strongly upon

seeing humans interacting with objects [58]. Such evidence shows that the ability to

recognize scenes of human-object interactions is fundamental to human cognition.

The goal of this chapter1 is to use structured visual features to recognize scenes

in which a person is interacting with a specific object in a specific manner, such as

playing musical instruments. Humans can recognize such activities based on only

static images, most likely due to the rich structured information in the activities. For

example, “playing violin” is defined not only by the appearance of a human and a

violin and their co-occurrence, but also by the gesture of arms interacting with the

1An early version of this chapter has been presented in [126].

6
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Figure 2.1: Recognizing a person playing violin versus not playing violin requires sub-
tle discriminations of image features. We aim at discovering discriminative features
that encode rich and structured information for such tasks. In the left figure, three
sample grouplets are shown in three different colors. Dashed ellipses in the right
indicate missing features.

pose of the violin, as shown in Fig.2.1.

In this chapter, we approach the problem by discovering image features that can

characterize well different human-object interactions. We take the view in [64] that

such human-object configurations are like different types of scenes. So similar to

scene and object classification [39, 71], our features need to discover different classes

of actions that carry intrinsically different visual appearance and spatial information.

This problem offers us an opportunity to explore the following issues that have not

been widely studied in generic object recognition tasks:

∙ Spatial relations among image patches. Recognizing that a person is playing

violin is not simply discovering the co-occurrence of the violin and the human,

which could also occur when a person just standing next to a violin. Our features

need to capture the spatial relations that are crucial to define the human-object

interactions.

∙ More subtle and discriminative features. Most of the current image features

(and models) are tested on classes of objects that are very different from each

other (e.g. bicycles vs. cows). The classes of human-object interactions are
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much more similar, due to the dominant presence of humans in all classes. This

demands more discriminative features to encode the image differences.

Focusing on the above issues, we propose a new image representation that en-

codes appearance, shape, and spatial relations of multiple image patches, termed

“grouplet”. The grouplets are discovered through a novel data mining approach, and

could be further refined by a parameter estimation procedure. We show that the

methods using grouplets outperform the state-of-the-art approaches in both human-

object interaction classification and detection tasks.

The rest of this chapter first presents a human-object interaction data set in

Sec.2.2. Sec.2.3 and Sec.2.4 define the grouplets and introduce a method of obtain-

ing discriminative grouplets respectively. Sec.2.5 briefly describes the classification

methods that use grouplets. Related work is discussed in Sec.2.6. Experiment results

are reported in Sec.2.7.

2.2 The PPMI dataset

Most of the popular image data sets are collected for recognizing generic objects [33,

28] or natural scenes [90] instead of human and object interactions. We therefore

collected a new data set called People-playing-musical-instruments (PPMI, Fig.2.2).

PPMI2 consists of 7 different musical instruments: bassoon, erhu, flute, French horn,

guitar, saxophone, and violin. Each class includes ∼150 PPMI+ images (humans

playing instruments) and ∼150 PPMI- images (humans holding the instruments with-

out playing). As Fig.2.2 shows, images in PPMI are highly diverse and cluttered.

We focus on two problems on this data. One is to classify different activities of

humans playing instruments; the other is to distinguish PPMI+ and PPMI- images for

each instrument. The latter task is very different from traditional image classification

tasks. Distinguishing PPMI+ and PPMI- images of the same instrument strongly

depends on the structural information in the images, such as the spatial relations

2The dataset is available at: http://ai.stanford.edu/˜bangpeng/ppmi.html. Resources of the
images include image search engines Google, Yahoo, Baidu, and Bing, and photo hosting websites
Flickr and Picassa.



2.2. THE PPMI DATASET 9

���� � ���� �
��

	

��


�
��



��

��
��

�

	

�
��

�
�

��
��

�

��

��
	

�
��

��

�

��
��

�

Figure 2.2: Example images of the People-Playing Musical Instrument (PPMI)
dataset. PPMI+ indicate images of people playing instruments (PPMI+), while
PPMI- indicate images of people co-occurring with but not playing the instruments.
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between the object and the human. This property of our data set cannot be captured

by [48] and [49], which are possibly the only existing data sets of human-object

interactions. Besides classification, we also show results of detecting people playing

different instruments on the PPMI dataset.

2.3 Image building block - the grouplet

For recognizing human-object interactions, we discover a set of discriminative features

that encode the structured image information. To address the two central issues

introduced in Sec.2.1, the grouplets have the following properties.

∙ Each grouplet contains a set of highly related image patches. It encodes the

appearance, location, and shape of these patches, as well as their spatial rela-

tionship.

∙ For differentiating human and object interactions, we apply a novel data mining

approach to discover a large number of discriminative grouplets.

A grouplet is defined by an AND/OR [13] structure on a set of feature units. A

feature unit, denoted by {𝐴, 𝑥,𝝈}, indicates that a codeword of visual appearance

𝐴 is observed in the neighborhood of location 𝑥 (relative to a reference point). The

spatial extent of 𝐴 in the neighborhood of 𝑥 is expressed as a 2D Gaussian distribution

𝒩 (𝑥,𝝈).

Fig.2.3 illustrates two grouplet features. Each grouplet lives in an image space

where 𝑃 indicates a reference location. Each grouplet is composed of a set of feature

units. A feature unit, whose visual appearance is denoted by a shaded square patch,

can shift around in a local neighborhood (indicated by smaller rectangular boxes).

An ellipse surrounding the center of a feature unit indicates the spatial extent of the

feature. Within the neighborhood, an OR operation is applied to select the feature

unit that has the strongest signal (𝑣, see Sec.2.4.1), indicated by the ellipse of thicker

lines. An AND operation collects all feature units to form the grouplet. The size of

a grouplet is the number of OR operations it contains.
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Figure 2.3: Graphical illustration of two examples of grouplets: left is a size-2 grou-
plet; and right is a size-3 grouplet. In each image, 𝑃 indicates a reference point.

In the grouplet representation, each feature unit captures a specific appearance,

location, and spatial extent information of an image patch. Together, the AND op-

eration allows the grouplets to represent various interactions among a set of image

patches, and the OR operation makes the grouplets resistent to small spatial varia-

tions. By definition, we do not exert any constraint on the appearance or location

of the feature units, nor the size of the grouplets. Further, the spatial extent of each

feature unit will be refined through a parameter estimation step, thus the grouplets

can reflect any structured information among any number of image patches with any

appearance. Examples of grouplets are shown in Fig.2.1 and Fig.2.9.

Implementation Details: In the grouplet representation, SIFT descriptors [78]

are computed over a dense image grid of 𝐷 rectangular patches, as in [71]. Us-

ing k-means clustering, we obtain a SIFT codebook which contains 250 codewords.

Therefore, the visual appearance can be represented by {𝐴𝑤}𝑊𝑤=1, where𝑊=250. The

feature units in one OR operation should have the same visual codeword. Reference

points are chosen as the centers of the human faces.

2.4 Obtaining discriminative grouplets

To recognize subtly different scenes, we would like to find a rich set of grouplets that

are not only highly characteristic of the image class, but also highly discriminative
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Figure 2.4: Computing the signals 𝑣 of all feature units on an image ℐ.

compared to other classes. We propose a novel data mining algorithm for discovering

discriminative grouplets.

2.4.1 Defining discriminative grouplets

Grouplet Λ is discriminative for class 𝑐 means that Λ has strong signals on images of

class 𝑐, and has weak signals on images of other classes. In the rest of this section,

we first describe how to compute the signal values of feature units and grouplets, and

then elaborate on the definition of discriminative grouplets.

The signal 𝑣 of a feature unit {𝐴, 𝑥,𝝈} on an image ℐ is the likelihood that

{𝐴, 𝑥,𝝈} is observed in ℐ:

𝑣 =
∑

𝑥′∈Ω(𝑥)

[
𝑝(𝐴∣𝑎′) ⋅ 𝒩 (𝑥′∣𝑥,𝝈)

]
(2.1)

where Ω(𝑥) is the image neighborhood of location 𝑥, 𝑎′ is the appearance of the

image patch at 𝑥′, 𝑝(𝐴∣𝑎′) is the probability that 𝑎′ is assigned to codeword 𝐴. As

shown in Fig.2.4, first, a codeword assignment map is obtained for each codeword

𝐴𝑤. In Map 𝑤, a region is marked black if it is assigned to 𝐴𝑤. Then, each Map 𝑤

is convolved with a 2D Gaussian distribution with covariance 𝝈𝑤. Finally the results

are concatenated into a (𝐷×𝑊 )-dimensional vector of signal values, where each entry
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is the signal value of a feature unit on the image. Please refer to the implementation

details of this section for more details. For a codeword 𝐴𝑤, we use a single variance

𝝈𝑤 to encode its spatial distribution in all positions of the image.

Given the signal values of the feature units in a grouplet, each OR operation selects

a feature unit that has the strongest signal (see Fig.2.3). The overall signal of the

grouplet, i.e. result of the AND operation, is the smallest signal value of the selected

feature units. Intuitively, this decision ensures that even the relatively weakest feature

unit needs to be strong enough for the grouplet to be strong (see Fig.2.5). In order

to evaluate the discriminability of a grouplet, we introduce two terms, support value,

𝑆𝑢𝑝𝑝(⋅) and confidence value, 𝐶𝑜𝑛𝑓(⋅). A grouplet Λ is discriminative for a class 𝑐 if

both 𝑆𝑢𝑝𝑝(Λ, 𝑐) and 𝐶𝑜𝑛𝑓(Λ, 𝑐) are large. Given a set of training images where the

signal of Λ on image ℐ𝑖 is denoted as 𝑟𝑖, 𝑆𝑢𝑝𝑝(Λ, 𝑐) and 𝐶𝑜𝑛𝑓(Λ, 𝑐) are computed by

𝑆𝑢𝑝𝑝(Λ, 𝑐) =

∑
𝑐𝑖=𝑐

𝑟𝑖∑
𝑐𝑖=𝑐

1
, 𝐶𝑜𝑛𝑓(Λ, 𝑐) =

𝑆𝑢𝑝𝑝(Λ, 𝑐)

max
𝑐′ ∕=𝑐

𝑆𝑢𝑝𝑝(Λ, 𝑐′)
(2.2)

where 𝑐𝑖 is the class label of ℐ𝑖. Intuitively, a large 𝑆𝑢𝑝𝑝(Λ, 𝑐) indicates that Λ

generally has strong signals on images of class 𝑐, and a large 𝐶𝑜𝑛𝑓(Λ, 𝑐) implies

relatively weak signals of Λ on images of classes other than 𝑐.

Implementation Details: The size of Ω(𝑥) is 5 × 5 patches. We assign each

image patch to its nearest codeword: 𝑝(𝐴∣𝑎) = 1 if and only if 𝐴 is 𝑎’s nearest

codeword. We initialize 𝝈𝑤 to [0.6, 0; 0, 0.6] for any 𝐴𝑤. 𝝈𝑤 will be updated in the

parameter estimation step.

2.4.2 Iteratively mining discriminant grouplets

For each class, our goal is to find all the grouplets of large support and confidence

values. One way is to evaluate these values on all possible grouplets. Assuming an

image of 𝐷 patches and a codeword vocabulary of size 𝑊 , there are 𝐷 ×𝑊 possible

feature units. The total number of grouplets is therefore 𝑂(2𝐷×𝑊 ) (in this paper

𝐷 × 𝑊 = 240250). Clearly, evaluating 𝑆𝑢𝑝𝑝(⋅) and 𝐶𝑜𝑛𝑓(⋅) of all the grouplets for

each class is computationally infeasible.
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Figure 2.5: Example grouplets whose feature units are of different signal value
strengths. One grouplet is presented in each image, where the ellipses indicate the
location and spatial extent of the feature units. Thicker lines indicate stronger signal
values. For the same flute-playing activity, it is intuitive to see that the grouplet on
the left has overall stronger feature units than the mixed one in the middle and the
weaker one on the right.

We therefore develop a data mining algorithm for this task, which discriminatively

explores the AND/OR structure of the grouplets in an Apriori mining [1] process.

Furthermore, we introduce a novel parameter estimation method to better estimate

the spatial distribution 𝝈𝑤 of each codeword 𝐴𝑤 as well as to obtain a set of weights

for the grouplets of each class. Our mining algorithm then iterates between the mining

process and the parameter estimation process. An overview of the algorithm is shown

in Algorithm 1, where 𝑙-grouplets indicate the grouplets of size 𝑙. We briefly describe

the mining and the parameter estimation method in the rest of this section.

The Modified Apriori Mining Algorithm In each iteration of Algorithm 1, given

the spatial distribution 𝝈𝑤 of each codeword 𝐴𝑤, we compute the signal values of

all the feature units on each image as in Fig.2.4. We are then ready to mine the

discriminative grouplets for every class.

We modify the Apriori [1] mining method to explore the AND/OR structures to

select the discriminative grouplets. The main idea of Apriori mining is compatible

with the AND operation: if an 𝑙-grouplet has a large support value, then by removing

the feature units in any of its OR operations, the remaining (𝑙 − 1)-grouplets also

have large support values. Therefore, we can generate 𝑙-grouplets based only on the
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foreach Iteration do
∙ Compute signals of all feature units on each image;
foreach Class do

★ Obtain the feature units whose 𝑆𝑢𝑝𝑝(⋅) > 𝑇𝑆𝑢𝑝𝑝;
★ Generate 1-grouplets; Set 𝑙 = 2;
while The number of (𝑙 − 1)-grouplets ⩾ 2 do

Generate candidate 𝑙-grouplets; Remove 𝑙- grouplets whose
𝑆𝑢𝑝𝑝(⋅) < 𝑇𝑆𝑢𝑝𝑝; 𝑙 = 𝑙 + 1;

end
★ Remove the grouplets whose 𝐶𝑜𝑛𝑓(⋅) < 𝑇𝐶𝑜𝑛𝑓 .

end
∙ Parameter estimation to refine 𝝈𝑤 for each 𝐴𝑤 and obtain a weight for
each mined grouplet.

end

Algorithm 1: Obtaining discriminative grouplets.

mined (𝑙−1)-grouplets, instead of considering all the possibilities. The OR operation

is used to obtain the 1-grouplets. For each codeword, a hierarchical clustering is

applied to the feature units that have large enough support values. Each cluster is

then initialized as a 1-grouplet. The mining process is briefly shown in Algorithm 1.

Implementation Details: The hierarchical clustering is based on the maximum

distance metric, of which the threshold is two times the patch size. The mining

algorithm automatically adjusts the values of 𝑇𝑆𝑢𝑝𝑝 and 𝑇𝐶𝑜𝑛𝑓 for each class, so that

the number of mined grouplets for different classes are approximately the same. Please

refer to the full version of [126] for more details of the mining method.

Refining Grouplets Given a set of mined grouplets, we introduce a parameter es-

timation method to further refine the spatial distribution 𝝈𝑤 of each codeword 𝐴𝑤.

With the refined 𝝈, one can expect that more accurate signal values of the feature

units can be computed, which in turn can be put into the mining process to ob-

tain better grouplets in the next iteration. Furthermore, the algorithm computes a

weight on each mined grouplet for each class. The combination of grouplets and the

class-dependent weights can then be directly used for classification tasks (see Sec.2.5).

Given an image ℐ with class label 𝑐, we compute the likelihood of ℐ given a set of

parameters 𝜽, where 𝜽 contains the parameters for the spatial extent of each codeword
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and the importance of each grouplet.

𝑝(ℐ, 𝑐∣𝜽) = 𝑝(𝑐∣𝜽)
∑
𝑚

[
𝑝(ℐ∣Λ𝑚,𝜽)𝑝(Λ𝑚∣𝑐, 𝜽)] (2.3)

where Λ𝑚 indicates the 𝑚-th mined grouplet. 𝑝(ℐ∣Λ𝑚,𝜽) denotes the likelihood of ℐ
given Λ𝑚. 𝑝(Λ𝑚∣𝑐,𝜽) models the importance of Λ𝑚 for class 𝑐. We use an expectation-

maximization (EM) algorithm to estimate the parameters 𝜽, which is elaborated in

the full version of [126]. On a PC with a 2.66GHz CPU, our algorithm can process

around 20000 grouplets under 3 minutes per EM iteration.

2.5 Using grouplets for classification

Having obtained the discriminative grouplets, we are ready to use them for classifica-

tion tasks. In this paper, we show that grouplets can be used for classification either

by a generative or a discriminative classifier.

A Generative Classifier. Recall that when refining grouplets, our probabilistic

parameter estimation process outputs the importance of each grouplet for each class.

This can, therefore, be directly used for classification. Given a new image ℐ, its class
label 𝑐 is predicted as follows,

𝑐 = argmax
𝑐′

𝑝(𝑐′∣ℐ,𝜽) = argmax
𝑐′

𝑝(𝑐′, ℐ∣𝜽) (2.4)

A Discriminative Classifier. Discriminative classifiers such as SVM can be

applied by using groupets. Given an image, the input feature vector to SVM classifiers

is the signal values of the mined grouplets.

2.6 Related work

Many features have been proposed for various vision tasks in the past decade [116].

It is out of the scope of this chapter to discuss all of them. Instead, we discuss the

image representations that have directly influenced our work.
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One of the most popular image feature representation schemes is bag of words

(BoW) and its derivations (e.g. [71]). These methods have shown promising results in

holistic image classification tasks. But by assuming little or no spatial relationships

among image patches, these representations are not sufficient for more demanding

tasks such as differentiating human and object interactions.

In order to remedy BoW, some methods have been proposed to either encode

longer range image statistics [109, 103] or explicitly model spatial relationships among

image patches [39, 38, 87]. But most of such approaches uncover image features in a

generative way, which might result in some features that are not essential for recog-

nition. In [37], a deformable part model is presented for discriminatively detecting

objects in cluttered scenes. This method, however, assumes that the target object

consists of a small number of deformable parts, which might not be able to model the

subtle difference between similar image categories.

Our feature is similar in spirit to [8], though independently developed. We dif-

fer from [8] in that our features are automatically discovered instead of supervised

by humans, making it a more scalable and convenient algorithm. Furthermore, we

emphasize the dependence among image features, which is critical for demanding

recognition tasks such as human and object interactions.

There has been a lot of work on discriminative feature selection [57, 63]. But

most of the methods are not able to manage such a huge number of features (2 to

the power of millions) as in the grouplets. Our algorithm is inspired by previous

works [95, 136, 135] that also use data mining methods for feature selection. But

compared to these previous methods, we take a step further to encode much more

structured information in the feature representation.

2.7 Experiment

We first conduct experiments to analyze the properties of grouplets (Sec.2.7.1). The

rest of this section then focuses on comparing using grouplets for human-object inter-

action classification and detection with a number of existing state-of-the-art methods.

Apart from Sec.2.7.5, all experiments use the PPMI dataset introduced in Sec.2.2. In
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Figure 2.6: Analysis of the properties of grouplets. left: Average distribution of
grouplets containing different number of feature units in the PPMI images. Error
bars indicate standard deviations. right: 7-class classification accuracy with respect
to the number of feature units in included grouplets.

Sec.2.7.4 we use the original PPMI images. Data sets that are used from Sec.2.7.1

to 2.7.3 are obtained as follows. We first run a face detector [57] on all PPMI im-

ages. For each instrument, we manually select 200 detection results from PPMI+

and PPMI- images respectively. We then crop a rectangle region of the upper body

of each selected detection result and normalize the region to 256× 256 pixels so that

the face size is 32× 32.

2.7.1 Analysis of the properties of grouplets

Effects of the grouplet size We use a 7-class classification task to analyze the

properties of the mined grouplets (experiment details in Sec.2.7.2). Here we use

an SVM with the histogram intersection kernel for classification. We use LIBLIN-

EAR [30] for SVM implementation.

Fig.2.6(left) shows the average distribution of different sizes of grouplets. Because

the AND operation takes the smallest signal value of all feature units, it is unlikely

that grouplets with a very large size can be mined. We observe that a majority of the

mined grouplets contain 1, 2, or 3 feature units. Fig.2.6(right) shows the classification

performance as the size of the grouplets increases. We see a big increase in accuracy
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Figure 2.7: left: Classification accuracy with respect to the number of iterations
(outer loop of Alg.1) of grouplet mining and parameter estimation. right: Spatial
extent of grouplets mined in the 1st, 2nd, and 3rd iteration.

using grouplets from size 1 to size 3. After this, the accuracy stabilizes even when

including grouplets of bigger sizes. Two reasons might account for this observation: 1)

the number of grouplets containing more than 3 feature units is small, and hence the

overall contribution to classification is small; 2) much information in such grouplets

is already contained in the grouplets of smaller sizes.

Effect of the Iterative Learning Procedure Given a set of training images, our

algorithm iterates between a mining and a parameter estimation step. The idea is that

each iteration offers a better refinement of the grouplet parameters (e.g. spatial extent

of codeword), hence of the overall dscriminability. Fig.2.7(left) shows that the clas-

sification accuracy increases with the iteration number. We observe the biggest gain

between the first two iterations, indicating that with only two iterations, the method

can obtain a good estimation of the spatial extent of each grouplet. Fig.2.7(right)

shows that the estimation of the spatial extent of the grouplets align better with the

visual features as the iteration increases, resulting in better grouplets.

2.7.2 Classification of playing different instruments

Here we use our algorithm (grouplet+SVM and grouplet+Model, Sec.2.5) to classify

images of people playing seven different musical instruments. For each class, 100
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Figure 2.8: 7-class classification using the normalized PPMI+ images. left: Confusion
matrix obtained by grouplet+SVM. The classification accuracy is 65.7%, whereas
chance is 14%. right: Classification results of different methods. Y-axis indicates
the classification accuracy of each method on the 7 classes.

normalized PPMI+ images are randomly selected for training and the remaining 100

images for testing. We use three iterations of the iterative learning framework to

mine around 2000 grouplets for each class. Fig.2.8(left) shows the confusion table

obtained by grouplet+SVM with the histogram intersection kernel. We observe that

the histogram intersection kernel performs better than the other kernels.

We compare our grouplet+SVM and grouplet+Model methods with some other

approaches, including a four-level spatial pyramid matching (SPM) [71], the de-

formable part model (DPM) [37], the constellation model [39], and bag-of-words

(BoW). The results are shown in Fig.2.8(right). Both BoW and SPM [71] use the

histogram representation, where BoW does not consider spatial information in image

features while SPM accounts for some level of coarse spatial information by building

histograms in different regions of the image. The BoW representation is followed

by an SVM classifier with the histogram intersection kernel. Both DPM [37] and

the constellation model [39] are part-based models, where DPM trains the classifier

discriminatively and constellation model adopts a generative way.

We observe that our grouplet+SVM outperforms the other methods by a large

margin. This suggests the effectiveness of the structural information in the mined
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grouplets. Furthermore, the method that combines grouplet with a generative model

achieves comparable performance with SPM. This demonstrates that (1) the dis-

criminatively mined grouplets carry the information that can distinguish images of

different classes; (2) our parameter estimation step can effectively learn the weights

of each mined grouplet.

2.7.3 Discriminating playing from not playing

Our algorithm aims to learn discriminative structured information of human-object

interactions. To demonstrate this, we conduct a classification experiment on PPMI+

vs. PPMI- datasets. For each instrument, we perform a binary classification task:

whether the picture contains a person playing the instrument or a person not playing

the instrument. Note that all images contain person(s) and instrument(s). The

distinction between PPMI+ and PPMI- is only the way the person is interacting

with the instrument.

We have 7 binary classification problems. In each problem, 100 normalized PPMI+

and 100 PPMI- images are randomly selected for training, and the other 200 images

are used for testing. We mine around 4000 grouplets for both PPMI+ and PPMI-

images of each instrument. In Table 2.1, our method is compared with the other ap-

proaches described in Sec.2.7.2. Due to space limitation, results of the constellation

Instruments SPM [71] DPM [37] BoW Grouplet+Model Grouplet+SVM

Bassoon 71.5% 68.5% 64.5% 75.0% 78.0%
Erhu 78.0% 75.5% 77.5% 78.5% 78.5%
Flute 84.5% 79.0% 78.0% 85.0% 90.5%

French Horn 78.5% 75.5% 71.5% 77.0% 80.5%
Guitar 79.5% 81.0% 68.0% 73.0% 75.5%

Saxophone 76.0% 76.5% 73.0% 75.0% 78.5%
Violin 78.5% 75.5% 74.0% 83.5% 85.0%

Table 2.1: Classification results of PPMI+ (playing musical instrument) vs. PPMI-
(co-occurring but not playing the instrument). The best performance on each instru-
ment is marked with bold font.



22 CHAPTER 2. GROUPLET: A STRUCTURED IMAGE REPRESENTATION
�

��
��

�
�

��
��


��
��

	
�

��
��

�

�

��
�

��
��

��
�


	
��

	

��


�
��




Figure 2.9: Examples of 1, 2, and 3-grouplets on two images of each instrument.

model, which performs on par with BoW, are not listed in Table 2.1. We can see

that our method outperforms the other methods on almost all the classes, especially

on bassoon, flute, and violin, where our approach improves the accuracy by almost
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Figure 2.10: On each image, we show all grouplets selected by the algorithm for this
class whose signal values are stronger than a threshold. We can see that PPMI-
images usually have a much smaller number of grouplets with strong signals than
PPMI+ images.

10%. The only exception is guitar, where DPM achieves the best performance. The

reason is that in the normalized images of people playing guitar, the guitar always

occupies a big region at the left-bottom part of the image (Fig.2.9). Therefore it is

not difficult for the part-based methods (DPM, SPM) to localize the guitar in each

image. Fig.2.10 shows some PPMI+ and PPMI- images with the grouplets that are

mined for the corresponding PPMI+ images of the same instrument, where much

fewer grouplets are observed on PPMI- images.

2.7.4 Detecting human and object interactions

Here, we test our approach’s ability to detect activities in cluttered scenes. We use

the original PPMI images as shown in Fig.2.2. In this experiment, 80 PPMI+ and 80

PPMI- randomly selected images of each instrument are used for training, and the



24 CHAPTER 2. GROUPLET: A STRUCTURED IMAGE REPRESENTATION

2�&��/���

0���(/
1��� 0����

������
-������

-������

0���(/
1���

0���(/
1���

2�&��/���

(a) Examples of detection results by our method.
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(b) Examples of detection results by spatial pyramid matching (SPM) [71].

Figure 2.11: Examples of detection results by our method and SPM. Cyan and ma-
genta rectangles denote the detection results and false alarms respectively. Bounding
boxes in (a) are drawn by including all the grouplets that have large signals on the
image region. Yellow rectangles show the face detection results which are classified
as background.

remaining images for testing.

We first run a face detector on all images. We set a relatively low detection

threshold to guarantee that almost all human faces are detected. Fig.2.11 shows

that many false alarms occur after this step, at positions where no face is present or

on a person who is not playing an instrument. Given each face detection, we crop

out the neighboring region. Based on these regions, we mine the grouplets that are

discriminative for detecting people playing each instrument. Then, an 8-class SVM

classifier is trained to determine whether this detection contains a person playing

one of the 7 instruments or not. This is a very challenging task (see Fig.2.11). The

preliminary experiment result shows that, measured with area under the precision-

recall curve, our algorithm significantly outperforms the SPM method [71]: we obtain

a 45.7% performance, while SPM is 37.3%. We show examples of both successes and

failures of our algorithm and SPM in Fig.2.11, from which we can see that SPM
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Method [4] [47] [137] [42] Grouplet+SVM

Accuracy 48% 59% 65% 77% 62%

Table 2.2: Recognition results on Caltech 101. The performance is measured by the
average accuracy of the 101 classes.

produces more false alarms than our method.

2.7.5 Result on other dataset - Caltech 101

Not only grouplets can be used for recognizing human-object interactions, but it is

also a general framework to mine structured visual features in images. Therefore we

also test our algorithm in an object recognition task using Caltech101 [33], in the

same setting as in [47]. Table 2.2 compares our results with some previous methods.

Other than the method in [42], our model performs on par with most of the state-

of-the-art algorithms. It is important to note that this experiment is carried out

without any additional tuning of the algorithm designed for activity classification.

To accommodate objects that are not characterized by specific spatial structures

(e.g. articulated animals), some design modifications should be applied to mine the

grouplets.

2.8 Summary

In this chapter, we proposed a grouplet feature for recognizing human-object inter-

actions. Grouplets encode detailed and structured information in the image data. A

data mining method incorporated with a parameter estimation step is applied to mine

the discriminative grouplets. One future research direction would be to link the mined

grouplets with semantic meanings in the images to obtain deeper understanding of

the scenes of human-object interactions.



Chapter 3

Classification: Combining

Randomization and Discrimination

Grouplet is a feature representation that captures subtle and structured visual infor-

mation. But feature mining and classifier training steps are separated when using

grouplet for action classification. In this chapter1, we treat action recognition as a

fine-grained image classification problem, and propose to combine randomization and

discrimination for joint feature selection and classifier training, which leads to en-

couraging results on action recognition and the other fine-grained image classification

tasks.

3.1 Introduction

Psychologists have shown that the ability of humans to perform basic-level catego-

rization (e.g. cars vs. dogs; kitchen vs. highway) develops well before their ability

to perform subordinate-level categorization, or fine-grained visual categorization (e.g.

Golden retrievers vs. Labrador) [62]. It is interesting to observe that computer vision

research has followed a similar trajectory. Basic-level object and scene recognition

has seen great progress [37, 71, 90, 120] while fine-grained categorization has received

little attention. Unlike basic-level recognition, even humans might have difficulty with

1An early version of this chapter has been presented in [132].

26



3.1. INTRODUCTION 27

'���"���������� ����(���57��	�$����� 1���#�������

���
��	�'������� 1��$��	�'������� ���
��	���(��$��

Figure 3.1: Human action recognition (top row) is a fine-grained image classification
problem, where the human body dominates the image region. In some sense, it is
similar to the subordinate object classification problem. Bounding boxes indicate
discriminative image patches.

some of the fine-grained categorization [122]. Thus, an automated visual system for

this task could be valuable in many applications.

Action recognition in still images can be regarded as a fine-grained classification

problem [55]. Unlike traditional object or scene recognition problems where different

classes can be distinguished by different parts or coarse spatial layout [39, 71, 37],

more detailed visual distinctions need to be explored for fine-grained image classifi-

cation. The bounding boxes in Fig.3.1 demarcate the distinguishing characteristics

between closely related bird species, or different musical instruments or human poses

that differentiate the different playing activities. Models and algorithms designed for

basic-level object or image categorization tasks are often unprepared to capture such

subtle differences among the fine-grained visual classes. In this chapter, we approach

this problem from the perspective of finding a large number of image patches with

arbitrary shapes, sizes, or locations, as well as interactions between pairs of patches
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that carry discriminative image statistics [25, 126] (Sec.3.3). However, this approach

poses a fundamental challenge: without any feature selection, even a modestly sized

image will yield millions or billions of image patches. Furthermore, these patches are

highly correlated because many of them overlap significantly. To address these issues,

we propose the use of randomization that considers a random subset of features at a

time.

In this chapter, we propose a random forest with discriminative decision trees

algorithm to discover image patches and pairs of patches that are highly discriminative

for fine-grained categorization tasks. Unlike conventional decision trees [23, 10, 7], our

algorithm uses strong classifiers at each node and combines information at different

depths of the tree to effectively mine a very dense sampling space. Our method

significantly improves the strength of the decision trees in the random forest while

still maintaining low correlation between the trees. This allows our method to achieve

low generalization error according to the theory of random forest [10].

Besides human action recognition in still images [126, 28, 29], we also evaluate

our method on subordinate categorization of closely related animal species [122]. We

show that our method achieves state-of-the-art results. Furthermore, our method

identifies semantically meaningful image patches that closely match human intuition.

Additionally, our method tends to automatically generate a coarse-to-fine structure

of discriminative image regions, which parallels the human visual system [14].

The remaining part of this chapter is organized as follows: Sec.3.2 discusses related

work. Sec.3.3 describes our dense feature space and Sec.3.4 describes our algorithm

for mining this space. Experimental results are discussed in Sec.3.5, and Sec.3.6

summarizes this chapter.

3.2 Related work

Image classification has been studied for many years. Most of the existing work

focuses on basic-level categorization such as objects [34, 7, 37] or scenes [90, 35, 71].

In this paper we focus on fine-grained image categorization [55, 9], which requires an

approach to capture the fine and detailed information in images.
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In this chapter, we explore a dense feature representation to distinguish fine-

grained image classes. The previous chapter has shown the advantage of dense fea-

tures (“Grouplet” features [126]) in classifying human activities. Instead of using

the generative local features as in Grouplet, here we consider a richer feature space

in a discriminative setting where both local and global visual information are fused

together. Inspired by [25, 126], our approach also considers pairwise interactions

between image regions.

We use a random forest framework to identify discriminative image regions. Ran-

dom forests have been used successfully in many vision tasks such as object detec-

tion [7], segmentation [107] and codebook learning [83]. Inspired from [115], we

combine discriminative training and randomization to obtain an effective classifier

with good generalizability. Our method differs from [115] in that for each tree node,

we train an SVM classifier from one of the randomly sampled image regions, instead

of using AdaBoost to combine weak features from a fixed set of regions. This allows

us to explore an extremely large feature set efficiently.

A classical image classification framework [120] is Feature Extraction → Coding

→ Pooling → Concatenating. Feature extraction [78] and better coding and pooling

methods [120] have been extensively studied for object recognition. In this work,

we use discriminative feature mining and randomization to propose a new feature

concatenating approach, and demonstrate its effectiveness on fine-grained image cat-

egorization tasks.

3.3 Dense sampling space

Our algorithm aims to identify fine image statistics that are useful for fine-grained

categorization. For example, in order to classify whether a human is playing a guitar

or holding a guitar without playing it, we want to use the image patches below the

human face that are closely related to the human-guitar interaction (Fig.3.2(b)). An

algorithm that can reliably locate such regions is expected to achieve high classifica-

tion accuracy. We achieve this goal by searching over rectangular image patches of

arbitrary width, height, and image location. We refer to this extensive set of image
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(a) (b)

Figure 3.2: Illustration of the proposed dense sampling space. (a) We densely sample
rectangular image patches with varying widths and heights. The regions are closely
located and have significant overlaps. The red × denote the centers of the patches,
and the arrows indicate the increment of the patch width or height. (b) Illustration
of some image patches that may be discriminative for “playing-guitar”. All those
patches can be sampled from our dense sampling space.

regions as the dense sampling space, as shown in Fig.3.2(a). This figure has been

simplified for visual clarity, and the actual density of regions considered in our algo-

rithm is significantly higher. We note that the regions considered by spatial pyramid

matching [71] is a very small subset lying along the diagonal of the height-width plane

that we consider. Further, to capture more discriminative distinctions, we also con-

sider interactions between pairs of arbitrary patches. The pairwise interactions are

modeled by applying concatenation, absolute of difference, or intersection between

the feature representations of two image patches.

However, the dense sampling space is very huge. Sampling image patches of size

50 × 50 in a 400 × 400 image every four pixels leads to thousands of patches. This

increases many-folds when considering regions with arbitrary widths and heights.

Further considering pairwise interactions of image patches will effectively lead to tril-

lions of features for each image. In addition, there is much noise and redundancy in

this feature set. On the one hand, many image patches are not discriminative for dis-

tinguishing different image classes. On the other hand, the image patches are highly

overlapped in the dense sampling space, which introduces significant redundancy

among these features. Therefore, it is challenging to explore this high-dimensional,
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noisy, and redundant feature space. In this work, we address this issue using random-

ization.

3.4 Discriminative random forest

In order to explore the dense sampling feature space for fine-grained visual categoriza-

tion, we combine two concepts: (1) Discriminative training to extract the information

in the image patches effectively; (2) Randomization to explore the dense feature space

efficiently. Specifically, we adopt a random forest [10] framework where each tree

node is a discriminative classifier that is trained on one or a pair of image patches.

In our setting, the discriminative training and randomization can benefit from each

other. We summarize the advantages of our method below:

∙ The random forest framework allows us to consider a subset of the image regions

at a time, which allows us to explore the dense sampling space efficiently in a

principled way.

∙ Random forest selects a best image patch in each node, and therefore it can

remove the noise-prone image patches and reduce the redundancy in the feature

set.

∙ By using discriminative classifiers to train the tree nodes, our random forest has

much stronger decision trees with small correlation. This allows our method to

have low generalization error (Sec.3.4.4) compared with the traditional random

forest [10] which uses weak classifiers in the tree nodes.

An overview of the random forest framework we use is shown in Algorithm 2. In

the following sections, we first describe this framework (Sec.3.4.1). Then we elaborate

on our feature sampling (Sec.3.4.2) and split learning (Sec.3.4.3) strategies in detail,

and describe the generalization theory [10] of random forest which guarantees the

effectiveness of our algorithm (Sec.3.4.4).
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foreach tree 𝑡 do
- Obtain a random set of training examples 𝒟;
- SplitNode(𝒟);
if needs to split then

i. Randomly sample the candidate (pairs of) image regions (Sec.3.4.2);
ii. Select the best region to split 𝒟 into two sets 𝒟1 and 𝒟2 (Sec.3.4.3);
iii. SplitNode(𝒟1) and SplitNode(𝒟2).

else
Return 𝑃𝑡(𝑐) for the current leaf node.

end

end

Algorithm 2: Overview of the process of growing decision trees in the random
forest framework.

3.4.1 The random forest framework

Random forest is a multi-class classifier consisting of an ensemble of decision trees

where each tree is constructed via some randomization. As illustrated in Fig.3.3(a),

the leaf nodes of each tree encode a distribution over the image classes. All internal

nodes contain a binary test that splits the data and sends the splits to its children

nodes. The splitting is stopped when a leaf node is encountered. An image is classified

by descending each tree and combining the leaf distributions from all the trees. This

method allows the flexibility to explore a large feature space effectively because it

only considers a subset of features in every tree node.

Each tree returns the posterior probability of an example belonging to the given

classes. The posterior probability of a particular class at each leaf node is learned as

the proportion of the training images belonging to that class at the given leaf node.

The posterior probability of class 𝑐 at leaf 𝑙 of tree 𝑡 is denoted as 𝑃𝑡,𝑙(𝑐). Thus, a

test image can be classified by averaging the posterior probability from the leaf node

of each tree:

𝑐∗ = argmax
𝑐

1

𝑇

𝑇∑
𝑡=1

𝑃𝑡,𝑙𝑡(𝑐), (3.1)

where 𝑐∗ is the predicted class label, 𝑇 is the total number of trees, and 𝑙𝑡 is the leaf
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Weak 

classifier

Leaf

(a) Conventional random decision tree.

Strong 

classifier

Leaf

(b) The proposed discriminative decision tree.

Figure 3.3: Comparison of conventional random decision trees with our discriminative
decision trees. Solid blue arrows show binary splits of the data. Dotted lines from the
shaded image regions indicate the region used at each node. Conventional decision
trees use information from the entire image at each node, which encodes no spatial
or structural information, while our decision trees sample single or multiple image
regions from the dense sampling space (Fig.3.2(a)). The histograms below the leaf
nodes illustrate the posterior probability distribution 𝑃𝑡,𝑙(𝑐) (Sec.3.4.1). In (b), dotted
red arrows between nodes show our nested tree structure that allows information
to flow in a top-down manner. Our approach uses strong classifiers in each node
(Sec.3.4.3), while the conventional method uses weak classifiers.

node that the image falls into.

In the following sections, we describe the process of obtaining 𝑃𝑡,𝑙(𝑐) using our

algorithm. Readers can refer to previous works [10, 7, 107] for more details of the
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conventional decision tree learning procedure.

3.4.2 Sampling the dense feature space

As shown in Fig.3.3(b), each internal node in our decision tree corresponds to a single

or a pair of rectangular image regions that are sampled from the dense sampling

space (Sec.3.3), where the regions can have many possible widths, heights, and image

locations. In order to sample a candidate image region, we first normalize all images to

unit width and height, and then randomly sample (𝑥1, 𝑦1) and (𝑥2, 𝑦2) from a uniform

distribution 𝑈([0, 1]). These coordinates specify two diagonally opposite vertices of

a rectangular region. Such regions could correspond to small areas of the image (e.g.

the purple bounding boxes in Fig.3.3(b)) or even the complete image. This allows

our method to capture both global and local information in the image.

In our approach, each sampled image region is represented by a histogram of visual

descriptors. For a pair of regions, the feature representation is formed by applying

histogram operations (e.g. concatenation, intersection, etc.) to the histograms ob-

tained from both regions. Furthermore, the features are augmented with the decision

value w𝑇 f (described in Sec.3.4.3) of this image from its parent node (indicated by the

dashed red lines in Fig.3.3(b)). Therefore, our feature representation combines the

information of all upstream tree nodes that the corresponding image has descended

from. We refer to this idea as “nesting”. Using feature sampling and nesting, we

obtain a candidate set of features, f ∈ ℝ
𝑛, corresponding to a candidate image region

of the current node.

Implementation details. Our method is flexible to use many different visual

descriptors. In this work, we densely extract SIFT [78] descriptors on each image

with a spacing of four pixels. The scales of the grids to extract descriptors are 8, 12,

16, 24, and 30. Using k-means clustering, we construct a vocabulary of codewords2.

Then, we use Locality-constrained Linear Coding [120] to assign the descriptors to

codewords. A bag-of-words histogram representation is used if the area of the patch

is smaller than 0.2, while a 2-level or 3-level spatial pyramid is used if the area is

2A dictionary size of 1024, 256, 256 is used for PASCAL action [28, 29], PPMI [126], and Caltech-
UCSD Birds [122] datasets respectively.
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between 0.2 and 0.8 or larger than 0.8 respectively.

During sampling (step i of Algorithm 2), we consider four settings of image

patches: a single image patch and three types of pairwise interactions (concatena-

tion, intersection, and absolute of difference of the two histograms). We sample 25

and 50 image regions (or pairs of regions) in the root node and the first level nodes

respectively, and sample 100 regions (or pairs of regions) in all other nodes. Sampling

a smaller number of image patches in the root can reduce the correlation between the

resulting trees.

3.4.3 Learning the splits

In this section, we describe the process of learning the binary splits of the data using

SVM (step ii in Algorithm 2). This is achieved in two steps: (1) Randomly assigning

all examples from each class to a binary label; (2) Using SVM to learn a binary split

of the data.

Assume that we have 𝐶 classes of images at a given node. We uniformly sample

𝐶 binary variables, b, and assign all examples of a particular class 𝑐𝑖 a class label of

𝑏𝑖. As each node performs a binary split of the data, this allows us to learn a simple

binary SVM at each node. This improves the scalability of our method to a large

number of classes and results in well-balanced trees. Using the feature representation

f of an image region (or pairs of regions) as described in Sec.3.4.2, we find a binary

split of the data: {
w𝑇 f ≤ 0, go to left child

otherwise, go to right child

where w is the set of weights learned from a linear SVM.

We evaluate each binary split that corresponds to an image region or pairs of

regions with the information gain criteria [7], which is computed from the complete

training images that fall at the current tree node. The splits that maximize the

information gain are selected and the splitting process (step iii in Algorithm 2) is

repeated with the new splits of the data. The tree splitting stops if a pre-specified

maximum tree depth has been reached, or the information gain of the current node
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is larger than a threshold, or the number of samples in the current node is small.

3.4.4 Generalization error of random forests

In [10], it has been shown that an upper bound for the generalization error of a

random forest is given by

𝜌(1− 𝑠2)/𝑠2, (3.2)

where 𝑠 is the strength of the decision trees in the forest, and 𝜌 is the correlation

between the trees. Therefore, the generalization error of a random forest can be

reduced by making the decision trees stronger or reducing the correlation between

the trees.

In our approach, we learn discriminative SVM classifiers for the tree nodes. There-

fore, compared to the traditional random forests where the tree nodes are weak classi-

fiers of randomly generated feature weights [7], our decision trees are much stronger.

Furthermore, since we are considering an extremely dense feature space, each decision

tree only considers a relatively small subset of image patches. This means there is

little correlation between the trees. Therefore, our random forest with discriminative

decision trees algorithm can achieve very good performance on fine-grained image

classification, where exploring fine image statistics discriminatively is important. In

Sec.3.5.5, we show the strength and correlation of different settings of random forests

with respect to the number of decision trees, which justifies the above arguments.

Please refer to [10] for details about how to compute the strength and correlation

values for a random forest.

3.5 Experiments

In this section, we first evaluate our algorithm on two fine-grained image datasets:

actions of people-playing-musical-instrument (PPMI) [126] (Sec.3.5.1) and a subor-

dinate object categorization dataset of 200 bird species [122] (Sec.3.5.2). Experimen-

tal results show that our algorithm outperforms state-of-the-art methods on these
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datasets. Further, we use the proposed method to participate the action classifica-

tion competition of the PASCAL VOC challenge, and obtain the winning award in

both 2011 [28] and 2012 [29]. Detailed results and analysis are shown in Sec.3.5.3

and Sec.3.5.4. Finally, we evaluate the strength and correlation of the decision trees

in our method, and compare the result with the other settings of random forests to

show why our method can lead to better classification performance (Sec.3.5.5).

3.5.1 People-playing-musical-instrument (PPMI)

The people-playing-musical-instrument (PPMI) data set is introduced in [126]. This

data set puts emphasis on understanding subtle interactions between humans and

objects. Here we use a full version of the dataset which contains twelve musical

instruments; for each instrument there are images of people playing the instrument

and holding the instrument but not playing it. We evaluate the performance of our

method with 100 decision trees on the 24-class classification problem. We compare our

method with many previous results3, including bag of words, grouplet [126], spatial

pyramid matching (SPM) [71], locality-constrained linear coding (LLC) [120]. The

grouplet method uses one SIFT scale, while all the other methods use multiple SIFT

scales described in Sec.3.4.2. Tbl.3.1 shows that we significantly outperform the a

various of previous approaches.

Tbl.3.2 shows the result of our method on the 12 binary classification tasks where

each task involves distinguishing the activities of playing and not playing for the

same instrument. Despite a high baseline of 89.2% mAP, our method outperforms by

2.9% to achieve a result of 92.1% overall. Furthermore, we outperform the baseline

methods on nine of the twelve binary classification tasks. In Fig.3.4, we visualize the

heat map of the features learned for this task. We observe that they show semantically

meaningful locations of where we would expect the discriminative regions of people

playing different instruments to occur. For example, for flute, the region around the

face provides important information while for guitar, the region to the left of the

torso provides more discriminative information. It is interesting to note that despite

3The baseline results are available from the dataset website http://ai.stanford.edu/

˜bangpeng/ppmi.
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Method BoW Grouplet [126] SPM [71] LLC [120] Ours

mAP (%) 22.7 36.7 39.1 41.8 47.0

Table 3.1: Mean Average Precision (% mAP) on the 24-class classification problem
of the PPMI dataset. The best result is highlighted with bold fonts.

Instrument BoW Grouplet [126] SPM [71] LLC [120] Ours

Bassoon 73.6 78.5 84.6 85.0 86.2
Erhu 82.2 87.6 88.0 89.5 89.8
Flute 86.3 95.7 95.3 97.3 98.6

French horn 79.0 84.0 93.2 93.6 97.3
Guitar 85.1 87.7 93.7 92.4 93.0

Saxophone 84.4 87.7 89.5 88.2 92.4
Violin 80.6 93.0 93.4 96.3 95.7

Trumpet 69.3 76.3 82.5 86.7 90.0
Cello 77.3 84.6 85.7 82.3 86.7

Clarinet 70.5 82.3 82.7 84.8 90.4
Harp 75.0 87.1 92.1 93.9 92.8

Recorder 73.0 76.5 78.0 79.1 92.8
Average 78.0 85.1 88.2 89.2 92.1

Table 3.2: Comparison of mean Average Precision (% mAP) of the results obtained
by different methods on the PPMI binary classification tasks of people playing and
holding different musical instruments. Each column shows the results obtained from
one method. The best results are highlighted with bold fonts.

the randomization and the algorithm having no prior information, it is able to locate

the region of interest reliably.

Furthermore, we also demonstrate that the method learns a coarse-to-fine region of

interest for identification. This is similar to the human visual system which is believed

to analyze raw input in order from low to high spatial frequencies or from large global

shapes to smaller local ones [14]. Fig.3.5 shows the heat map of the area selected by

our classifier as we consider different depths of the decision tree. We observe that

our random forest follows a similar coarse-to-fine structure. The average area of the

patches selected reduces as the tree depth increases. This shows that the classifier first

starts with more global features or high frequency features to discriminate between

multiple classes, and finally zeros in on the specific discriminative regions for some
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(a) flute (b) guitar (c) violin

Figure 3.4: (a) Heat map of the dominant regions of interest selected by our method
for playing flute on images of playing flute (top row) and holding a flute without
playing it (bottom row). (b,c) shows similar images for guitar and violin, respectively.
The heat maps are obtained by aggregating image regions of all the tree nodes in the
random forest weighted by the probability of the corresponding class. Red indicates
high frequency and blue indicates low frequency.
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Figure 3.5: Heat map for “playing trumpet” class with the weighted average area of
selected image regions for each tree depth. Please refer to Fig.3.4 for how the heat
maps are obtained.

particular classes.
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Method MKL [9] LLC [120] Ours

Accuracy 19.0% 18.0% 19.2%

Table 3.3: Comparison of the mean classification accuracy of our method and the
baseline results on the Caltech-UCSD Birds 200 dataset. The best performance is
indicated with bold fonts.

9�: 9;: 9(:

Figure 3.6: Each row represents visualizations for a single class of birds (from top
to bottom): boat tailed grackle, brewer sparrow, and golden winged warbler. For
each class, we visualize: (a) Heat map for the given bird as described in Fig.3.4; (b,c)
Two example images of the corresponding bird and the distribution of image patches
selected for the specific image.

3.5.2 Caltech-UCSD birds 200 (CUB-200)

The Caltech-UCSD Birds (CUB-200) dataset contains 6,033 annotated images of 200

different bird species [122]. This dataset has been designed for subordinate image

categorization. It is a very challenging dataset as the different species are very closely

related and have similar shape/color. There are around 30 images per class with 15

for training and the remaining for testing. The test-train splits are fixed (provided

on the website).
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The images are cropped to the provided bounding box annotations. These regions

are resized such that the smaller image dimension is 150 pixels. As color provides

important discriminative information, we extract C-SIFT descriptors [117] in the same

way described in Sec.3.4.2. We use 300 decision trees in our random forest. Tbl.3.3

compares the performance of our algorithm against the LLC baseline and the state-

of-the-art result (multiple kernel learning (MKL) [9]) on this dataset. Our method

outperforms LLC and achieves comparable performance with the MKL approach. We

note that [9] uses multiple features e.g. geometric blur, gray/color SIFT, full image

color histograms etc. It is expected that including these features can further improve

the performance of our method. Furthermore, we show in Fig.3.6 that our method is

able to capture the intra-class pose variations by focusing on different image regions

for different images.

3.5.3 PASCAL 2011 action classification

The most recent PASCAL VOC challenge incorporated the task of recognizing ac-

tions in still images. The images describe ten common human activities: “Jumping”,

“Phoning”, “Playing a musical instrument”, “Reading”, “Riding a bicycle or motor-

cycle”, “Riding a horse”, “Running”, “Taking a photograph”, “Using a computer”,

and “Walking”. Each person that we need to classify is indicated by a bounding

box and is annotated with one of the nine actions they are performing. There are

also humans performing actions that do not belong to any of the ten aforementioned

categories. There actions are all labeled as “Other”.

We participated the competition using the method proposed in this chapter, and

won the winning award in both 2011 [28]4 and 2012 [29]5. We introduce the details

of our results in the 2011 challenge [28] in the rest of this subsection. Sec.3.5.4 will

cover our results in the 2012 challenge [29].

There are around 2,500 training/validation images and a similar number of testing

4A summary of the results in 2011 PASCAL challenge is in http://pascallin.ecs.soton.ac.

uk/challenges/VOC/voc2011/workshop/index.html.
5A summary of the results in 2012 PASCAL challenge is in http://pascallin.ecs.soton.ac.

uk/challenges/VOC/voc2012/workshop/index.html.
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Action
CAENLEAR CAENLEAR NUDT NUDT

Ours
DSAL HOBJ DSAL CONTEXT SEMANTIC

Jumping 62.1% 71.6% 65.9% 66.3% 66.0%
Phoning 39.7% 50.7% 41.5% 41.3% 41.0%
Playing

60.5% 77.5% 57.4% 53.9% 60.0%
instrument
Reading 33.6% 37.8% 34.7% 35.2% 41.5%
Riding

80.8% 86.5% 88.8% 88.8% 90.0%
bike

Riding
83.6% 89.5% 90.2% 90.0% 92.1%

horse
Running 80.3% 83.8% 87.9% 87.6% 86.6%
Taking

23.2% 25.1% 25.7% 25.5% 28.8%
photo
Using

53.4% 58.9% 54.5% 53.7% 62.0%
computer
Walking 50.2% 59.2% 59.5% 58.2% 65.9%

Table 3.4: Comparison of the mean Average Precision of our method and the other
approaches in the action classification competition of PASCAL VOC 2011. Each
column shows the result from one method. The best results are highlighted with bold
fonts. We skipped the results of MISSOURI SSLMF and WVU SVM-PHOW, which
did not outperform on any class, due to space limitations.

images in the 2011 dataset. As in [18], we obtain a foreground image for each person

by extending the bounding box of the person to contain 1.5× the original size of the

bounding box, and resizing it such that the larger dimension is 300 pixels. We also

resize the original image accordingly. Therefore for each person, we have a “person

image” as well as a “background image”. We only sample regions from the foreground

and concatenate the features with a 2-level spatial pyramid of the background. We

use 100 decision trees in our random forest.

Classification results measured by mean Average Precision (mAP) are shown in

Tbl.3.4. Our method achieves the best result on six out of the ten actions. Note that

we achieved this accuracy based on only grayscale SIFT descriptors, without using

any other features or contextual information like object detectors.

Fig.3.7 shows the frequency of an image patch being selected by our method. For
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Figure 3.7: Heat maps that show distributions of frequency that an image patch is
selected in our method.

each activity, the figure is obtained by considering the features selected in the tree

nodes weighted by the proportion of samples of this activity in this node. From the

results, we can clearly see the difference of distributions for different activities. For

example, the image patches corresponding to human-object interactions are usually

highlighted, such as the patches of bikes and books. We can also see that the image

patches corresponding to background are not frequently selected. This demonstrates

our algorithm’s ability to deal with background clutter.



44 CHAPTER 3. COMBINING RANDOMIZATION AND DISCRIMINATION

Action DPM RF SVM Ours 2011 Ours 2012

Jumping 73.8% 71.1% 75.7%
Phoning 45.0% 41.2% 44.8%

Playing instrument 62.8% 61.9% 66.6%
Reading 41.4% 39.3% 44.4%

Riding bike 93.0% 92.4% 93.2%
Riding horse 93.4% 92.5% 94.2%
Running 87.8% 86.1% 87.6%

Taking photo 35.0% 31.3% 38.4%
Using computer 64.7% 60.4% 70.6%

Walking 73.5% 68.9% 75.6%

Table 3.5: Comparison of the mean Average Precision of our method and the other
approaches in the action classification competition of PASCAL VOC 2012. “Ours
2011” indicates our approach used for the 2011 challenge. The best results are high-
lighted with bold fonts.

3.5.4 PASCAL 2012 action classification

The action classification competition of the 2012 PASCAL VOC challenge [29] con-

tains more than 5,000 training/validation images and a similar number of testing

images, which is around 90% increase in size over 2011. We use our proposed method

with two improvements.

∙ Besides the SIFT image descriptor [78] used in the 2011 challenge, we also

consider four other descriptors: HOG [16], color naming [118], local binary

pattern [89], and object bank [74]. We build decision trees for each feature

independently.

∙ We use training images to build decision trees, and then evaluate the perfor-

mance of each decision tree on the validation data. A tree that corresponds to

a low validation scores will be assigned a low weight. This is different from our

2011 method where all the trees have the weight.

The results are shown in Tbl.3.5. In 2012 we only have one competitor (DPM RF SVM),

and our method outperforms this approach on eight out of the ten action classes. Fur-

ther, comparing “Ours 2012” with “Ours 2011”, we can see that combining multiple
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features and using a tree selection approach improve the performance by 6%.

3.5.5 Strength and correlation of decision trees

We compare our method against two control settings of random forests on the PAS-

CAL action dataset. Here we use the PASCAL VOC 2010 dataset [27] where there

are fewer images than that on 2011 to make our experiments easier to conduct.

∙ Dense feature, weak classifier: For each image region or pairs of regions sampled

from our dense sampling space, replace the SVM classifier in our method with

a weak classifier as in the conventional decision tree learning approach [23, 10],

i.e. randomly generating 100 sets of feature weights and select the best one.

∙ SPM feature, strong classifier: Use SVM classifiers to split the tree nodes as

in our method, but the image regions are limited to that from a 4-level spatial

pyramid.

Note that all other settings of the above two approaches remain unchanged as com-

pared to our method (as described in Sec.3.4). Fig.3.8 shows that on this dataset, a

set of strong classifiers with relatively high correlation can lead to better performance

than a set of weak classifiers with low correlation. We can see that the performance of

random forests can be significantly improved by using strong classifiers in the nodes

of decision trees. Compared to the random forests that only sample spatial pyramid

regions, using the dense sampling space obtains stronger trees without significantly

increasing the correlation between different trees, thereby improving the classification

performance. Furthermore, the performance of the random forests using discrimina-

tive node classifiers converges with a small number of decision trees, indicating that

our method is more efficient than the conventional random forest approach. In our

experiment, the two settings and our method need a similar amount of time to train

a single decision tree.

Additionally, we show the effectiveness of random binary assignment of class labels

(Sec.3.4.3) when we train classifiers for each tree node. Here we ignore this step and

train a one-vs-all multi-class SVM for each sampled image region or pairs of regions.
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(a) Mean average precision (mAP).
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(b) Strength of the decision trees.
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(c) Correlation between the decision trees

Figure 3.8: Comparison of different random forest settings. (a) We compare the clas-
sification performance (mAP) obtained by our method dense feature, strong classifier
with two control settings. Please refer to Sec.3.5.5 for details of these settings. (b,c)
We also compare the strength of the decision trees learned by these approaches and
correlation between these trees (Sec.3.4.4), which are highly related to the general-
ization error of random forests.

In this case 𝐶 sets of weights are obtained when there are 𝐶 classes of images at the

current node. The best set of weights is selected using information gain as before.

This setting leads to deeper and significantly unbalanced trees, and the performance

decreases to 58.1% with 100 trees. Furthermore, it is highly inefficient as it does not

scale well with increasing number of classes.
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3.6 Summary

In this chapter, we propose a random forest with discriminative decision trees algo-

rithm to explore a dense sampling space for fine-grained image categorization. Ex-

perimental results on subordinate classification and activity classification show that

our method achieves state-of-the-art performance and discovers much semantically

meaningful information.



Chapter 4

Learning Bases of Action

Attributes and Parts

The previous two chapters recognize human actions based on low-level image descrip-

tors. In this chapter1, we propose to use higher level image representations, including

action attributes, objects, and human poses, for action recognition.

4.1 Introduction

As shown in the previous two chapters, a straightforward solution for this problem

is to use the whole image to represent an action and treat action recognition as a

general image classification problem [59, 126, 18, 132]. Such methods have achieved

promising performance on the recent PASCAL challenge using spatial pyramid [71, 18]

or random forest [132] based methods. These methods do not, however, explore

the semantically meaningful components of an action, such as human poses and the

objects that are closely related to the action.

There is some recent work which uses objects [49, 127, 22, 94] interacting with the

person or human poses [123, 80] to build action classifiers. However, these methods

are prone to problems caused by false object detections or inaccurate pose estimations.

To alleviate these issues, some methods [127] rely on labor-intensive annotations of

1An early version of this chapter has been presented in [130].

48
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Figure 4.1: We use attributes (verb related properties) and parts (objects and pose-
lets [8]) to model action images. Given a large number of image attributes and parts,
we learn a number of sparse action bases, where each basis encodes the interactions
between some highly related attributes, objects, and poselets. The attributes and
parts of an image can be reconstructed from a sparse weighted summation of those
bases. The colored bars indicate different attributes and parts, where the color code
is: green - attribute, red - object, blue - poselet. The height of a bar reflects the
importance of this attribute or part in the corresponding basis.

objects and human body parts during training time, posing a serious concern towards

large scale action recognition.

Inspired by the recent work on using objects and body parts for action recognition

as well as global and local attributes [31, 68, 5, 92] for object recognition, in this

chapter, we propose an attributes and parts based representation of human actions in

a weakly supervised setting. The action attributes are holistic image descriptions of
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human actions, usually associated with verbs in the human language such as “riding”

and “sitting” (as opposed to “repairing” or “lifting”) for the action “riding bike”.

The action parts include objects that are related to the corresponding action (e.g.

“bike”, “helmet”, and “road” in “riding bike”) as well as different configurations of

local body parts (we use poselet described in [8]). Given an image of a human action,

many attributes and parts2 contribute to the recognition of the corresponding action.

Given an image collection of many different actions, there is a large number of pos-

sible attributes, objects and poselets. Furthermore, there is a large number of possible

interactions among these attributes and parts in terms of co-occurrence statistics. For

example, the “riding” attribute is likely to co-occur with objects such as “horse” and

“bike”, but not “laptop”, while the “right arm extended upward” poselet is more

likely to co-occur with objects such as “volleyball” and the attribute “hitting”. We

formulate these interactions of action attributes and parts as action bases for express-

ing human actions. A particular action in an image can therefore be represented as

a weighted summation of a subset of these bases, as shown in Fig.4.1.

This representation can be naturally formulated as a reconstruction problem. Our

challenge is to: 1) represent each image by using a sparse set of action bases that

are meaningful to the content of the image, 2) effectively learn these bases given

far-from-perfect detections of action attributes and parts without meticulous human

labeling. To resolve these challenges, we propose a dual sparsity reconstruction frame-

work to simultaneously obtain sparsity in terms of both the action bases as well as

the reconstruction coefficients for each image. We show that our method has theo-

retical foundations in sparse coding and compressed sensing [141, 61]. To test the

performance of our approach, we collected a new dataset “Stanford 40 Actions”. On

the PASCAL action dataset [27] and the new “Stanford 40 Actions” dataset, our at-

tributes and parts representation significantly outperforms state-of-the-art methods.

Furthermore, we visualize the bases obtained by our framework and show semantically

meaningful interpretations of the images.

2Our definition of action attributes and parts are different from the attributes and parts in
common object recognition literature. Please refer to Sec.4.2 for details. In this work we use “action
attribute” and “attribute”, “action part” and “part” interchangeably, if not explicitly specified.
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The remaining part of this chapter is organized as follows. Related work are

described in Sec.4.2. The attributes and parts based representation of actions and

the method to learn action bases are elaborated in Sec.4.3 and Sec.4.4 respectively.

The “Stanford 40 Actions” dataset and experiment results are shown and discussed

in Sec.4.5 and Sec.4.6.

4.2 Related work

Most of the action recognition approaches [126, 18, 27] for still images treat the

problem as a pure image classification problem. There are also algorithms which

model the objects or human poses for action classification, such as the mutual con-

text model [127] and poselets [8, 80]. However, the mutual context model requires

supervision of the bounding boxes of objects and human body parts, which are ex-

pensive to obtain especially when there is a large number of images. Also, we want to

put the objects and human poses in a more discriminative framework so that the ac-

tion recognition performance can be further improved. While poselets have achieved

promising performance on action recognition [80], it is unclear how to jointly explore

the semantic meanings of poselets and the other concepts such as objects for action

recognition.

In this paper, we propose to use attributes and parts for action classification. In-

spired by the recent work of learning attributes for object recognition [31, 68, 5, 92]

and action recognition in videos [76], the attributes we use are linguistically related

description of the actions. We use a global image based representation to train a

classifier for each attribute. Compared to the attributes for objects which are usu-

ally adjectives or shape related, the attributes we use to describe actions are mostly

related to verbs. The parts based models have been successfully used in object de-

tection [37] and recognition [39]. However unlike these approaches that use low-level

descriptors, the action parts we use are objects and poselets with pre-trained detectors

as in [74, 80]. The discriminative information in those detectors can help us allevi-

ate the problem of background clutter in action images and give us more semantic

information of the images [74].
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In the attributes and parts based representation, we learn a set of sparse action

bases and estimate a set of coefficients on these bases for each image. This dual

sparsity makes our problem different from traditional dictionary learning and sparse

coding problems [113, 72, 79], given that our action bases are sparse (in the large set

of attributes and parts, only a small number of them are highly related in each basis)

and far from being mutually orthogonal (consider the two bases “riding - sitting -

bike” and “riding - sitting - horse”). In this work, we solve this dual sparsity problem

using the elastic-net constrained set [141], and show that our approach has theoretical

foundations in the compressed network theorem [61].

4.3 Action recognition with attributes & parts

4.3.1 Attributes and parts in human actions

Our method jointly models different attributes and parts of human actions, which are

defined as follows.

Attributes: The attributes are linguistically related descriptions of human actions.

Most of the attributes we use are related to verbs in human language. For example,

the attributes for describing “riding a bike” can be “riding” and “sitting (on a bike

seat)”. It is possible for one attribute to correspond to more than one action. For

instance, “riding” can describe both “riding a bike” and “riding a horse”, while this

attribute can differentiate the intentions and human gestures in the two actions with

the other ones such as “drinking water”. Inspired by the previous work on attributes

for object recognition [31, 68, 5], we train a discriminative classifier for each attribute.

Parts: The parts we use are composed of objects and human poses. We assume

that an action image consists of the objects that are closely related to the action

and the descriptive local human poses. The objects are either manipulated by the

person (e.g. “bike” in “riding a bike”) or related to the scene context of the action

(e.g. “road” in “riding a bike”, “reading lamp” in “reading a book”). The human

poses are represented by poselets [8], where the human body parts in different images

described by the same poselet are tightly clustered in both appearance space and
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configuration space. In our approach, each part is modeled by a pre-trained object

detector or poselet detector.

To obtain our features, we run all the attribute classifiers and part detectors on

a given image. A vector of the normalized confidence scores obtained from these

classifiers and detectors is used to represent this image.

4.3.2 Action bases of attributes and parts

Our method learns high-order interactions of image attributes and parts. Each in-

teraction corresponds to the co-occurrence of a set of attributes and parts with some

specific confidence values (Fig.4.1). These interactions carry richer information about

human actions and are thus expected to improve recognition performance. Further-

more, the components in each high-order interaction can serve as context for each

other, and therefore the noise in the attribute classifiers and part detectors can be

reduced. In our approach, the high-order interactions are regarded as the bases of the

representations of human actions, and each image is represented as a sparse distri-

bution with respect to all the bases. Examples of the learned action bases are shown

in Fig.4.5. We can see that the bases are sparse in the whole space of attributes and

parts, and many of the attributes and parts are closely correlated in human actions,

such as “riding - sitting - bike” and “using - keyboard - monitor - sitting” as well as

the corresponding poselets.

Now we formalize the action bases in a mathematical framework. Assume we have

𝑃 attributes and parts, and let a ∈ ℝ
𝑃 be the vector of confidence scores obtained

from the attribute classifiers and part detectors. Denoting the set of action bases as

Φ = [𝝓1, ⋅ ⋅ ⋅ ,𝝓𝑀 ] where each 𝝓𝑚 ∈ ℝ
𝑃 is a basis, the vector a can be represented as

a =
𝑀∑

𝑚=1

𝑤𝑚𝝓𝑚 + 𝜺 (4.1)

where w = {𝑤1, ⋅ ⋅ ⋅ , 𝑤𝑀} are the reconstruction coefficients of the bases, and 𝜺 ∈ ℝ
𝑃

is a noise vector. Note that in our problem, the vector w and {𝝓𝑚}𝑀𝑚=1 are all sparse.

This is because on one hand, only a small number of attributes and parts are highly



54 CHAPTER 4. ACTION ATTRIBUTES AND PARTS

related in each basis of human actions; on the other hand, a small proportion of the

action bases are enough to reconstruct the set of attributes and parts in each image.

4.3.3 Action classification using the action bases

From Eqn.4.1, we can see that the attributes and parts representation a of an action

image can be reconstructed from the sparse factorization coefficients w. w reflects the

distribution of a on all the action bases Φ, each of which encodes a specific interaction

between action attributes and parts. The images that correspond to the same action

should have high coefficients on the similar set of action bases. In this paper, we use

the coefficients vector w to represent an image, and train an SVM classifier for action

classification.

The above classification approach resolves the two challenges of using attributes

and parts (objects and poselets) for action recognition that we proposed in Sec.4.1.

Since we only use the learned action bases to reconstruct the feature vector, our

method can correct some false detections of objects and poselets by removing the

noise component 𝜀 in Eqn.4.1. Also, those action bases correspond to some high-order

interactions in the features, and therefore they jointly model the complex interactions

between different attributes, objects, and poselets.

4.4 Learning action bases and coefficients

Given a collection of training images represented as𝒜 = {a1, a2, ⋅ ⋅ ⋅ , a𝑁} as described
in Sec.4.3.2, where each a𝑖 is the vector of confidence scores of attribute classifications

and part detections computed from image 𝑖. Intuitively, there exists a latent dictio-

nary of bases where each basis characterizes frequent co-occurrence of attributes,

objects, and poselets involved in an action, e.g. “cycling” and “bike”, such that each

observed data a𝑖 can be sparsely reconstructed with respect to the dictionary. Our

goal is to identify a set of sparse bases Φ = [𝝓1, ⋅ ⋅ ⋅ ,𝝓𝑀 ] such that each a𝑖 has a

sparse representation with respect to the dictionary, as shown in Eqn.4.1.
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During the bases learning stage, we need to learn the bases Φ and find the recon-

struction coefficients w𝑖 for each a𝑖. Given a new image represented by a, we want

to find a sparse w such that a can be reconstructed from the learned Φ. Therefore

our bases learning and action reconstruction can be achieved by the following two

optimization problems respectively,

min
Φ∈𝒞,w𝑖∈ℝ𝑀

𝑁∑
𝑖=1

(1
2
∥a𝑖 −Φw𝑖∥22 + 𝜆∥w𝑖∥1

)
, (4.2)

min
w∈ℝ𝑀

1

2
∥a−Φw∥22 + 𝜆∥w∥1, (4.3)

where W = [w1, ⋅ ⋅ ⋅ ,w𝑁 ] ∈ ℝ
𝑀×𝑁 , 𝜆 is a regularization parameter, and 𝒞 is the

convex set that Φ belongs to. The 𝑙1-norm in Eqn.4.2 makes the reconstruction

coefficients w𝑖 tend to be sparse. In our setting, the bases Φ should also be sparse,

even though the given 𝒜 might be quite noisy due to the error-prone object detectors

and poselet detectors. To address this issue, we construct the convex set 𝒞 as:

𝒞 = {Φ ∈ ℝ
𝑃×𝑀 , s.t. ∀𝑗, ∥Φ𝑗∥1 + 𝛾

2
∥Φ𝑗∥22 ≤ 1}. (4.4)

where 𝛾 is another regularization parameter.

Including both 𝑙1-norm and 𝑙2-norm to define the convex set 𝒞, the sparsity re-

quirement of the bases are encoded. This is called the elastic-net constraint set [141].

Furthermore, the sparsity on Φ implies that different action bases have small over-

laps, therefore the coefficients learned from Eqn.4.2 are guaranteed to generalize to

the testing case in Eqn.4.3 according to the compressed network theorem [61].

The dual sparsity on both action bases and reconstruction coefficients in Eqn.4.2

and Eqn.4.4 also enables the uniqueness of the attributes and parts reconstruction in

the testing step (Eqn.4.3). Uniqueness is important in the Lasso problem especially

when we look for interpretable bases for action recognition. Otherwise if the solution

for the problem is not unique, one might reconstruct the attributes and parts of an

action image from other confusing bases which also optimize our objective but are

totally irrelevant to the action in the image.
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It has been shown that the ℓ1-norm minimization problem has a unique sparse

solution, if the basis matrix satisfies the so-called Restricted Isometry Property (RIP)

condition, which requires that every subset of columns in the support of the sparse

signal are nearly orthogonal [11]. In [140], the Irrepresentable Condition (IRR) was

proposed for stably recovering a sparse signal w∗ by solving the Lasso problem:

min
w

1

2
∥a−Φw∥22 + 𝜆∥w∥1. (4.5)

The basis matrix Φ satisfies the IRR condition with respect to 𝑆 = {∀𝑗, 𝑤∗
𝑗 ∕= 0}, if

Φ𝑇
𝑆Φ𝑆 is invertible and

∥Φ𝑇
𝑆𝑐Φ𝑆

(
Φ𝑇

𝑆Φ𝑆

)−1 ∥∞ < 1. (4.6)

where Φ𝑆 is a sub-matrix of Φ with 𝑆 selecting the columns, Φ𝑇
𝑆 is the transpose of

Φ𝑆, 𝑆
𝑐 is the complement of 𝑆.

The IRR condition does not hold for general matrices. However, it has been

shown that when the basis matrix Φ is sparse, it turns out that IRR still holds in

many different situations [61]. Please refer to [61] for further materials explaining the

conditions to guarantee the success of solving the Lasso problem. In our problem, we

impose sparsity on Φ so that a unique sparse solution of w can be obtained for most

of the vectors a.

In our two optimization problems, Eqn.4.3 is convex while Eqn.4.2 is non-convex.

However Eqn.4.2 is convex with respect to each of the two variables Φ and W when

the other one is fixed. We use an online learning algorithm [79] which scales up to

large datasets to solve this problem.

4.5 Stanford 40 Actions dataset

To test the performance of action recognition on more categories of actions, we col-

lected a new dataset called Stanford 40 Actions3. The dataset contains 40 diverse

3The dataset can be downloaded from http://vision.stanford.edu/Datasets/40actions.

html.
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Action Name # imgs Action Name # imgs

Applauding 279 Reading book 234
Blowing bubbles 292 Repairing a car 122
Brushing teeth 211 Riding a bike 288

Calling 272 Riding a horse 260
Cooking 295 Rowing a boat 149

Cutting trees 175 Running 254
Cutting vegetables 131 Shooting an arrow 211

Drinking 194 Smoking cigarette 175
Feeding a horse 319 Taking photos 154

Fishing 269 Throwing a frisby 195
Fixing a bike 131 Using a computer 230
Filling up gas 123 Using a microscope 127
Hanging clothes 121 Using a telescope 151

Holding an umbrella 289 Using an ATM 144
Jumping 299 Walking a dog 294

Mopping the floor 159 Washing dishes 183
Playing guitar 295 Watching TV 146
Playing violin 268 Waving hands 209
Poling a boat 118 Writing on a board 133
Pushing a cart 172 Writing on a book 127

Table 4.1: The Stanford 40 Actions dataset: the list of actions and number of images
in each action.

Dataset # actions # images Clutter? Pose vary? Visib. vary?

Ikizler [59] 5 1,727 Yes Yes Yes
Gupta [49] 6 300 Small Small No
PPMI [126] 24 4,800 Yes Yes No
PASCAL [29] 10 10,595 Yes Yes Yes
Stanford 40 40 9,532 Yes Yes Yes

Table 4.2: Comparison of our Stanford 40 Action dataset and other existing human
action datasets on still images. Bold font indicate relatively larger scale datasets or
larger image variations.
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Figure 4.2: The criteria of collecting images for the Stanford 40 Actions dataset. In
the case of “riding a bike”, we want to collect images such as (a). The other images
are not satisfying because: (b) the human is not riding the bike; (c) the human’s head
is totally outside of the image; (d) it is a cartoon image; (d) it is an advertisement
image and texts are placed on the image; (e) the human is riding a bike while making
a phone call.

daily human actions, such as “brushing teeth”, “cleaning the floor”, “reading book”,

“throwing a frisbee”, etc. A summary of the dataset is shown in Table 4.1. All the

images are obtained from Google, Bing, and Flickr. The images within each class have

large variations in human pose, appearance, and background clutter. The compari-

son between our dataset and the existing still image action datasets are summarized

in Table 4.2, where visibility variation refers to the variation of visible human body

parts (e.g. in some images the full human body is visible, while in some other images

only the head and shoulder are visible). As there might be multiple people in a single

image, we provide bounding boxes for the humans who are doing one of the 40 actions

in each image, similar to [27].

The images are collected in the following procedure. For each action, we first use
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Figure 4.3: Example images of the Stanford 40 Actions Dataset.

some keywords to crawl as many images as we can from Google, Bing, and Flickr.

Instead of only using the action name as the keyword, we also consider some other

keywords which we believe can collect more images of the corresponding action. For
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example, the query keywords we use for “watching TV” is: “watching television”,

“man watching TV”, “woman watching TV”, “family watching TV”, and “children

watching TV”. We can crawl 10,000+ images for each class. Then, we select the

desired images from the crawling results in each class. As demonstrated in Fig.4.2,

the selection criteria are: (1) the human should be doing the corresponding action;

(2) the human’s head needs to be visible; (3) the image is not a cartoon image; (4)

the image should not be significantly edited (e.g. with many texts on it); (5) the

human should not be doing more than one of our 40 actions (e.g. pushing a cart

while calling). The next step is to de-duplicate the selected images by a simple color

histogram matching method. Finally, we check the remaining images and further

manually remove some images to guarantee the image diversity within each class.

Examples of the images in our dataset are shown in Fig.4.3.

4.6 Experiments and results

4.6.1 Experiment setup

We test the performance of our proposed method on the PASCAL action dataset [28]

and the Stanford 40 Actions dataset.

On the PASCAL dataset, we use the training and validation set specified in [28]

for training, and use the same testing set. On the Stanford 40 Action dataset, we

randomly select 100 images in each class for training, and the remaining images for

testing. For each dataset, we annotate the attributes that can be used to describe the

action in each image, and then train a binary classifier for each attribute. We take

a global representation of the attributes as in [31], and use the Locality-constrained

Linear Coding (LLC) method [120] on dense SIFT [78] features to train the classifier

for each attribute. As in [18], the classifiers are trained by concatenating the features

from both the foreground bounding box of the action and the whole image. We extend

and normalize the bounding boxes in the same way as in [18]. For objects, we use the

ImageNet [20] dataset with provided bounding boxes to train the object detectors by

using the Deformable Parts Model [37], instead of annotating the positions of objects
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in the action data. For poselets, we use the pre-trained poselet detectors in [8]. For

each object or poselet detector, we use the highest detection score in the response

map of each image to measure the confidence of the object or poselet in the given

image. We linearly normalize the confidence scores of all the attribute classifiers and

part detectors so that all the feature values are between 0 and 1.

We use 15 attributes and 27 objects for the PASCAL data, 45 attributes and 81

objects for the Stanford 40 Action data. We only use the attributes and objects that

we believe are closely related to the actions in each dataset. A full list of attributes

and objects that we use are:

∙ attributes for PASCAL: calling, playing, reading, riding, running, taking, using,

walking, cycling, jumping, standing, sitting, squatting, lying, and moving.

∙ objects for PASCAL: beach, bicycle, bicycle built for two, camcorder, camera,

cello, cellular telephone, computer, computer keyboard, desktop computer, dial

telephone, flute, grass, guitar, keyboard, laptop, monitor, motorcycle, musical

instrument, newspaper, notebook, pay phone, piano, skyscraper, telephone, and

violin.

∙ attributes for 40-class: applauding, bending, blowing, brushing, calling, cook-

ing, cutting, cycling, drinking, feeding, fishing, fixing, filling, hanging, holding,

jumping, looking through, lying, mopping, playing, poling, pulling, pushing,

reading, repairing, riding, rowing, running, shooting, singing, sitting, smoking,

speaking, standing, squatting, taking, throwing, typing, using, walking, watch-

ing, waving, wearing, withdrawing, and writing.

∙ objects for 40-class: African hunting dog, Eskimo dog, Polaroid camera, beach,

beer, beer bottle, beer glass, bicycle, bicycle built for two, blackboard, boat,

boathouse, bow, bowl, broom, bulldog, camcorder, camera, car-12982, car-1527,

car-1634, car tire, coat, computer, computer keyboard, cup, cuppa, desktop

computer, dog, fish, fishing rod, gas pump, glass, golden retriever, grass, guitar,

hand-held computer, handcart, laptop, laundry cart, male horse, motorcycle,

mountain bike, mug, newspaper, notebook, optical telescope, passenger car,
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point-and-shoot camera, radio telescope, sheet, shopping cart, sky, streetcar,

television, violin, washbasin, washer, and wheel.

The attributes for all the training images are annotated by us. The objects we con-

sider are limited to the classes that have annotated bounding boxes in ImageNet [20].

For instance, “car-12982”, “car-1527”, and “car-1634” are three different cars in Im-

ageNet. Cigarette is helpful for recognizing the action of “smoking cigarette”, but

cigarette is not included because there is no cigarette bounding boxes in ImageNet.

We use 150 poselets as provided in [8] on both datasets. The number of action bases

are set to 400 and 600 respectively. The 𝜆 and 𝛾 values in Eqn.4.2, 4.3, and 4.4 are

set to 0.1 and 0.15.

In the following experiment, we consider two approaches of using attributes and

parts for action recognition. One is to simply concatenate the normalized confidence

scores of attributes classification and parts detection as feature representation (de-

noted as “Conf Score”), the other is to use the reconstruction coefficients on the

learned sparse bases as feature representation (denoted as “Sparse Bases”). We use

linear SVM classifiers for both feature representations. As in [28], we use mean Av-

erage Precision (mAP) to evaluate the performance on both datasets.

4.6.2 Results on the PASCAL action dataset

The action classification competition of PASCAL VOC has two tasks. The results

reported in the previous Chapter is comp9 where the classifiers must be trained by

using only the images provided by the organizers. In comp10, participants are free

to train their classifiers on any dataset or use additional annotations.

We participated the comp10 of PASCAL VOC 2011, and the average precision of

different approaches is shown in Table 4.3. We can see that by simply concatenating

the confidence scores of attributes classification and parts detection, our method

outperforms the best result in the PASCAL challenge in terms of the mean Average

Precision (mAP). The performance can be further improved by learning high-order

interactions of attributes and parts, from which the feature noise can be reduced.

A visualization of the learned bases of our method is shown in Fig.4.5. We observe
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Action
ACTION MAPSVM Ours Ours
POSELETS POSELET DIS RF ATTR PRT

Jumping 59.5% 27.0% 66.0% 66.7%
Phoning 31.3% 29.3% 41.0% 41.1%

Playing instrument 45.6% 28.3% 60.0% 60.8%
Reading 27.8% 23.8% 41.5% 42.2%

Riding bike 84.4% 71.9% 90.0% 90.5%
Riding horse 88.3% 82.4% 92.1% 92.2%
Running 77.6% 67.3% 86.6% 86.2%

Taking photo 31.0% 20.1% 28.8% 28.8%
Using computer 47.4% 26.0% 62.0% 63.5%

Walking 57.6% 46.4% 65.9% 64.2%

Table 4.3: Comparison of our method and the approaches in comp10 of PASCAL
VOC 2012. We also compare with our winning method in comp9 (described in the
previous chapter). Performance is evaluated in mean average precision. Each column
represents an approach. The best results are highlighted with bold fonts.

that almost all the bases are very sparse, and many of them carry useful information

for describing specific human actions. However due to the large degree of noise in

both object detectors and poselet detectors, some bases contain noise, e.g. “guitar”

in the basis of “calling - cell phone - guitar”. In Fig.4.6 we show some action images

with the annotations of attributes and objects that have high confidence score in the

feature representation reconstructed from the bases.

Our approach considers three concepts: attributes, parts as objects, and parts

as poselets. To analyze the contribution of each concept, we remove the confidence

scores of attribute classifiers, part detectors, and poselet detectors from our feature

set, one at a time. The classification results are shown in Fig.4.4. We observe that

using the reconstruction coefficients consistently outperform the methods that simply

concatenating the confidence scores of classifiers and detectors. We can also see

that attributes make the biggest contribution to the performance, because removing

the attribute features makes the performance much worse. This is due to the large

amount of noise produced from objects and poselets detectors which are pre-trained

from the other datasets. However, objects and poselets do contain complementary

information with the attributes, and the effect of the noise can be alleviated by
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Figure 4.4: Comparison of the methods by removing the confidence scores obtained
from attributes (A), objects (O), and poselets (P) from the feature vector, one at a
time. The performance are evaluated using mean Average Precision on the PASCAL
dataset.

the bases learned from our approach. We observe that in the case of only considering

objects and poselets, learning the sparse bases significantly improves the performance.

By combining attributes, objects and poselets and learning the action bases, our

method achieves state-of-the-art classification performance.

Our learning method (Eqn.4.2) has the dual sparsity on both action bases Φ and

reconstruction coefficients W. Here we compare our method with a simple 𝑙1-norm

method - 𝑙1 logistic regression based on the concatenation of the confidence scores

of attributes and parts. The mAP result of 𝑙1 logistic regression is 47.9%, which is

lower than our results. This shows that a simple 𝑙1-norm logistic regression cannot

effectively learn the information from the noisy attributes classification and parts

detection features. Furthermore, in order to demonstrate the effectiveness of the two

sparsity constraints, we remove the constraints one at a time. To remove the sparsity

constraint on the reconstruction weight W, we simply change ∥w𝑖∥1 in Eqn.4.2 and

Eqn.4.3 to ∥w𝑖∥2. To remove the sparsity constraint on the bases Φ, we change the
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Figure 4.5: Visualization of the 400 learned bases from the PASCAL action dataset.
Each row in the left-most matrix corresponds to one basis. Red color indicates large
magnitude in the action bases while blue color indicates low magnitude. We observe
that the bases are indeed very sparse. We also show some semantically meaningful
action bases learned by our results, e.g. “riding - grass - horse”. By using the
learned action bases to reconstruct the attributes and parts representation, we show
the attributes and objects that have high confidence scores on some images. Magenta
color indicates wrong tags.

convex set 𝒞 in Eqn.4.4 to be:

𝒞 = {Φ ∈ ℝ
𝑃×𝑀 , s.t. ∀𝑗, ∥Φ𝑗∥22 ≤ 1}. (4.7)

In the first case, where we do not have sparsity constraint onW, the mAP result drops

to 64.0%, which is comparable to directly concatenating all attributes classification

and parts detection confidence scores. This shows that the sparsity on W helps to
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Figure 4.6: Some semantically meaningful action bases learned by our results, e.g.
“riding - grass - horse”. By using the learned action bases to reconstruct the attributes
and parts representation, we show the attributes and objects that have high confidence
scores on some images. Magenta color indicates wrong tags.

remove noise from the original data. In the second case where we do not have sparsity
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Method
Object

LLC [120]
Ours Ours

Bank [74] Conf Score Sparse Bases

mAP 32.5% 35.2% 44.6% 45.7%

Table 4.4: Comparison of our attributes and parts based action recognition methods
with two baselines: object bank [74] and LLC [120]. The performance is evaluated
with mean average precision (mAP). The bold font indicates the best performance
on this dataset.

constraint on Φ, the performance becomes 64.7% which is very close to that of having

sparsity constraint onΦ. The reason might be that although there is much noise in the

parts detections and attribute classifications, the original vector of confidence scores

already has some level of sparsity. However, by explicitly imposing the sparsity on Φ,

we can guarantee the sparsity of the bases, so that our method can explicitly extract

more semantic information and its performance is also theoretically guaranteed.

4.6.3 Results on the Stanford 40 Actions dataset

We next show the performance of our proposed method on the new Stanford 40

Actions dataset (details of the dataset in Sec.4.5). We setup two baselines on this

dataset: LLC [120] method with densely sampled SIFT [18] features, and object

bank [74]. Comparing these two algorithms with our approach, the mAP is shown in

Table 4.4. The results show that compared to the baselines which uses image classi-

fiers or object detectors only, combining attributes and parts (objects and poselets)

significantly improved the recognition performance by more than 10%. The reason

might be that, on this relatively large dataset, more attributes are used to describe

the actions and more objects are related to the actions, which contains a lot of com-

plementary information.

As done in Sec.4.6.2, we also remove the features that are related to attributes,

objects, and poselets from our feature set, one at a time. The results are shown

in Fig.4.7. On this dataset, the contribution of objects is larger than that on the

PASCAL dataset. This is because more objects are related to the actions on this larger

scale dataset, and therefore we can extract more useful information for recognition
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Figure 4.7: Comparison of the methods by removing the confidence scores obtained
from attributes (A), objects (O), and poselets (P) from the feature vector, one at a
time. The performance is evaluated using mean Average Precision on the Stanford
40 Actions dataset.

from the object detectors.

The average precision obtained from LLC and our method by using reconstruction

coefficients as feature representation for each of the 40 classes is shown in Fig.4.8.

Using a sparse representation on the action bases of attributes and parts, our method

outperforms LLC on all the 40 classes. Furthermore, the classification performance

on different actions varies a lot, ranging from 89.2% on “riding a horse” to only 6.2%

on “texting message”. It is interesting to observe that the result shown in Fig.4.8 is

somewhat similar to that on the PASCAL dataset in Table 4.3. The classes “riding a

horse” and “riding a bike” have high classification performance on both datasets while

the classes “calling”, “reading a book” and “taking photos” have low classification

performance, showing that the two datasets capture similar image statistics of human

actions. The classes “riding a horse” and “riding a bike” can be easily recognized in

part because the human poses do not vary much within each action, and the objects

(horse and bike) are easy to detect. However, the performance on “feeding a horse”

and “repairing a bike” is not as good as that on “riding a horse” and “riding a bike”.

One reason is that the body parts of horses in most of the images of “feeding a horse”
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Figure 4.8: Average precision of our method (Sparse Bases) on each of the 40 classes
of the Stanford 40 Actions dataset. We compare our method with the LLC algorithm.
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are highly occluded, and therefore the horse detector is difficult to detect them. From

the images of “repairing a bike”, we can see that the human pose changes a lot and

the bikes are also occluded or disassembled, making them difficult to be recognized

by bike detectors. There are some classes on which the recognition performance is

very low, e.g. “taking photos”. The reason is that the cameras are very small, which

makes it difficult to distinguish “taking photos” and the other actions.

4.7 Summary

In this chapter, we use attributes and parts for action recognition. The attributes are

verbs related description of human actions, while the parts are composed of objects

and poselets. We learn a set of sparse bases of the attributes and parts based image

representation, allowing an action image to be reconstructed by a set of sparse coeffi-

cients with respect to the bases. Experimental results show that our method achieves

state-of-the-art performance on two datasets.



Chapter 5

Mutual Context Model I: Single

Object

In the preceding three chapters, we treat action recognition as an image classification

task. In Chapter 4, we show that using high-level cues such as human pose and object

helps improving action recognition performance. Indeed, estimating human pose and

detecting objects provide more detailed understanding of human actions1.

5.1 Introduction

Using context to aid visual recognition is recently receiving more and more attention.

Psychology experiments show that context plays an important role in recognition

in the human visual system [6, 91]. In computer vision, context has been used in

problems such as object detection and recognition [96, 52, 24], scene recognition [84],

action classification [81], and segmentation [108]. While the idea of using context is

clearly a good one, a curious observation shows that most of the context information

has contributed relatively little to boost performances in recognition tasks. In the

recent Pascal VOC challenge dataset [27], the difference between context based meth-

ods and sliding window based methods for object detection (e.g. detecting bicycles)

is only within a small margin of 3− 4% [21, 51].

1An early version of this chapter has been presented in [127].

71



72 CHAPTER 5. MUTUAL CONTEXT MODEL I: SINGLE OBJECT

E���
�
�����������

�������������
��������(�

���(/�������
�����;�$
������

���"��((������

����������
(a) human pose estimation

�#�������7�����������
��������
��((��$�$

���(/�����#�����
����/�����	��

E���
�
����������� ����������
(b) object (ball) detection

Figure 5.1: Objects and human poses can serve as mutual context to facilitate the
recognition of each other. In (a), the human pose is better estimated by seeing the
cricket bat, from which we can have a strong prior of the pose of the human. In (b),
the cricket ball is detected by understanding the human pose of throwing the ball.

One reason to account for the relatively small margin is, in our opinion, the lack

of strong context. While it is nice to detect cars in the context of roads, powerful car

detectors [73] can nevertheless detect cars with high accuracy whether they are on

the road or not. Indeed, for the human visual system, detecting visual abnormality

out of context is crucial for survival and social activities (e.g. detecting a cat in the

fridge, or an unattended bag in the airport) [53].

So is context oversold? Our answer is ‘no’. Many important visual recognition

tasks rely critically on context. One such scenario is the problem of human pose

estimation and object detection in human-object interaction (HOI) activities [49, 126].

As shown in Fig.5.1, without knowing that the human is making a defensive shot with
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the cricket bat, it is not easy to accurately estimate the player’s pose (Fig.5.1(a));

similarly, without seeing the player’s pose, it is difficult to detect the small ball in the

player’s hand, which is nearly invisible even to the human eye (Fig.5.1(b)).

However, the two difficult tasks can benefit greatly from serving as context for each

other, as shown in Fig.5.1. The goal of this paper is to model the mutual context of

objects and human poses in HOI activities so that each can facilitate the recognition

of the other. Given a set of training images, our model automatically discovers the

relevant poses for each type of HOI activity, and furthermore the connectivity and

spatial relationships between the objects and body parts. We formulate this task

as a structure learning problem, of which the connectivity is learned by a structure

search approach, and the model parameters are discriminatively estimated by a novel

max-margin approach. By modeling the mutual co-occurrence and spatial relations

of objects and human poses, we show that our algorithm significantly improves the

performance of both object detection and pose estimation on a dataset of sports

images [49].

The rest of this chapter is organized as follows. Sec.5.2 describes related work.

Details of our model, as well as model learning and inference are elaborated in

Sec.5.3, 5.4, and 5.5 respectively. Experimental results are given in Sec.5.6.

5.2 Related work

The two central tasks, human pose estimation and object detection, have been stud-

ied in computer vision for many years. Most of the pose estimation work uses a

tree structure of the human body [38, 98, 2] which allows fast inference. In order

to capture more complex body articulations, some non-tree models have also been

proposed [100, 121]. Although those methods have been demonstrated to work well

on the images with clean backgrounds, human pose estimation in cluttered scenes

remains a challenging problem. Furthermore, to our knowledge, no existing method

has explored context information for human pose estimation.

Sliding window is one of the most successful strategies for object detection. Some

techniques have been proposed to avoid exhaustively searching the image [119, 67],
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which makes the algorithm more efficient. While the most popular detectors are still

based on sliding windows, more recent work has tried to integrate context to obtain

better performance [96, 52, 24]. However, in most of the works the performance is

improved by a relatively small margin.

It is out of the scope of this chapter to develop an object detection or pose estima-

tion method that generally applies to all situations. Instead, we focus on the role of

context in these problems. Our work is inspired by a number of previous works that

have used context in vision tasks [84, 56, 108, 96, 52, 24, 81]. In most of these works,

one type of scene information serves as contextual facilitation to a main recognition

problem. For example, ground planes and horizons can help to refine pedestrian de-

tections. In this paper, we try to bridge the gap between two seemingly unrelated

problems - object detection and human pose estimation, in which the mutual contexts

play key roles for understanding their interactions. The problem of classifying HOI

activities has been studied in [49] and [126], but no detailed understanding of the hu-

man pose (e.g. parsing the body parts) is offered in these works. To our knowledge,

our work is the first one that explicitly models the mutual contexts of human poses

and objects and allows them to facilitate the recognition of each other.

5.3 Modeling mutual context of object and pose

Given an HOI activity, our goal is to estimate the human pose and to detect the object

that the human interacts with. Fig.5.2 illustrates that both tasks are challenging. The

relevant objects are often small, partially occluded, or tilted to an unusual angle by

the human. The human poses, on the other hand, are usually highly articulated

and many body parts are self-occluded. Furthermore, even in the same activity, the

configurations of body parts might differ in different images due to different shooting

angles or human poses.

Here we propose a novel model to exploit the mutual context of human poses and

objects in one coherent framework, where object detection and human pose estimation

can benefit from each other. For simplicity, we assume that only one object is involved

in each activity.
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(a) The relevant objects that interact with the human may be very small, partially occluded, or
tilted to an unusual angle.

(b) Human poses of the same activity might be inconsistent in different images due to different
camera angles (the left two images), or the way that the human interacts with the object (the
right two images).

Figure 5.2: Challenges of both object detection and human pose estimation in HOI
activities.

5.3.1 The model

A graphical illustration of our model is shown in Fig.5.3(a). Our model can be

thought of as a hierarchical random field, where the overall activity class 𝐴, object

𝑂, and human pose 𝐻 all contribute to the recognition and detection of each other.

The human pose is further decomposed into some body parts, denoted by {𝑃𝑛}𝑁𝑛=1.

For each body part 𝑃𝑛 and the object 𝑂, 𝑓𝑃𝑛 and 𝑓𝑂 denote the visual features

that describe the corresponding image regions respectively. Note that because of the

difference between the human poses in each HOI activity (Fig.5.2(b)), we allow each

activity class (𝐴) to have more than one types of human pose (𝐻), which are latent

(unobserved) variables to be learned in training.

Our model encodes the mutual connections between the object, the human pose

and the body parts. Intuitively speaking, this allows the model to capture important

connections between, say, the tennis racket and the right arm that is serving the
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Figure 5.3: (a) A graphical illustration of the mutual context model. The edges rep-
resented by dashed lines indicate that their connectivity will be obtained by structure
learning. 𝐴 denotes an HOI activity class, 𝐻 the human pose class, 𝑃 a body part,
and 𝑂 the object. 𝑓𝑂 and 𝑓𝑃 ’s are image appearance information of 𝑂 and 𝑃 respec-
tively. (b) Illustration of our model on an image of a human playing tennis. Different
types of potentials are denoted by lines with different colors. Line widths represent
the importance of the potentials for the human-object interaction of playing tennis.

tennis ball (Fig.5.3(b)). We observe, however, that the left leg in tennis serving is

often less relevant to the detection of the ball. The model should therefore have the

flexibility in deciding what parts of the body should be connected to the object 𝑂 and

the overall pose 𝐻. Dashed lines in Fig.5.3(a) indicate that these connections will

be decided through structure learning. Depending on 𝐴, 𝑂 and 𝐻, these connections

might differ in different situations. Putting everything together, the overall model

can be computed as Ψ =
∑

𝑒𝑤𝑒𝜓𝑒, where 𝑒 is an edge of the model, 𝜓𝑒 and 𝑤𝑒 are its

potential function and weight respectively. We now enumerate the potentials of this

model:

∙ 𝜓𝑒(𝐴,𝑂), 𝜓𝑒(𝐴,𝐻), and 𝜓𝑒(𝑂,𝐻) model the agreement between the class labels

of 𝐴, 𝑂, and 𝐻, each estimated by counting the co-occurrence frequencies of

the pair of variables on training images.

∙ 𝜓𝑒(𝑂,𝑃𝑛) models the spatial relationship between the object 𝑂 and the body
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part 𝑃𝑛, which is computed by

bin(l𝑂 − l𝑃𝑛) ⋅ bin(𝜃𝑂 − 𝜃𝑃𝑛) ⋅ 𝒩 (𝑠𝑂/𝑠𝑃𝑛) (5.1)

where (l, 𝜃, 𝑠) is the position, orientation, and scale of an image part. bin(⋅) is
a binning function as in [98] and 𝒩 (⋅) is a Gaussian distribution.

∙ 𝜓𝑒(𝑃𝑚, 𝑃𝑛) models the spatial relationship between different body parts, com-

puted similarly to Eq.5.1.

∙ 𝜓𝑒(𝐻,𝑃𝑛) models the compatibility between the pose class 𝐻 and a body part

𝑃𝑛. It is computed by considering the spatial layout of 𝑃𝑛 given a reference

point in the image, in this case the center of the human face (𝑃1).

𝜓𝑒(𝐻,𝑃𝑛) = bin(l𝑃𝑛 − l𝑃1) ⋅ bin(𝜃𝑃𝑛) ⋅ 𝒩 (𝑠𝑃𝑛) (5.2)

∙ 𝜓𝑒(𝑂, 𝑓𝑂) and 𝜓𝑒(𝑃𝑛, 𝑓𝑃𝑛) model the dependence of the object and a body part

with their corresponding image evidence. We use the shape context [3] feature

for image representation, and train a detector [119] for each body part and each

object in each activity. Detection outputs are normalized as in [2].

In our algorithm, all the above potential functions are dependent on 𝑂 and 𝐻

except those between 𝐴, 𝑂, and 𝐻 (the first bullet). We omit writing this point every

time for space consideration. For example, for different human pose 𝐻, 𝜓𝑒(𝑂,𝑃𝑛) is

estimated with different parameters, which represents a specific spatial configuration

between 𝑃𝑛 and the object 𝑂, conditioned on the particular human pose 𝐻.

5.3.2 Properties of the model

Central to our model formulation is the hypothesis that both human pose estimation

and object detection can benefit from each other in HOI activities. Without knowing

the location of the arm, it is difficult to spot the location of the tennis racket in tennis

serving. Without seeing the croquet mallet, the heavily occluded arms and legs can
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Figure 5.4: Visualization of the learned HOI models. Each row shows two models
and their corresponding image examples for one activity. The illustrative figure for
each model represents the average spatial layout of the object and body parts of all
the images that are assigned to the model. The different color codes are: object =
double red box, head and torso = magenta, arms = green, legs = cyan.)

become too obscured for robust pose estimation. We highlight here some important

properties of our model.

Co-occurrence context for the activity class, object, and human pose.

Given the presence of a tennis racket, the human pose is more likely to be playing

tennis instead of playing croquet. That is to say, co-occurrence information can be

beneficial for coherently modeling the object, the human pose, and the activity class.

Multiple types of human poses for each activity. Our model allows each

activity (𝐴) to consist of more than one human pose (𝐻). Treating 𝐻 as a hidden

variable, our model automatically discovers the possible poses from training images.

This gives us more flexibility to deal with the situations where the human poses in



5.3. MODELING MUTUAL CONTEXT OF OBJECT AND POSE 79

Figure 5.5: Continuation of Fig.5.4.

the same activity are inconsistent, as shown in Fig.5.2(b). We show in Fig.5.4 and

Fig.5.5 the pose variability for each HOI activity.

Spatial context between object and body parts. Different poses imply

that the object is handled by the human in different manners, which are modeled by

{𝜓𝑒(𝑂,𝑃𝑛)}𝑁𝑛=1. Furthermore, not all these relationships are critical for understanding

an HOI activity. Therefore for each combination of 𝑂 and 𝐻, our algorithm automat-

ically discovers the connectivity between 𝑂 and each 𝑃𝑛, as well as the connectivity

among 𝐻 and {𝑃𝑛}𝑁𝑛=1.

Relations with the other models. Our model has drawn inspirations from a

number of previous works, such as modeling spatial layout of different image parts [38,

98, 2], using agreement of different image components [96], using multiple models to

describe the same concept (human pose in our problem) [75], non-tree models for

better pose estimation [121, 13], and discriminative training [2]. Our model integrates

all the properties in one coherent framework to perform two seemingly different tasks,
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human pose estimation and object detection, to the benefit of each other.

5.4 Model learning

Given the training images of HOI activities with labeled objects and body parts, the

learning step needs to achieve two goals: structure learning to discover the hidden

human poses and the connectivity among the object, human pose, and body parts;

and parameter estimation for the potential weights to maximize the discrimination

between different activities. The output of our learning method is a set of models, each

representing one connectivity pattern and potential weights for one type of human

pose in one activity class. Algorithm 3 is a sketch of the overall framework. We

discover new human poses by clustering the samples in the model that has the weakest

discriminative ability in each iteration, which results to some sub-classes. Structure

learning is applied to each sub-class respectively. The learning process terminates

when the number of mis-classified samples in each sub-class is small (less than three

in this paper).

Hill-climbing structure learning for each activity class.
foreach Iteration do

- Model parameter estimation by max-margin learning;
- Choose the model with the largest number of mis-classified images;
- Cluster the images in the selected model into two sub-classes;
- Structure learning for the two new sub-classes;

end

Algorithm 3: Learning framework of the mutual context model. Each sub-
class corresponds to a type of human pose in an HOI activity. Initially there are
one sub-class for each activity.

5.4.1 Hill-climbing structure learning

Our algorithm performs structure learning for each sub-class, i.e. each pose in each

activity, respectively. Given a set of images where humans interact with the same
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class of object (𝑂) with the same type of pose (𝐻), our objective is to learn a con-

nectivity pattern (𝐶 = {𝐶𝑂𝑃 , 𝐶𝐻𝑃 , 𝐶𝑃𝑃}) which best models the interaction between

the human and the object. As shown in Fig.5.3(a), 𝐶𝑂𝑃 describes the connection

between the object and different body parts, 𝐶𝐻𝑃 the connection between the human

pose and body parts, and CPP the connection among different body parts. Note that

we learn a connectivity for each pair of human pose and object respectively.

In the learning step, given the locations and size of the object and human body

parts, our objective function is

argmax
𝒞

∑
𝑖

{∑
𝒞𝑂𝑃

𝜓𝑖
𝑒(𝑂,𝑃𝑛) +

∑
𝒞𝐻𝑃

𝜓𝑖
𝑒(𝐻,𝑃𝑛) +

∑
𝒞𝑃𝑃

𝜓𝑖
𝑒(𝑃𝑚, 𝑃𝑛) + log𝒩 (∣𝒞∣)

}
(5.3)

where ∣𝒞∣ is the number of edges in 𝒞, and log(∣𝒞∣) is a Gaussian prior over the number

of edges. 𝜓𝑖
𝑒(⋅) is the potential value computed from the 𝑖-th image. Note that in

the structure learning stage, we omit the weights of different potential terms. The

potential weights will be estimated in the parameter estimation step (Sec.5.4.2).

For each sample 𝑖, the value of all the potential terms 𝜓𝑖
𝑒(𝑂,𝑃𝑛), 𝜓

𝑖
𝑒(𝐻,𝑃𝑛), and

𝜓𝑖
𝑒(𝑃𝑚, 𝑃𝑛) can be computed by using the Maximum-Likelihood approach. Therefore,

given the values of all the potential terms, we use a hill-climbing search [66] method

to optimize Eq.5.3.

In the hill-climbing method, we first randomly initialize the connectivity. Then

we execute the following steps repeatedly: We consider all of the solutions that are

neighbors of the current one by adding or removing an edge. We compute the score of

each solution using Eq.5.3, from which the one that leads to the best improvement in

the score is selected. We continue this process until no improvement can be achieved.

Because all the potential terms in Eq.5.3 can be pre-computed, hill-climbing method

converges fast in our problem. The method, however, can only reach a local maximum.

There is no guarantee that the local maximum is actually the global optimum. To

improve the search result, we adopt the following two approaches.

The first approach is to keep a tabu list of operators (adding or deleting a specific

edge) that we have recently applied. Then in each search step, we do not consider the

operators that reverse the effect of operators applied in the last five steps. Thus, if
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we add an edge between two nodes, we cannot delete this edge in the next five steps.

The tabu list forces the search procedure to explore new directions in the search space

so that the performance can be improved [66].

The other approach to reduce the impact of local optimum is randomization. We

can initialize the connectivity at different starting points, and then use a hill-climbing

algorithm for each one, from which the best result is selected. In our method, we use

one manually designed starting point and two other random ones. In the manually

designed starting point, we connect the human pose node with all the body parts,

connect the object with the right-lower-arm, and use a kinematic structure among

different body parts.

5.4.2 Max-margin parameter estimation

Given the model outputs by the structure learning step, the parameter estimation step

aims to obtain a set of potential weights that maximize the discrimination between

different classes of activities (𝐴 in Fig.5.3(a)). But unlike the traditional random

field parameter estimation setting [112], in our model each class can contain more

than one pose (𝐻), which can be thought of as multiple sub-classes. Our learning

algorithm needs to, therefore, estimate parameters for each pose (i.e. sub-class) while

optimizing for maximum discrimination among the global activity classes.

We propose a novel max-margin learning approach to tackle this problem. Let

(x𝑖, 𝑐𝑖, 𝑦(𝑐𝑖)) be a training sample, where x𝑖 is a data point, 𝑐𝑖 is the sub-class label

of x𝑖, and 𝑦(𝑐𝑖) maps 𝑐𝑖 to a class label. We want to find a function ℱ that assigns

an instance x𝑖 to a sub-class. We say that x𝑖 is correctly classified if and only if

𝑦(ℱ(x𝑖)) = 𝑦(𝑐𝑖). Our classifier is then formulated as ℱ(x𝑖) = argmax𝑟{w𝑟 ⋅ x𝑖},
where w𝑟 is a weight vector for the 𝑟-th sub-class. Inspired by the traditional max-

margin learning problems [15], we introduce a slack variable 𝜉𝑖 for each sample x𝑖,

and optimize the following objective function:

min
w,𝜉

1

2

∑
𝑟

∥w𝑟∥22 + 𝛽
∑
𝑖

𝜉𝑖 (5.4)
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subject to: ∀𝑖, 𝜉𝑖 ≥ 0

∀𝑖, 𝑟 where 𝑦(𝑟) ∕= 𝑦(𝑐𝑖), w𝑐𝑖 ⋅ x𝑖 −w𝑟 ⋅ x𝑖 ≥ 1− 𝜉𝑖

where ∥w𝑟∥2 is the L2 norm of w𝑟, 𝛽 is a normalization constant. Again, note that

the weights are defined with respect to sub-classes while the classification results

are measured with respect to classes. We optimize Eq.5.4 by using the multiplier

method [54]. Mapping the above symbols to our model, x𝑖 are the potential function

values computed on an image. Potential values for the disconnected edges are set to

0. In order to obtain better discrimination among different classes, we compute the

potential values of an image on the models of all the sub-classes, and concatenate

these values to form the feature vector. Sub-class variable 𝑐𝑖 indicates human pose

𝐻, and 𝑦(𝑐𝑖) is the class label 𝐴. Please refer to the full version of [127] for more

detail about the method.

5.4.3 Analysis of our learning algorithm

Fig.5.4 illustrates the two models (correspond to two types of human poses) learned

by our algorithm for each HOI class. We can see the big difference of human poses

in some activities (e.g. croquet-shot and tennis-serve), and such wide intra-class

variability can be effectively captured by our algorithm. In these cases, using only

one human pose for each HOI class is not enough to characterize well all the images in

this class. Furthermore, we observe that by using structure learning, our model can

learn meaningful connectivity between the object and the body parts, e.g. croquet

mallet and legs, right forehand and tennis racket.

5.5 Model inference

Given a new testing image ℐ, our objective is to estimate the pose of the human in

the image, and to detect the object that is interacting with the human. An illus-

tration of the inference procedure is shown in Fig.5.6. In order to detect the tennis

racket in this image, we maximize the likelihood of this image given the models that
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Figure 5.6: The framework of our inference method for the mutual context model.
Given an input image ℐ, the inference results are: (1) object detection results 𝑂𝑘

(e.g. 𝑂1 is the tennis racket detection result); (2) human pose estimation result 𝐻∗;
(3) activity classification result 𝐴∗.

are learned for tennis-forehand. This is achieved by finding a best configuration of

human body parts and the object (tennis racket) in the image, which is denoted as

max𝑂,𝐻 Ψ(𝐴𝑘, 𝑂,𝐻, ℐ) in Fig.5.6. In order to estimate the human pose, we compute

max𝑂,𝐻 Ψ(𝐴𝑘, 𝑂,𝐻, ℐ) for each activity class and find the class 𝐴∗ that corresponds

to the maximum likelihood score. This score can be used to measure the confidence

of activity classification as well as human pose estimation.

For each model, the above inference procedure involves a step to find the best

spatial configuration of the object and different body parts for an image. We solve

this problem by using the compositional inference method [13]. The algorithm has

a bottom-up stage which makes proposals of different parts. The bottom-up stage



5.6. EXPERIMENTS 85

starts from the object detection and human body parts detection scores, from which

we obtain the image parts with large detection scores for further processing. Then in

the first level of the bottom-up stage, if two nodes of the body parts or the object are

connected, we enumerate all combinations of the strong detection responses of the

two nodes. The combinations with low fitness scores are removed. We compute the

fitness score by adding the detection scores of the two parts, as well as the potential

value of the edge between them. A clustering method is applied to the remaining

combinations to obtain a small set of max-proposals. Then the remaining proposals

are merged according to the connectivity structure among different image parts. In

the compositional inference stage, we omit the weights of different potentials and set

all of them to 1. Please refer to [13] for more details about this inference method. In

the first level of the bottom-up stage, we propose 5000 node combinations for each

edge. After clustering only 30 ∼ 100 combinations are remained.

5.6 Experiments

5.6.1 The sports dataset

We evaluate our approach on a known HOI dataset of six activity classes [49]: cricket-

defensive shot (player and cricket bat), cricket-bowling (player and cricket ball),

croquet-shot (player and croquet mallet), tennis-forehand (player and tennis racket),

tennis-serve (player and tennis racket), and volleyball-smash (player and volleyball).

There are 50 images in each activity class. We use the same setting as that in [49]: 30

images for training and 20 for testing. In [49] only activity classification results were

reported. In this work we also evaluate our method on the tasks of object detection

and human pose estimation.

5.6.2 Better object detection by pose context

In this experiment, our goal is to detect the presence and location of the object given

an HOI activity. To evaluate the effectiveness of our model, we compare our results

with two control experiments: a scanning window detector as a baseline measure of
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(a) cricket bat
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(b) cricket ball
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(c) croquet mallet
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(d) tennis racket
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(e) volleyball

Figure 5.7: Object detection results measured by precision-recall curves. We compare
our algorithm to a scanning window detector and a detector that uses pedestrian
detection as the human context for object detection.
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Figure 5.8: Object (cricket bat) detection results (red double-line bounding boxes)
obtained by: a sliding window detector (left), the same detector using pedestrian
detection as context (middle), and our method (right). Pedestrian detection is
shown in a blue bounding box. The human pose estimation results are shown in
colored rectangles in the right image.

object detection without any context, and a second experiment in which the approxi-

mate location of the person is provided by a pedestrian detector [16], hence providing

a co-occurrence context and a very weak location context. Results of these three

experiments, measured by precision-recall curves, are shown in Fig.5.7. The curves of

our algorithm are obtained by considering the scores Ψ(𝐴,𝑂,𝐻, ℐ) of all the results

that are proposed by the compositional inference method. To ensure fair comparison,

all experiments use the same input features and object detectors described in Sec.5.3,

and non-max suppression is applied equally to all methods.

The results in Fig.5.7 show that our detection method achieves the best perfor-

mance. By using human pose as context, more detailed spatial relationship between

different image parts can be discovered, which greatly helps to detect objects that are

traditionally very difficult. For example, in the case of the cricket ball (Fig.5.7(b)), a

sliding window method yields an average precision of 17%, whereas our model with

pose-context measure is 46%. In almost all the cases of the five objects, the average

precision score of our method is more than three times as the sliding window method.

Fig.5.8 shows an example of using the three methods for object detection. Fig.5.9
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Method
Iterative Pictorial Class Our model Our full

parsing [98] structure [38] based PS one pose model

Torso 52± 19 50± 14 59± 9 63± 5 66± 6

Upper leg
22± 14 31± 12 36± 11 40± 8 43± 8
22± 10 30± 9 26± 17 36± 15 39± 14

Lower leg
21± 9 31± 15 39± 9 41± 10 44± 10
28± 16 27± 18 27± 9 31± 9 34± 10

Upper arm
24± 16 18± 6 30± 12 38± 13 44± 9
28± 17 19± 9 31± 12 35± 10 40± 13

Fore arm
17± 11 11± 8 13± 6 21± 12 27± 16
14± 10 11± 7 18± 14 23± 14 29± 13

Head 42± 18 45± 8 46± 11 52± 8 58± 11

Table 5.1: Pose estimation results by our full model and four comparison methods
for all testing images. The average part detection percent correctness and standard
deviation over 6 HOI classes are presented for each body part. If two numbers are
reported in one cell, the left one indicates the left body part and right one indicates
the right body part. The best result for each body part is marked in bold font.

shows more object detection results on a variety of testing images.

5.6.3 Better pose estimation by object context

Similarly to object detection, we show in this experiment that human pose estimation

is significantly improved by object context. Here we compare our full model with four

different control experiments.

∙ An iterative parsing method by Ramanan et al [98];

∙ A state-of-the-art pictorial structure model [2];

∙ We re-train the model in [2] with a pictorial structure model per class for better

modeling of each class;

∙ Our proposed model by imposing only one sub-class (human pose, 𝐻) per HOI

activity, examining the importance of allowing a flexible number of pose models

to account for the intra-activity variability.
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(a) cricket defensive shot (b) cricket defensive shot

(c) tennis forehand (d) tennis serve (e) croquet shot

Figure 5.9: Example testing results of object detection and pose estimation. Each
sub-figure contains one testing image, tested on the following four conditions: upper-
left→object detection by our model, lower-left→object detection by a scanning win-
dow, upper-right→pose estimation by our model, and lower-right→pose estimation
by the state-of-the-art pictorial structure method in [2]. Detected objects are shown
in double-line red bounding boxes. The color codes for different body parts are: head
and torso - magenta, arms - green, legs - cyan.
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(a) cricket bowling (b) volleyball smash (c) volleyball smash

Figure 5.10: Continuation of Fig.5.9.

All of the models are trained using the same training data described in Sec.5.6.1.

Following the convention proposed in [40], a body part is considered correctly lo-

calized if the endpoints of its segment lie within 50% of the ground-truth segment

length from their true positions. Experimental results are shown in Table 5.1. The

percentage correctness tells us that pose estimation still remains a difficult problem.

No method offers a solution near 100%. Our full model significantly outperforms

the other approaches, even showing a 10% average improvement over a class-based,

discriminatively trained pictorial structure model. Furthermore, we can see that al-

lowing multiple poses for each activity class proves to be useful for improving pose

estimation accuracy. More sample results are shown in Fig.5.9 and Fig.5.10, where

we visualize the pose estimation results by comparing our model with the state-of-

the-art pictorial structure model by [2]. We show that given the object context, poses

estimated by our model are less prone to errors that result in strange looking body

gestures (e.g. Fig.5.9(d)), or a completely wrong location (e.g. Fig.5.10(c)).
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Figure 5.11: Activity recognition accuracy of different methods: our model, Gupta
et al [49], and bag-of-words.

5.6.4 Combining object and pose for action classification

As shown in Fig.5.6, by inferring the human pose and object in the image, our model

gives a prediction of the class label of the human-object interaction. We compare our

method with the results reported in [49], and use a bag-of-words representation with

a linear SVM classifier as the baseline. The results are shown in Fig.5.11.

Fig.5.11 shows that our model significantly outperforms the bag-of-words method

and performs slightly better than [49]. Note that the method in [49] uses predom-

inantly the background scene context (e.g. appearance differences in sport courts),

which turns out to be highly discriminative among most of these classes of activi-

ties. Our method, on the other hand, focuses on the core problem of human-object

interactions. It is therefore less data set dependent.

5.7 Summary

In this chapter, we treat object and human pose as the context of each other in

different HOI activity classes. We develop a random field model that uses a structure

learning method to learn important connectivity patterns between objects and human

body parts. Experiments show that our model significantly outperforms other state-

of-the-art methods in both problems. Our model can be further improved in a number

of directions. For example, inspired by [84, 49], we can incorporate useful background
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scene context to facilitate the recognition of foreground objects and activities. In the

next chapter, we will show how to deal with more than one object in each action.



Chapter 6

Mutual Context Model II:

Multiple Objects

The mutual context model in the previous chapter assumes one human and one object

interaction in each action, and can be used for action recognition, object detection,

and human pose estimation. In this chapter1, we extend the model so that it can

deal with the cases where a human interacting with any number of objects. We also

show the application of mutual context model in some higher level, such as action

retrieval.

6.1 Introduction

Many recent works on human action recognition use contextual information [49, 127]

to help improve the recognition performance. Compared to the methods that di-

rectly associate low-level image descriptors with class labels [126, 18], context (e.g.

estimating human pose, detecting objects) provides deeper understanding of human

actions.

Following the method of Yao & Fei-Fei [127], in this paper we consider human ac-

tions as interactions between humans and objects, and jointly model the relationship

1An early version of this chapter has been presented in [131].

93



94 CHAPTER 6. MUTUAL CONTEXT MODEL II: MULTIPLE OBJECTS

"�������
�	
���


�����
�	
������
���

"�������
�	
���


"�������
������


�	���������
�����

������
����	�
���

�
���
�	

Figure 6.1: Objects and human poses can facilitate the recognition of each other
in the actions of human-object interactions, as shown in the cricket bowling image.
Based on the recognition of objects and human poses, we consider two tasks: action
classification and measuring action similarity. “→” indicates that the left image is
more similar to the left-most cricket bowling image than the right one.

between them using the mutual context model. As shown in Fig.6.1, our method al-

lows objects and human poses to serve as mutual context to facilitate the recognition

of each other, based on which we address two action recognition tasks:

∙ Conventional action classification where we assign a class label to each action

image.

∙ Measuring the similarity between different action images. The goal is to make

the similarity measure consistent with human perception.

The second task, measuring action similarity, is very different from conventional

action classification problems. As shown in Fig.6.2, human actions lie in a relatively

continuous space and different actions can be correlated. We humans are able to dis-

tinguish small changes in human poses as well as capture the relationship of different

actions from the objects or scene background. However it is difficult to capture all

these subtleties by simply assigning action images into several independent classes as
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(a) A human action can be more related to some actions than others. 𝐷1 < 𝐷2

because the left-most two images have similar human poses. 𝐷3 < 𝐷2 because the
right-most two images are from the same sport and the objects “cricket ball” and
“cricket stump” are present in both images.

�� ��

(b) Human actions lie in a continuous space. Humans are able to capture the
difference between different images even if they belong to the same action class.
𝐷4 < 𝐷5 because the left two images have very similar human poses.

Figure 6.2: Examples of the distance between different images of human actions
denoted by 𝐷𝑖.

in the conventional action classification problem. In this work, by explicitly consider-

ing objects and human poses, we obtain a distance2 measure of action images which

is largely consistent with human annotation.

In the rest of this chapter, we first introduce related work in Sec.6.2, and then

elaborate on the mutual context model and distance measure method in Sec.6.3.

Finally, experimental results are presented in Sec.6.4.

2Small distance indicates large image similarity.
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6.2 Related work

Our method builds upon the mutual context model [127] that explores the relation-

ships between objects and human poses in human actions. The model presented in

this paper is more flexible and discriminative in that: (1) it learns an overall relation-

ship between different actions, objects, and human poses, rather than modeling each

action class separately; (2) it can deal with any number of objects, instead of being

limited to the interactions between one human and one object; (3) it incorporates a

discriminative action classification component which takes global image information

into consideration.

While different objects and annotations of action classes can be represented by

discrete indexes, human poses lie in a space where the location of body parts changes

continuously. To make the joint modeling of actions, objects, and human poses easier,

we discretise possible layouts of human body parts into a set of representative poses,

termed as atomic poses (as shown in Fig.6.3). Our atomic poses are discovered in a

similar manner as poselets [8]. While poselets are local detectors for specific body

parts, the atomic poses consider the whole human body and can be thought of as a

dictionary of human poses.

6.3 Algorithm

In this section, we describe the mutual context model that jointly models a set of

actions 𝒜, objects 𝒪, and atomic poses ℋ. We first introduce the model (Sec.6.3.1),

then describe how to obtain the atomic poses (Sec.6.3.2) and the model learning ap-

proach (Sec.6.3.3). Finally we show our approach to classify action images (Sec.6.3.4)

and measure action distance (Sec.6.3.5).

6.3.1 Mutual context model representation

Given an image 𝐼 with annotations of action class 𝐴 ∈ 𝒜, bounding boxes of objects

𝑂 ∈ 𝒪 and body parts in the human pose 𝐻 ∈ ℋ, our model learns the strength of

the interactions between them. We further make the interaction conditioned on image
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evidence, so that the components that are harder to recognize play less important

roles in the interaction. Our model is represented as

Ψ(𝐴,𝑂,𝐻, 𝐼) = 𝜙1(𝐴,𝑂,𝐻) + 𝜙2(𝐴, 𝐼) + 𝜙3(𝑂, 𝐼) + 𝜙4(𝐻, 𝐼) + 𝜙5(𝑂,𝐻) (6.1)

where 𝜙1 models the compatibility between 𝐴, 𝑂, and 𝐻; 𝜙2−4 models the image

evidence using state-of-the-art action classification, object detection, and pose esti-

mation approaches; 𝜙5 considers the spatial relationship between objects and body

parts. We now elaborate on each term in Eqn.6.1.

Compatibility between actions, objects, and human poses. 𝜙1(𝐴,𝑂,𝐻)

is parameterized as

𝜙1(𝐴,𝑂,𝐻) =

𝑁ℎ∑
𝑖=1

𝑀∑
𝑚=1

𝑁𝑜∑
𝑗=1

𝑁𝑎∑
𝑘=1

1(𝐻=ℎ𝑖) ⋅ 1(𝑂𝑚=𝑜𝑗) ⋅ 1(𝐴=𝑎𝑘) ⋅ 𝜁𝑖,𝑗,𝑘 (6.2)

where 𝑁ℎ is the the total number of atomic poses (see Sec.6.3.2) and ℎ𝑖 is the 𝑖-th

atomic pose in ℋ (similarly for 𝑁𝑜, 𝑜𝑗, 𝑁𝑎, and 𝑎𝑘). 𝜁𝑖,𝑗,𝑘 represents the strength of

the interaction between ℎ𝑖, 𝑜𝑗, and 𝑎𝑘. 𝑀 is the number of object bounding boxes

within the image, and 𝑂𝑚 is the object class label of the 𝑚-th box.

Modeling Actions. 𝜙2(𝐴, 𝐼) is parameterized by training an action classifier

based on the extended image regions of the humans. We have

𝜙2(𝐴, 𝐼) =
𝑁𝑎∑
𝑘=1

1(𝐴=𝑎𝑘) ⋅ 𝜂𝑇𝑘 ⋅ 𝑠(𝐼) (6.3)

where 𝑠(𝐼) is an 𝑁𝑎-dimensional output of a one-vs-all discriminative classifier. 𝜂𝑘 is

the feature weight corresponding to 𝑎𝑘.

Modeling objects. Inspired by [21], we model objects in the image using object

detection scores in each detection bounding box and the spatial relationships between

these boxes. Denoting the detection scores of all the objects for the 𝑚-th box as
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𝑔(𝑂𝑚), 𝜙3(𝑂, 𝐼) is parameterized as

𝜙3(𝑂, 𝐼) =
𝑀∑

𝑚=1

𝑁𝑜∑
𝑗=1

1(𝑂𝑚=𝑜𝑗) ⋅ 𝛾𝑇𝑗 ⋅ 𝑔(𝑂𝑚)+ (6.4)

𝑀∑
𝑚=1

𝑀∑
𝑚′=1

𝑁𝑜∑
𝑗=1

𝑁𝑜∑
𝑗′=1

1(𝑂𝑚=𝑜𝑗) ⋅ 1(𝑂𝑚′=𝑜𝑗′ )
⋅ 𝛾𝑇𝑗,𝑗′ ⋅ 𝑏(𝑂𝑚, 𝑂𝑚′

)

where 𝛾𝑗 is the weights for object 𝑜𝑗. 𝛾𝑗,𝑗′ encodes the weights for geometric config-

urations between 𝑜𝑗 and 𝑜𝑗′ . 𝑏(𝑂𝑚, 𝑂𝑚′
) is a bin function with a grid representation

as in [21] that models the relationship between the 𝑚-th and 𝑚′-th bounding boxes.

Modeling human poses. 𝜙4(𝐻, 𝐼) models the atomic pose that 𝐻 belongs to

and the likelihood of observing image 𝐼 given that atomic pose. We have

𝜙4(𝐻, 𝐼) =

𝑁ℎ∑
𝑖=1

𝐿∑
𝑙=1

1(𝐻=ℎ𝑖) ⋅
(
𝛼𝑇
𝑖,𝑙 ⋅ 𝑝(x𝑙𝐼 ∣x𝑙ℎ𝑖

) + 𝛽𝑇
𝑖,𝑙 ⋅ 𝑓 𝑙(𝐼)

)
(6.5)

where 𝛼𝑖,𝑙 and 𝛽𝑖,𝑙 are the weights for the location and appearance of the 𝑙-th body

part in atomic pose ℎ𝑖. 𝑝(x
𝑙
𝐼 ∣x𝑙ℎ𝑖

) is the Gaussian likelihood of observing x𝑙𝐼 , the joint

of the 𝑙-th body part in image 𝐼, given the standard joint location of the 𝑙-th body

part in atomic pose ℎ𝑖. 𝑓
𝑙(𝐼) is the output of a detector for the 𝑙-th body part in this

image.

Spatial relationship between objects and body parts. We achieve a better

modeling of objects and human body parts by considering their spatial relationships.

𝜙5(𝐻,𝑂) is parameterized as

𝜙5(𝐻,𝑂) =
𝑀∑

𝑚=1

𝑁ℎ∑
𝑖=1

𝑁𝑜∑
𝑗=1

𝐿∑
𝑙=1

1(𝐻=ℎ𝑖) ⋅ 1(𝑂𝑚=𝑜𝑗) ⋅ 𝜆𝑇𝑖,𝑗,𝑙 ⋅ 𝑏(x𝑙𝐼 , 𝑂𝑚) (6.6)

where 𝑏(x𝑙𝐼 , 𝑂
𝑚) denotes the spatial relationship between the 𝑙-th body part in 𝐼 and

the 𝑚-th object bounding box. We again use the bin function as in [21]. 𝜆𝑖,𝑗,𝑙 encodes

the weights for this relationship when the object class of 𝑂𝑚 is 𝑜𝑗.
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6.3.2 Obtaining atomic poses

In this section, we discuss a clustering method to obtain atomic poses. Given the

training images, we first align the annotations of each image so that the torsos of all

the humans have the same position and size, and normalize the range of variations

of both position and orientation to [−1, 1]. If there is a missing body part due

to occlusion, we fill in the annotation with the average annotation values for that

particular part. We then use hierarchical clustering with the max linkage measure

to obtain a set of clusters, where each cluster represents an atomic pose. Given two

images 𝑖 and 𝑗, their distance is measured by
∑𝐿

𝑙=1w
𝑇 ⋅ ∣x𝑙𝑖 − x𝑙𝑗∣, where x𝑙𝑖 denotes

the position and orientation of the 𝑙-th body part in image 𝑖, w is a weight vector

(0.15 and 0.1 for location and orientation components respectively), 𝐿 is the number

of body parts.

The atomic poses can be thought of as a dictionary of human poses, where the

layouts of body parts described by the same atomic pose are similar. Intuitively,

human pose estimation performance can be improved by using a prior which is learned

from the images of the same atomic pose, as compared to relying on a single model

for all the images. Therefore, we estimate the spatial relationship between body parts

in the pictorial structure [38] model for each atomic pose respectively, which will be

used in our model inference stage (Sec.6.3.4).

6.3.3 Model learning

Our model (Eqn.6.1) is a standard Conditional Random Field (CRF) with no hidden

variables. We use a maximum likelihood method with Gaussian priors to learn the

model parameters {𝜁, 𝜂, 𝛾, 𝛼, 𝛽, 𝜆}. All object detectors and body part detectors are

trained using the deformable parts model [37], while the action classifier is trained

using the spatial pyramid method [71]. A constant 1 is appended to each feature

vector so that the model can learn biases between different classes.

Conditioned on the image appearance information in 𝜙2 ∼ 𝜙5, our model learns

the strength of the compatibility between a set of actions, objects, and human poses

in 𝜙1. Fig.6.3 visualizes the connectivity structure learned from the sports dataset
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Figure 6.3: The learned connectivity map of actions, poses, and objects using the
sports dataset. Thicker lines indicate stronger connections while thinner connections
indicate weaker connections. We did not show the connections between actions and
objects because they are tricky (e.g. “tennis serving” connects with “tennis ball” and
“tennis racket”). We also ignore connections that are very weak.

(described in Sec.6.4.1). Each connection is obtained by marginalizing 𝜁 in Eqn.6.2

with respect to the other concept, e.g. the strength of the connection between pose

ℎ𝑖 and object 𝑜𝑗 is estimated by
∑𝑁𝑎

𝑘=1 exp(𝜁𝑖,𝑗,𝑘).

Fig.6.3 shows that our method learns meaningful action-object-pose interactions,

such as the connection between “tennis forehand” and the fourth atomic pose which

is a reasonable gesture for the action, the object “volleyball” and the last atomic

pose, etc.

6.3.4 Model inference

Given a new image, inference on Eqn.6.1 gives us the results of action classification,

object detection, and human pose estimation. We initialize the model inference with

the SVM action classification results using the spatial pyramid representation [71],

object bounding boxes obtained from independent object detectors [37], as well as

initial pose estimation results from a pictorial structure model [102] estimated from
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all training images, regardless of the belongingness of different atomic poses. We then

iteratively perform the following three steps until a local maximum of Ψ(𝑉,𝑂,𝐻, 𝐼)

is reached.

Updating the layout of human body parts. From the current inference

result, we compute the marginal distribution of the human pose over all atomic poses:

{𝑝(𝐻=ℎ𝑖)}𝑁ℎ
𝑖=1. From this distribution, we refine the prior of the joint location of each

body part 𝑙 in this image using a mixture of Gaussians
∑𝑁ℎ

𝑖=1[𝑝(𝐻=ℎ𝑖) ⋅ 𝒩 (x𝑙ℎ𝑖
)], where

𝒩 (x𝑙ℎ𝑖
) is the prior distribution for body part 𝑙 in the 𝑖-th atomic pose estimated in

Sec.6.3.2. Furthermore because the pictorial structure inference can be very efficient

if the part dependencies are Gaussians, we use a Gaussian distribution to approximate

each mixture of Gaussians. Then we use pictorial structure with these new Gaussian

distributions to update the pose estimation results.

Updating the object detections. With the current pose estimation result as

well as the marginal distribution of atomic poses and action classes, we use a greedy

forward search method [21] to update the object detection results. We use (𝑚, 𝑗) to

denote the score of assigning the 𝑚-th object bounding box to object 𝑜𝑗, which is

initialized as

(𝑚, 𝑗) =

𝑁ℎ∑
𝑖=1

𝐿∑
𝑙=1

𝑝(𝐻=ℎ𝑖) ⋅ 𝜆𝑇𝑖,𝑗,𝑙 ⋅ 𝑏
(
x𝑙𝐻 , 𝑂

𝑚
)

(6.7)

+

𝑁ℎ∑
𝑖=1

𝑁𝑎∑
𝑘=1

𝑝(𝐻=ℎ𝑖) ⋅ 𝑝(𝐴=𝑎𝑘) ⋅ 𝜁𝑖,𝑗,𝑘 + 𝛾𝑇𝑗 ⋅ 𝑔(𝑂𝑚)

Initializing the labels of all the windows to be background, the forward search repeats

the following steps

1. Select (𝑚∗, 𝑗∗) = argmax{(𝑚, 𝑗)}.

2. Label the 𝑚∗-th object detection window as 𝑜𝑗∗ and remove it from the set of

detection windows.

3. Update (𝑚, 𝑗) = (𝑚, 𝑗) + 𝛾𝑇𝑗,𝑗∗ ⋅ 𝑏(𝑂𝑚, 𝑂𝑚∗
) + 𝛾𝑇𝑗∗,𝑗 ⋅ 𝑏(𝑂𝑚∗

, 𝑂𝑚).
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until (𝑚∗, 𝑗∗) < 0. After this step, all object bounding boxes are assigned to either

an object label or the background.

Updating the action and atomic pose labels. Based on the current pose

estimation and object detection results, we optimize Ψ(𝐴,𝑂,𝐻, 𝐼) by enumerating

all possible combinations of 𝐴 and 𝐻 labels.

6.3.5 Computing action distance

Based on our model inference results, we measure the distance between two action

images considering not only action classes but also objects and human poses in the

action. For an image 𝐼, we use our mutual context model to infer marginal distri-

butions on the action classes 𝑝(𝐴∣𝐼) and atomic poses 𝑝(𝐻∣𝐼) respectively. We also

obtain a 𝑁𝑜-dimensional vector whose 𝑗-th component is set to 1 if the object 𝑜𝑗 is

detected in image 𝐼, or 0 otherwise. We normalize this vector to obtain a distribution

𝑝(𝑂∣𝐼) for all the objects in this image. We then measure the distance between two

images 𝐼 and 𝐼 ′ by

2 ⋅𝐷(𝑝(𝐴∣𝐼), 𝑝(𝐴∣𝐼 ′)) +𝐷(𝑝(𝑂∣𝐼), 𝑝(𝑂∣𝐼 ′)) + 2 ⋅𝐷(𝑝(𝐻∣𝐼), 𝑝(𝐻∣𝐼 ′)) (6.8)

where 𝐷 (described below) indicates the distance between two probability distribu-

tions. We assign a lower weight to objects because the performance of object detection

is not as good as action classification and pose estimation (Sec.6.4.2). In this paper

we consider two distance measures (𝐷) for probabilities:

− Total variance 𝑇 (p,q) =
∑
𝑖

∣𝑝𝑖 − 𝑞𝑖∣.

− Chi square statistic 𝜒2(p,q) =
∑
𝑖

(𝑝𝑖 − 𝑞𝑖)
2

𝑝𝑖 + 𝑞𝑖
.

Note that our model (Sec.6.3.1) jointly considers human actions, objects, and

human poses, and therefore the probability distribution estimated from each of them

considers image appearance as well as contextual information from the other two.

Our distance measure further takes into account the three components together. In
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Sec.6.4.4 we show that our approach captures much semantic level differences between

images of human actions and the results are largely consistent with human perceptions

as shown in Fig.6.2.

6.4 Experiment

6.4.1 The six-class sports dataset

We carry out experiments on the six-class sports dataset [49]. For each action there

are 30 training images and 20 testing images. The objects that we consider are: cricket

bat, ball, and stump in “cricket batting” and “cricket bowling”; croquet mallet, ball,

and hoop in “croquet shot”; tennis racket and ball in “tennis forehand” and “tennis

serving”; volleyball and net in “volleyball smash”.

We train an upper-body detector on this dataset using citeFelzenszwalb10. The

detector works almost perfectly because of the relatively clean image background. We

normalize the images based on the size of the detection boxes such that we do not

need to search over scales in human pose estimation. We obtain 12 atomic poses on

this dataset (shown in Fig.6.3).

6.4.2 Action classification, object detection, and pose esti-

mation

The action classification results are shown in Fig.6.4. We also compare our method

with other approaches for object detection and human pose estimation in Tbl.6.1 and

Tbl.6.2. Following the convention in citeFerrari08, a body part is considered correctly

localized if the endpoints of its segment lie within 50% of the ground-truth segment

length from their true positions. As in PASCAL VOC [27], an object detection

bounding box is considered correct if the ratio between its intersection with the ground

truth and its union with the ground truth is greater than 50%.

We observe that our method achieves better performance than the baselines in

almost all experiments. We obtain better action classification and pose estimation
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Figure 6.4: Action classification performance of different methods on the sports
dataset.

Method Felzenszwalb et al. [37] Desai et al. [21] Our Method

Cricket bat 17% 18% 20%
Cricket ball 24% 27% 32%

Cricket stump 77% 78% 77%
Croquet mallet 29% 32% 34%
Croquet ball 50% 52% 58%
Croquet hoop 15% 17% 22%
Tennis racket 33% 31% 37%
Tennis ball 42% 46% 49%
Volleyball 64% 65% 67%

Volleyball net 4% 6% 9%

Overall 36% 37% 41%

Table 6.1: Object detection results on the sports data measured by detection accuracy.
We bold the best performance in each experiment. The object detection result is not
directly comparable to that of the last chapter, because in this chapter we detect
each object in all testing images, while in that paper the object is only detected in
images of the action classes that could contain the object (e.g. detecting “volleyball”
in “volleyball smash” images).
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Method Yao & Fei-Fei [127] Andriluka et al. [2] Our Method

Head 58% 71% 76%
Torso 66% 69% 77%

Left/right 44% 44% 52%
upper arms 40% 40% 45%
Left/right 27% 35% 39%
lower arms 29% 36% 37%
Left/right 43% 58% 63%
upper legs 39% 63% 61%
Left/right 44% 59% 60%
lower legs 34% 71% 77%

Overall 42% 55% 59%

Table 6.2: Pose estimation results on the sports data measured by average precision.
We bold the best performance in each experiment.

results compared to the previous chapter because we use stronger body part detectors

and incorporate the discriminative action classification component in the model of this

paper. Please refer to the previous chapter for more analysis and comparison of the

mutual context model and the other approaches.

6.4.3 Human perception of action distances

Before we evaluate our distance metric described in Sec.6.3.5, we study how humans

measure the similarity between action images. First, we are interested in whether

humans agree with one another on this task. In every trial of our experimental study,

we give a human subject one reference image and two comparison images (as shown

in Fig.6.5(a)), and ask the subject to annotate which of the two comparison images

is more similar to the reference image. We generate two trials of experiments for

every possible combination of action classes from the sports dataset, and therefore

our experiment consists of 2× (6 +𝐶6,2) = 252 trials. We give the same 252 trials to

eight subjects.

Fig.6.5(a) summarizes the consistency of the received responses. We observe that

in most situations the eight subjects agree with each other (54% 8:0 as compared to

4% 4:4), even in many confusing trials. For example as shown in Fig.6.5(a), all eight
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(a) X-axis represents the degree of consistency when humans measure the similarity between
different action images, e.g. “7:1” means seven of the eight subjects have the same annotation
in a given trial. Y-axis is the percentage of the corresponding trials in all the 252 trials.
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(b) Examples of action similarities obtained from human annotation. In each row, the refer-
ence image is indicated by a yellow bounding box. The magenta numbers are the similarity
with the corresponding reference image.

Figure 6.5: Human annotations of action distance.
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subjects believe the “volleyball smash” image is closer to the “tennis forehand” image

than the “croquet shot” image because the former two images have similar human

poses.

Having shown that humans tend to give similar annotations in measuring the

similarity between different action images, we obtain the ground truth similarity

between action images by averaging annotations from different human subjects. We

give each subject an annotation task where an image 𝐼𝑟𝑒𝑓 is treated as the reference

image for 50 trials. In each trial we randomly select two different test images to

compare with 𝐼𝑟𝑒𝑓 . Five of the eight subjects are assigned this task, resulting in 250

pairwise rankings of the 120 test images for 𝐼𝑟𝑒𝑓 . We then use the edge flow method

[60] to convert these pairwise rankings to a similarity vector s = {𝑠(𝐼𝑟𝑒𝑓 , 𝐼 𝑖)}120𝑖=1,

where 𝑠(𝐼𝑟𝑒𝑓 , 𝐼 𝑖) denotes the ground truth similarity between 𝐼𝑟𝑒𝑓 and 𝐼 𝑖. We obtain

s by solving an optimization problem

minimize M ⋅ s = 1 (6.9)

𝑠.𝑡. s ર 0, ∥s∥2 ≤ 1

where M is a 250 × 120 sparse matrix where 𝑀𝑗,𝑘 = 1 and 𝑀𝑗,𝑙 = −1 if the 𝑗-th

pairwise ranking indicates that 𝐼𝑘 is more similar to 𝐼𝑟𝑒𝑓 than 𝐼 𝑙.

We repeat the above procedure to obtain a similarity vector for each test image.

Fig.6.5(b) shows examples of action similarities. Note that 𝑠(𝐼𝑟𝑒𝑓 , 𝐼 𝑖) is asymmetric

because we obtain the similarity values by treating each test image as the reference

image separately.

6.4.4 Evaluating the distance metric

In this section, we evaluate the approaches of computing the distance between dif-

ferent action images. With the ground truth similarities of each reference image

against all the other images obtained from human annotation (Sec.6.4.3), our goal is

to automatically find the images that correspond to large similarity (small distance)

values.

Our distance metric is evaluated in the following way. Denote the ground truth



108 CHAPTER 6. MUTUAL CONTEXT MODEL II: MULTIPLE OBJECTS

�� �� �� ��
���

����

��	

��	�

��


��
�

��-

��
�����������&����

�
��
��
��
�+
��
��
��
��

�� �� �� ��
���

��	

��


��-

��
��������������� ��
�

�
��
��
��
�+
��
��
��
��

�

�
�'������$$!�χ�

�'�������$$!��

�'����������$7!�χ�

�'����������$7!��

�'���;������$7!�χ�

�'���;������$7!��

�'�+������$7!�χ�

�'�+������$7!��

%�������$���!�χ�

%�������$���!��

Figure 6.6: Comparison of different distance metrics evaluated by average precision
with respect to the number of similar images in top of the ranking. “MC” denotes
“mutual context” and “SPM” is “spatial pyramid matching”.

similarity between an image 𝐼 and the reference image 𝐼𝑟𝑒𝑓 as 𝑠(𝐼𝑟𝑒𝑓 , 𝐼). We have

a ground truth ranking of all the images {𝐼𝑔𝑡1 , 𝐼𝑔𝑡2 , ⋅ ⋅ ⋅ } such that 𝑠(𝐼𝑟𝑒𝑓 , 𝐼𝑔𝑡𝑖) ≥
𝑠(𝐼𝑟𝑒𝑓 , 𝐼𝑔𝑡𝑗) if 𝑖 ≤ 𝑗. Using our distance metric we obtain another ranking of all the

images {𝐼𝑟𝑒1 , 𝐼𝑟𝑒2 , ⋅ ⋅ ⋅ } by sorting their distance with the reference image in ascending

order. The precision of using this distance metric to find 𝑛 neighboring images for

𝐼𝑟𝑒𝑓 is evaluated by

∑𝑛
𝑖=1 𝑠(𝐼

𝑟𝑒𝑓 , 𝐼𝑟𝑒𝑖)∑𝑛
𝑖=1 𝑠(𝐼

𝑟𝑒𝑓 , 𝐼𝑔𝑡𝑖)
(6.10)

Average precision of using all the test images as reference images is adopted for

performance evaluation.

We compare our distance metric (Eqn.6.8) with a baseline approach that is based

on spatial pyramid image classification [71]. In that approach, an image is represented

by the six-dimensional confidence scores obtained from one-vs-all SVM classification.

The distance between the confidence scores is used to measure the distance between

two images. We also compare our method with some control approaches that use each

of the three components (action, object, and human pose) of Eqn.6.8 individually.
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Figure 6.7: Comparison of our distance metric and the baseline on a “tennis serving”
image. The top-left image surrounded by a yellow rectangle is the reference image,
and all the other images are organized in a row major order with respect to ascending
distance values to the corresponding reference image.

We observe from Fig.6.6 that our method outperforms the baseline and all the

other control settings. The two probability distance measures, 𝜒2 and 𝑇 , achieve very

similar performance in all the methods. Among the three components, using actions

only performs the best while using objects only performs the worst. The reason might
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Figure 6.8: Comparison of our distance metric and the baseline on a “volleyball
smash” image. The top-left image surrounded by a yellow rectangle is the reference
image, and all the other images are organized in a row major order with respect to
ascending distance values to the corresponding reference image.

be that, objects are usually small such that the human annotations put less weights

to objects compared with that of actions or human poses. Also, Tbl.6.1 shows that

object detection does not perform as well as pose estimation or action classification,

making it less reliable when using objects only for distance computation.
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Fig.6.7 and Fig.6.8 shows the top 20 images obtained using our method and the

baseline spatial pyramid method. We observe that our results are significantly more

consistent with human perception. Our method can not only find the images that

have the same action as the reference image, but also capture the detailed similarity

of semantic meaning such as human pose. For example, in Fig.6.8, the “volleyball

smash” image returns 17 images of the same action, and the humans in the next 3

images have similar poses as the human in the reference image.

6.5 Summary

In this chapter, we show that the joint modeling of actions, objects, and human poses

can not only improve the performance of action classification, object detection, and

pose estimation, but also lead to an action distance measure approach whose output

is largely consistent with human annotations.



Chapter 7

Discovering Object Functionality

In the previous two chapters, we have shown that we can do many tasks other than

action classification in still images, such as object detection, human pose estimation,

and action retrieval. In this chapter1, we aim for a higher level goal - discovering

object functionality. We achieve this goal with a weakly supervised approach.

7.1 Introduction

What is an object? Psychologists have proposed two popular philosophies of how

humans perceive objects. One view asserts that humans perceive objects by their

physical qualities, such as color, shape, size, rigidity, etc. Another idea was proposed

by Gibson [44], who suggested that humans perceive objects by looking at their

affordances. According to Gibson and his colleagues [43, 12], affordance refers to the

quality of an object or an environment which allows humans to perform some specific

actions. Recent studies [88] have shown that affordance is at least as important as

appearance in recognizing objects by humans. An example is shown in Fig.7.1.

In the field of computer vision, while most previous work has emphasized modeling

the visual appearances of objects [39, 16, 37], research on object/scene affordance (also

called functionality2) is attracting more and more researchers’ attention recently [48,

1An early version of this chapter has been presented in [133].
2There are subtle differences between affordance and functionality in psychology. But in this

112
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Figure 7.1: Humans can use affordance to perceive objects. In the left image, although
the violin is almost invisible, most humans can easily conclude this is an image of
a human playing a violin based on the way the human interacting with the object.
However, it is difficult to recognize the object with mosaic in the image on the right.

65, 46, 129, 41]. On the one hand, observing the functionality of an object (e.g. how

humans interact with it) provides a strong cue for us to recognize the category of the

object. On the other hand, inferring object functionality itself is an interesting and

useful task. For example, one of the end goals in robotic vision is not to simply tell a

robot “this is a violin”, but to teach the robot how to make use of the functionality

of the violin - how to play it. Further, learning object functionality also potentially

facilitates other tasks in computer vision (e.g. scene understanding [17, 41]) or even

the other fields (e.g. exploring the relationship between different objects [36]).

In this chapter, our goal is to discover object functionality from weakly labeled

images. Given an object, there might be many ways for a human to interact with it,

as shown in Fig.7.2. As we will show in our experiments, these interactions provide

us with some knowledge about the object and hence reveal the functionalities of

those objects. Furthermore, while inferring these types of interactions, our method

also builds a model tailored to object detection and pose estimation for each specific

interaction.

We propose an iterative model to achieve our goals. Using violin as an example,

given a set of images of human-violin interactions, we discover different types of

chapter, we use them interchangeably.
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Figure 7.2: There are multiple possible modes of interactions between a human and a
given object. Some interactions correspond to the typical functionality of the object
while others do not.

human-violin interactions by first estimating human poses and detecting objects, and

then clustering the images based on their pairwise distances in terms of human-

object interactions. The clustering result can then be used to update the model of

human pose estimation and object detection, and hence human-violin interaction.

Compared with previous human-object interaction and affordance work, we highlight

the following properties of our approach:

∙ Same object, multiple interactions: Our method takes into account the

fact that humans might interact with the same object in different ways, with

only some typical interactions corresponding to object affordance, as shown in

Fig.7.2. This differs from most previous approaches that assume a single type

of human-object interaction for each object [48, 65].

∙ Weak supervision: Comparing with [49, 129], our method does not require

annotations of human poses and objects on every training image. We only need

a general human pose estimator and a weak object detector trained from a small

subset of training images, which will be updated by our iterative model.
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∙ Unconstrained human poses: Rather than being limited to a small set of

pre-defined poses such as sitting and reaching [46, 41], our method does not

have any constraint on human poses. This allows us to learn a larger variety of

human-object interactions.

∙ Bridging the gap between 2D and 3D: Considering that the same human-

object interaction might lead to very different 2D appearances (Fig.7.3) because

of different camera angles from which the images are taken, we convert 2D

human poses to 3D and then measure the similarity between different images.

This allows us to obtain more semantically meaningful clusters as compared to

previous work [129, 94].

∙ Aiming for details: The functionality we learn refers to the details of human-

object interactions, e.g. the pose of the human, the object, as well as how the

object should be used by humans. This makes our work different from most

previous functionality work which mainly focuses on object detection [65, 94].

The rest of the chapter is organized as follows. Sec.7.2 introduces related work,

then Sec.7.3 elaborates on our approach of weakly supervised functionality discovery.

Sec.7.4 demonstrates experimental results.

7.2 Related work

Functionality (affordance) for object recognition. Recently, functionality has

been used to detect objects [48, 65], where human gestures are recognized and treated

as a cue to identify objects. In [46], 3D information is deployed such that one can

recognize object affordance even when humans are not observed in test images. Such

approaches assume that an object has the same functionality across all images, while

our method attempts to infer object functionality given that humans might interact

with the same object in different ways.

Human context. Context has been widely used in various computer vision

tasks [96, 85]. Specifically, because of the advances in human detection [16, 37] and
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Figure 7.3: The same human pose might lead to very different appearances and 2D
spatial configurations of body parts because of variations in camera angle.

human pose estimation [2, 124], humans are frequently used as cues for other tasks,

such as object detection (details below) and scene reconstruction [50, 17, 41]. Humans

can also serve as context for each other to obtain performance improvement on all

humans [26]. In this paper, we use human poses as context to discover functionalities

of objects.

Human-object interaction. Our method relies on modeling human-object

interactions. Most such approaches first estimate human poses [2, 124] and detect

objects [37], and then model human-object spatial relationships to improve action

recognition performance [19, 49, 129]. There are also approaches that directly train

components of human-object interactions [32]. While those approaches usually require

detailed annotations on training data, a weakly supervised approach is adopted in [94]

to infer the spatial relationship between humans and objects. While our method also

uses weak supervision to learn the spatial relationship between humans and objects,

it takes into account that humans can interact with the same object in different ways,

which correspond to different semantic meanings.

Semantic image clustering. In this paper, we use a clustering approach to

discover different human-object interactions. Unsupervised learning of object classes

from unlabeled data has been explored in object recognition [101]. Recently, unsu-

pervised object clustering [101] has been used to improve the performance of object

classification. In this work, we cluster human action images in 3D, where the cluster-

ing results are more consistent with human perception than those from 2D.
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Figure 7.4: An overview of our approach (“violin” as an example). Given a set of
images of human-violin interactions, our goal is to figure out what are the groups of
interactions between a human and a violin, and output a model for this action.

7.3 Algorithm

7.3.1 Overview

As shown in Fig.7.2, there are many possible ways for a human to interact with

an object. Different interactions, such as playing a violin or using a violin as a

weapon, correspond to different object functionalities. Our goal is to discover those

interactions from weakly supervised data.

An overview of our approach is shown in Fig.7.4. Given a set of images of humans

interacting with a certain object and an initial model of object detection and pose

estimation, we propose an iterative approach to discover different types of human-

object interactions and obtain a model tailored to each interaction. On the one hand,
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given a model of object functionality, we detect the object, estimate the human pose,

convert 2D key points to 3D, and then measure the distance between each pair of

images (Sec.7.3.2). The pairwise distance can then be used to decide which interaction

type does each image belong to (Sec.7.3.3). On the other hand, given the clustering

results, both the object detectors and human pose estimators can be updated so that

the original model can be tailored to specific cases of object functionality (Sec.7.3.4).

7.3.2 Pairwise distance of human-object interactions

To reduce the semantic gap between human poses and 2D image representation

(shown in Fig.7.3), we evaluate the pairwise distance of human-object interactions

in the three-dimensional space. The pipeline we use to compute similarity between

two images is shown in Fig.7.5. First, the 2D locations and orientations of objects and

human body parts are obtained using off-the-shelf object detectors [37] and human

pose estimation [124] approaches. Coordinates of 2D key points are then converted

to 3D [97], and we evaluate pairwise distance between images by aligning 3D perspec-

tives and computing the sum of squared distances between the corresponding body

parts [128] and objects.

Object detection. We use the deformable parts model [37] to detect objects.

To get more detailed information about human-object interactions, our detector also

takes object orientation into consideration, as shown in Fig.7.4. At training time, we

provide rectified bounding boxes with upright objects as positive training examples,

and treat all the other image windows without the object or with non-upright ob-

jects as negative examples. During detection, we rotate the image using 12 different

orientations and apply the trained detector in each case. Non-maximum suppression

is done by combining the detection results on all orientations.

2D pose estimation. We use the flexible mixture-of-parts [124] approach

for 2D human pose estimation. This approach takes the foreshortening effect into

consideration, which facilitates the generation of 3D poses. We consider six body

parts for the upper body of humans: head, torso, left/right upper arms, and left/right

lower arms, as shown in Fig.7.5. For full-body humans, we also consider left/right
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Figure 7.5: The pipeline we use to compute the similarity between two images of
human-object interaction. We first detect objects and estimate human poses in each
image, and then convert the key point coordinates in 3D and measure image similarity.

upper legs and left/right lower legs. To improve performance, we replace the part

filters with strong body-part detectors trained using the deformable parts model [37].

3D reconstruction of human pose. Because of camera angle changes, the

same human pose might lead to very different 2D configurations of human body

parts, as shown in Fig.7.3. Therefore, we use a data-driven approach to reconstruct

3D coordinates of human body parts from the result of 2D pose estimation [97]. By

leveraging a corpus of 3D human body coordinates (e.g. CMU MOCAP), we recover

3D human body coordinates and camera matrices using a sparse linear combination

of atomic poses. For the 3D locations of detected objects, we search the nearest body

parts in 2D space, and average their 3D locations as the locations of objects in 3D
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space.

Pairwise distance computation. It has been shown that pose features perform

substantially better than low-level features in measuring human pose similarities [40].

Following this idea and inspired by [128], we measure the distance of two human

poses by rotating one 3D pose to match the other, and then consider the point-wise

distance of the rotated human poses. Mathematically, letM1 andM2 be the matrices

of the 3D key-point locations of two images x1 and x2. We find a rotation matrix R∗

such that

R∗ = argmin
𝑅

∥M1 −M2R∥2, (7.1)

and the similarity between M1 and M2 can be computed by

𝒟(x1,x2) = ∥M1 −M2R
∗∥2. (7.2)

We further incorporate the object in our similarity measure by adding the object as

one more point in M and assuming that the depth of the object is the same as the

hand that is closest to the object.

7.3.3 Clustering based on pairwise distance

The goal here is to cluster the given images so that images in the same cluster corre-

spond to similar human-object interactions, as shown in Fig.7.4. However, the task is

not straightforward, since we only have the pairwise distance between images, rather

than having a feature representation for each image.

We use an approach similar to spectral clustering [82] to address this issue. First,

we use kernel principal component analysis (kernel PCA) [104] to project each im-

age x into a principal component space while keeping the pairwise image similarity

computed from Sec.7.3.2. Denote the 𝑁 ×𝑁 similarity matrix as K, where

K𝑖𝑗 =
1

𝒟(x𝑖,x𝑗) + 𝜖
, 𝜖 > 0 (7.3)
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is the similarity between x𝑖 and x𝑗. Assuming an unknown feature representation for

x𝑖 as Φ(x𝑖), we have the covariance matrix

C =
1

𝑁

𝑁∑
𝑖=1

Φ(x𝑖)Φ(x𝑖)
𝑇 . (7.4)

Performing PCA, we have 𝜆𝑘v𝑘 = Cv𝑘, where 𝜆𝑘 is the 𝑘-th largest eigenvalue of C.

There also exist coefficients 𝛼𝑘,1, ⋅ ⋅ ⋅ , 𝛼𝑘,𝑁 such that

v𝑘 =
𝑁∑
𝑖=1

𝛼𝑘,𝑖Φ(x𝑖). (7.5)

Since K𝑖𝑗 = Φ(x𝑖)
𝑇Φ(x𝑗), the projection of Φ(x𝑙) on v𝑘 can be written as

𝑧𝑙,𝑘 = v𝑇𝑘Φ(x𝑙) =
𝑁∑
𝑖=1

𝛼𝑘,𝑖K𝑖𝑙. (7.6)

According to [104], 𝜶𝑘 = [𝛼𝑘,1, ⋅ ⋅ ⋅ , 𝛼𝑘,𝑁 ]
𝑇 can be computed by solving

𝑁𝜆𝑘𝜶𝑘 = K𝜶𝑘, (7.7)

s.t. 𝜶𝑇
𝑘𝜶𝑘 = 1/𝜆𝑘.

Given the projected vector z𝑖 for each image x𝑖, we perform k-means clustering on

all 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁 to form clusters of human-object interactions. Our approach chooses

an appropriate number of clusters for every step of the process by using the standard

elbow method - a cluster number is chosen such that adding another cluster does not

give much decrement of the k-means objective. Since the above computation requires

K to be positive semidefinite, we use a matrix approximation to replace K with K̂

such that

K̂ = argmin ∥K− K̂∥2, (7.8)

where K̂ is positive semidefinite. We also assumed Φ(x𝑖) to be centered in the above
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derivation. Please refer to [104] for details of how to drop this assumption.

7.3.4 Updating the object functionality model

In each iteration, we update the model of object detection and pose estimation for

each cluster of human-object interaction. In each cluster, we re-train the models by

using object detection and pose estimation results from this iteration as “ground-

truth”. Although there will be mistakes in these detection and estimation results,

putting all the images together can still provide us more accurate priors that are

tailored to each cluster.

In the step of object detection and pose estimation in the next iteration, we apply

all the models from different clusters, and choose the one with the largest score of

object detection and pose estimation. The detectors and estimators from different

clusters are calibrated by fitting a probability distribution to a held-out set of images,

as in [93].

7.4 Experiments

7.4.1 Dataset and experiment setup

For performance evaluation, we need a dataset that contains different interactions

between humans and each object. The People Playing Musical Instrument (PPMI)

dataset [126] contains images of people interacting with twelve different musical in-

struments: bassoon, cello, clarinet, erhu, flute, French horn, guitar, harp, recorder,

saxophone, trumpet, and violin. For each instrument, there are images of people

playing the instrument (PPMI+) as well as images of people holding the instrument

with different pose, but not performing the playing action (PPMI-). We use the nor-

malized training images to train our models, where there are 100 PPMI+ images and

100 PPMI- images for each musical instrument.

For each instrument, our goal is to cluster the images based on different types

of human-object interactions, and obtain a model of object detection and pose esti-

mation for each cluster. Ideally, images of humans playing the instruments should
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Instrument
Object detection Pose estimation

Baseline [37] Our method Baseline [124] Our method

Bassoon 16.4% 21.1% 43.1% 45.5%
Cello 41.9% 44.8% 48.1% 57.4%

Clarinet 11.1% 15.8% 52.0% 55.5%
Erhu 28.2% 33.1% 55.8% 57.8%
Flute 20.3% 23.1% 57.2% 59.7%

French horn 43.2% 43.7% 48.9% 55.1%
Guitar 45.5% 48.0% 40.8% 45.5%
Harp 30.6% 34.6% 41.0% 44.5%

Recorder 13.0% 16.9% 43.2% 51.5%
Saxophone 36.0% 41.9% 54.8% 60.7%
Trumpet 22.1% 24.7% 43.1% 48.6%
Violin 33.2% 39.5% 54.3% 63.5%

Overall 28.5% 32.3% 48.5% 53.8%

Table 7.1: Results of object detection and human pose estimation. “Baseline” in-
dicates the results obtained by the original detectors [37] and the general pose esti-
mator [124]. “Ours” indicates the results from the final models obtained from our
iterative approach.

be grouped in the same cluster. To begin with, we randomly select 10 images from

each instrument and annotate the key point locations of human body parts as well as

object bounding boxes, and train a detector [37] for each musical instrument and a

general human pose estimator [124]. The object detectors and human pose estimator

will be updated during our model learning process.

7.4.2 Object detection and pose estimation

Table 7.1 shows the results of object detection and pose estimation. For each musical

instrument, we apply the “final” object detectors and pose estimators obtained from

our method to the test PPMI images. For each image, we consider the models that

correspond to the largest confidence score. We compare our method with the initial

baseline models that are trained for all musical instruments. An object detection

result is considered to be correct if the intersection of the result and the ground truth
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Figure 7.6: Average number of images per cluster on all musical instruments. The
clusters are ordered by the number of images they contain.

divided by their union is larger than 0.5, as in [29]. For human pose estimation, a

body part is considered correctly localized if the end points of its segment lie within

50% of the ground-truth segment length from their true positions [40].

The results show that our method outperforms the baselines by a large margin.

This demonstrates the effectiveness of our approach that iteratively updates pose

estimators and object detectors. Furthermore, our pose estimation result (53.8%)

even performs slightly better than that in [129] (52.0%), where the models are trained

with all PPMI training images annotated. The method in [129] (37.0%) obtains better

object detection result than ours (32.3%), but was solving a simpler problem where

object orientations were ignored.

7.4.3 Discovering object functionality

The PPMI dataset contains ground truths for which images contain people playing the

instrument (PPMI+) and which images contain people only holding the instrument

but not playing (PPMI-). This provides us the opportunity to evaluate the quality of

clustering results. For each instrument, ideally, there exists a big cluster of humans

playing the instrument, and many other clusters of humans holding the instruments

but not playing. To get such clusters, we make use of the prior knowledge that there
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Figure 7.7: Comparison of our functionality discovery method with the approaches
that based on low-level features or 2D key point locations.

are 100 PPMI+ images for each instrument. We choose the number of clusters such

that the number of images in the largest cluster is as close to 100 as possible. Fig.7.6

visualizes the average distribution of number of images in each cluster on all musical

instruments.

We compare our clustering approach with two baselines. One is based on low-level

image descriptors, where we represent an image with HOG [16] descriptors and then

use PCA to reduce the feature dimension to 35, and then perform image clustering

in the 35-dimensional space. In the other baseline, we cluster images based on 2D

positions of key-points of objects and human poses without converting them to 3D.

For these two methods, we also choose the number of clusters on each instrument

such that the number of images in the largest cluster is as close to 100 as possible.

For each instrument, we assume the largest cluster contains images of people

playing the instrument, while all other clusters contain images of people holding

the instrument but not playing it. A comparison of the accuracy of the different

methods is shown in Fig.7.7. We observe that using 2D key points performs on

par with low-level HOG features. The reason might be due to the errors in 2D

pose estimation and the lack of accurate pose matching because of camera angle

changes. On almost all the instruments, our method based on 3D key point locations
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Figure 7.8: Examples of image clusters obtained by our approach. For each instru-
ment, images with the same border color belong to the same cluster. Solid lines in-
dicate images of people playing the instrument (PPMI+) in the ground truth, while
dashed lines indicate images of people holding the instrument but not playing it
(PPMI-).

significantly outperforms both low-level features and 2D key point locations. The only

exception is on French horn, where all three approaches have similar performance.

This is due to the large size of French horns, and the fact that the human poses as

well as human-object spatial relationship are very similar in images of people playing

French horn and people holding French horn but not playing. Finally, the performance

can be further improved by combining 3D key points and low-level HOG features, as

shown in Fig.7.7.
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Figure 7.9: (a) Heatmaps of the locations of human hands with respect to musical
instruments. (b) Heatmaps of the locations of objects with respect to the average
human pose. For each instrument, “play” corresponds to the largest cluster.
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Figure 7.10: Humans tend to touch similar locations of some musical instruments,
even when they are not playing it.

7.4.4 Affordance visualization

Examples of image clusters obtained by our approach are shown in Fig.7.8. On the

instruments such as flute and trumpet, we are able to separate PPMI+ images from

the others with high accuracy, because of the unique human poses and human-object

spatial relationships on PPMI+ images. This partly explains why we can obtain high

accuracy on those instruments in Fig.7.7. The poor clustering performance on French

horn can also be explained from this figure, where the spatial relationship between



7.4. EXPERIMENTS 129

Instrument DPM Ours Instrument DPM Ours

Bassoon 47% 38% Cello 39% 49%
Clarinet 32% 38% Erhu 53% 23%
Flute 41% 60% French horn 78% 37%
Guitar 46% 26% Harp 51% 53%
Recorder 32% 42% Saxophone 53% 29%
Trumpet 59% 53% Violin 34% 48%

Table 7.2: Comparison of using appearance and using human pose to predict object
categories. For each instrument, bold fonts indicate better results. Chance perfor-
mance is 8%.

humans and French horns are very similar in images of all types of interactions.

Fig.7.9 visualizes the heatmap of the locations of human hands with respect to the

musical instruments, as well as the locations of objects with respect to the average

human pose in different interactions. On most instruments, we observe more con-

sistent human hand locations on the clusters of people playing the instrument than

that on the other clusters. However, we still observe some points that are frequently

touched by the humans even for the cases of “holding but not playing” for some in-

struments, e.g. flute and guitar as shown in Fig.7.10. This shows some general rules

when humans interact with a specific type of object, no matter what the functionality

of the interaction is. Interestingly, people usually touch different parts of French horn

when they are playing or not playing it, as shown in Fig.7.8.

7.4.5 Predicting objects based on human pose

Our method learns the interaction between humans and objects. Given a human pose,

we would like to know whether we can infer what object the human is manipulating.

On the PPMI test images, we apply all the human pose models to each image, and

select the human that corresponds to the largest score. We say that the object

involved in the selected model is manipulated by this human. We only consider

PPMI+ test images in this experiment. We compare our approach with a baseline

that runs deformable parts models [37] of all instruments on each image, and output
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Figure 7.11: Humans might manipulate different objects with very similar poses.

the instrument that corresponds to the largest calibrated score. The results are shown

in Table 7.2.

Table 7.2 shows that on the musical instruments where the human pose is different

from the others, such as flute and violin, our method has good prediction performance.

On musical instruments which are played with a similar human pose, such as bassoon,

clarinet and saxophone (shown in Fig.7.11), the appearance-based models perform

better. This confirms that both object appearance and functionality are important

in perceiving objects and provide complementary information [88].

7.5 Summary

In this chapter, we propose a weakly supervised approach to learn object functionality,

e.g. how humans interact with objects. We consider multiple possible interactions

between humans and a certain object, and use an approach that iteratively clusters

images based on object functionality and updates models of object detection and pose

estimation. On a dataset of people interacting with musical instruments, we show

that our model is able to effectively infer object functionalities.



Chapter 8

Conclusions and Future Directions

8.1 Conclusions

This dissertation deals with action understanding in still images. We have contributed

to human action understanding in two major aspects. One is to classify human

actions, and the other is to understand human behaviors deeply.

In Chapter 2, 3, and 4, we treated action recognition as an image classification

problem. We proposed a representation that captures the structured information of

an image by encoding a number of discriminative visual features and their spatial

configurations (Chapter 2). For the classification stage, we proposed to combine

randomization and discrimination to make a good trade off between classifier bias

and variance (Chapter 3). In addition to low level image descriptors, we also used

higher level image representations such as action attributes and parts, which further

improved the action classification performance (Chapter 4).

The higher level concepts, such as human poses and objects, can not only be used

for achieving higher action classification accuracy, but also be directly modeled in

the context of human actions. In Chapter 5 and 6, we proposed a mutual context

model, which allows human poses and objects to serve as the context to each other and

mutually boost each other’s performance. In Chapter 5, we considered the interactions

between one human and one object. In Chapter 6, we extended the model so that

it can deal with the interaction between one human and any number of objects. We

131



132 CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS

have also shown in Chapter 6 that our method can be used for action retrieval.

Considering the close relationship between humans and objects in human actions,

we proposed to learn object functionality by observing human actions in still images.

Given a set of images of humans manipulating the same object such as violin, we used

a weakly supervised approach to discover the most typical human-object interaction

such as playing violin, which corresponds to the functionality of violin.

To summary, this dissertation has studied the problem of understanding human

actions in still images from a various of aspects. The research papers covered in this

dissertation are among the first few publications that study this problem in the field

of computer vision, and have inspired a number of work in the past few years. While

there is still a long way to go towards understanding human actions in still images,

our work also shed lights on many other research directions. We briefly discuss three

of them in 8.2.

8.2 Future directions

8.2.1 Fine-grained recognition

As we have discussed in Chapter 3, action recognition can be regarded as a fine-

grained recognition problem, since all the actions share the same image part – human.

Therefore algorithms for action recognition can also be used for fine-grained image

classification, and vice versa. In [138], a poselet [8] based approach has been applied

to the task of classifying different bird species. We also proposed a codebook free and

annotation free method [125] that can get rid of the key point annotations. How to

further bridge the gap between action classification and other fine-grained recognition

tasks is an interesting research direction.

8.2.2 Event classification in videos

Complex events, such as wedding ceremony and making a sandwich, are better de-

scribed by video sequences. Since a video is composed of a number of frames, it is

expected that event recognition in videos can benefit from recognizing human actions
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in still images. In [87], a bags-of-features approach that treats each single frame sep-

arately has been applied to video event classification. Inspired by the performance

improvement we obtained in PASCAL VOC 2012 compared with VOC 2011 (Chap-

ter 3 and 4), in [111], we have shown that effectively combining multiple features

can largely improve event recognition performance. However, video events are more

complex than single frames, and therefore much more work needs to be done towards

understanding the events in videos.

8.2.3 Social role understanding

In Chapter 5, 6, and 7, we have studied the interaction between humans and objects

in still images. Another important interaction would be human-human interaction

that happens frequently in both still images and video events. In [99], we proposed

to recognize social roles from human event videos in a weakly supervised setting.

This work enables us to automatically understand the relations between people, and

discover the different roles associated with an event. Future research directions of

this topic could be to perform joint event classification and social role understanding,

and allow social roles to help improving the performance of human tracking.
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