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Abstract

Slanted surfaces pose a problem for correspondence algo-
rithms utilizing search because of the greatly increased
number of possibilities, when compared with fronto-
parallel surfaces. In this paper we propose an algorithm
to compute correspondence between stereo images or be-
tween frames of a motionsequence by minimizingan energy
functional that accounts for slanted surfaces. The energy
is minimized in a greedy strategy that alternates between
segmenting the image into a number of non-overlapping
regions (using the multiway-cut algorithm of Boykov, Vek-
sler, and Zabih) and finding the affine parameters describ-
ing the displacement function of each region. A follow-up
step enables the algorithm to escape local minima due to
oversegmentation. Experiments on real images show the
algorithm’s ability to find an accurate segmentation and
displacement map, as well as discontinuities and creases,
from a wide variety of stereo and motion imagery.
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1 Introduction

The goal of correspondence is to determine which points
in one image correspond to which points in another image
taken of the same scene, i.e., to determine which image
points arise from the same physical point in the world. The
images may be taken by different cameras at the same time
(stereo) or by the same camera at different times (motion).

The problem of correspondence is often solved by min-
imizing an energy functional that matches similar-looking
pixels (in terms of intensity or color, for example), while pe-
nalizing the discontinuities in order to preserve piecewise-
continuity. The result of such a search is the best mapping
from pixels to displacements, according to the cost func-
tional. In stereo the displacement is disparity (a scalar
thanks to the epipolar constraint [10]), while in motion it is
a two-element vector.

By searching over quantized disparities or motions, as
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Figure 1: LEFT: An image from a stereo pair. RIGHT: The
disparitymap, with region boundaries overlayed, computed
by the algorithm of [6], which searches over quantized
disparities. The scene geometry is poorly captured by this
output.

is commonly done, what is preserved is actually piecewise-
constancy rather than piecewise-continuity, thereby causing
the scene geometry to be poorly captured when it contains
slanted surfaces. In Figure 1, for example, the image is im-
properly segmented: each slanted surface is split into a se-
ries of constant-disparity regions and some regions contain
more than one surface. The result, therefore, does not accu-
rately represent the shape or orientation of the surfaces, nor
are the discontinuities and creases easily recoverable from
such an output. That is, differentiating and thresholding
this disparity map will generate many false discontinuities
because of the large jumps in disparity that occur within
surfaces, and the vertical crease along the interior edge of
the Cheerios box cannot be recovered because it lies in the
middle of a region.

To handle slanted surfaces, we propose to minimize an
energy functional that allows not just constant displace-
ments but rather affine warpings. Our approach segments
the image into a number of non-overlapping regions, each
corresponding to a different surface in the world, and finds
the affine parameters of the displacement function for each
region. This is accomplished by alternating between two
steps: (1) segmenting the image, that is, assigning a label
to each pixel indicating to which region it belongs, using
the multiway-cut algorithm of Boykov, Veksler, and Zabih



[6], and (2) finding the affine parameters of the displace-
ment function for each region, using the method of Shi and
Tomasi [14]. In this way, the algorithm greedily minimizes
the energy functional until it converges. If the result is over-
segmented, then an additional step merges adjacent regions
to further reduce the energy.

After reviewing previous work and presenting our for-
mulation in the next two sections, the two main steps of the
algorithm are presented in Sections 4 and 5, respectively,
followed in Section 6 by a solution to the oversegmentation
problem. In the final section we present experimental re-
sults showing the algorithm’s ability to find clean, accurate
displacement maps and segmentations (from which discon-
tinuities and creases can be inferred) from pairs of stereo
and motion images containing severely slanted surfaces.

2 Previous Work

For years, many researchers have computed stereo corre-
spondence by searching over all possible disparities along
a scanline, which can be done efficiently using dynamic
programming [2, 3, 8, 11]. These techniques, however, do
not effectively incorporate information between scanlines.

Recently, stereo vision has experienced a breakthrough
as maximum-flow-based techniques have been shown capa-
ble of minimizing energy functionals over the whole image,
not just one scanline. Roy and Cox [12] and Ishikawa and
Geiger [9] presented formulations that, with the right edge
weights, can find the global minimum of such a functional.

Unfortunately their approach cannot preserve sharp dis-
continuities, which led Boykov, Veksler, and Zabih [6] to
develop another maximum-flow-based algorithm that finds
a good local minimum of a more general class of cost func-
tionals which preserve sharp discontinuities. Additionally,
their algorithm is able to minimize vector-valued functions,
making it applicable to situations such as motion, although
in [6] it was applied only to stereo. Vector-valued functions
present a challenge, however, because of the additional
computational complexity. In motion, for example, there
are approximately O(�2) possible displacements, com-
pared toO(�) in stereo, where� is the maximum displace-
ment in one direction. With slanted surfaces the number of
possibilities increases dramatically to O(n�2�2), where
there are n pixels in the image and � different possible ori-
entations in one direction. In this paper we extend the work
of [6] to handle vector-valued functions with large search
spaces.

Our approach is similar to expectation-maximization
(EM) algorithms [1, 15, 16] which iteratively segment an
image into regions of affine motion. The multiway-cut al-
gorithm performs the work of the E-step, while the affine
parameters are fit in a manner similar to the M-step. Be-

cause the EM algorithms assign the labels probabilistically,
however, they require suboptimal techniques for enforcing
spatial consistency.

Another graph-based technique for performing image
segmentation is the normalized cut algorithm [13]. In the
context of stereo or motion, however, this method groups
together pixels with similar profiles, where the profiles are
influenced by the dissimilarities of pixels at incorrect dis-
placements. In contrast, the multiway-cut algorithm ig-
nores these misleading values.

3 Correspondence as segmentation

We represent correspondence between two images as a la-
beling f : x ! l for each pixel x = [x y ]T , along with
a displacement function hl(x) for each label l. Pixels with
the same label belong to the same region, so f represents a
segmentation. The corresponding pixel in the other image,
then, is given by hf(x)(x).

These displacement functions are constant if all the sur-
faces in the world can be assumed fronto-parallel, that is,
parallel to the image plane. In [6], for example, hl(x) = l.
With slanted surfaces, however, hl is not constant with re-
spect to the coordinates x of the pixel. In this paper we
will concentrate on the affine model hl(x) = Ax + d, as
explained in more detail in Section 5; this framework could
be extended to more sophisticated models as well.

Our goal is to find a correspondence that matches pixels
of similar intensitywhile minimizing the number of discon-
tinuities. We accomplish this by minimizing the following
two-dimensional energy functional:


(f) = ED + ES; (1)

where ED is a data-dependent energy term containing the
costs of assigning the labels to the pixels:

ED =
X
x

g(x; f(x))

and ES enforces smoothness by penalizing the discontinu-
ities:

ES =
X
(x;x0)

�(x; x0)[f(x) 6= f(x0)]:

The first summation is over all pixels x in the image, while
the second summation is over every pair of neighboring
pixels x and x0 (using 4-neighborhood connectedness, for
example). The assignment cost is the dissimilarity in im-
age intensity: g(x; f(x)) = jI(x) � J(hf(x)(x))j, where I
and J are the two intensity images. We set �(x; x0) to be
proportional to the inverse of the magnitude of the gradient
of intensity at that location, thresholded, in order to align
the discontinuities with the intensity edges [4, 6, 7].
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Figure 2: Minimizing Eq. (1) is equivalent to finding the
minimum cost mutiway cut of this graph. Every label is
connected to every pixel, although some connections have
been omitted from the drawing to avoid clutter.

To minimize the energy functional, therefore, we alter-
nate between segmenting the image into disjoint regions
by assigning a label to every pixel and finding the affine
parameters of the displacement function for every region.
These two steps are discussed in the next two sections,
respectively.

4 Assigning labels to pixels

Once the displacement functions are known, the segmen-
tation, or labeling, problem is equivalent to the multiway
cut problem on a certain graph [6]. This graph, shown in
Figure 2, contains a vertex for every pixel in the image and
a vertex for every possible label. Each pixel is connected
to its four neighbors by four edges having capacities equal
to the discontinuity penalty between the two appropriate
pixels, and each label is connected to each pixel with an
edge having a capacity equal to the cost of assigning the
label to that pixel. Minimizing Eq. (1) then is the same
as finding the minimum cost multiway cut of this graph,
where a multiway cut is a set of edges such that the labels
are not connected with each other in the induced graph (i.e.,
the graph with these edges removed). Once the multiway
cut is found, each pixel will be connected to exactly one
label.

To find an approximate solution to this problem, we use
the algorithm of Boykov, Veksler, and Zabih [6], shown
at the top of the page. Unfortunately, the minimum cost
multiway cut problem is NP-complete [6], and, in fact,
minimizing Eq. (1) has been shown to be NP-hard as well

MULTIWAY-CUT ALGORITHM

1. Start with an initial labeling.

2. Pick two labels. Set one label-vertex as the source s
and the other as the sink t, and find the minimum s� t
cut through the graph containing only those pixels that
are already labeled either of the two labels, and only
those edges connecting these pixels to each other or
to one of the two labels. This minimum cut will then
separate the two labels in this temporary graph, thus
reassigning the pixels under consideration.

3. Repeat Step 2 for every pair of labels.

4. Repeat Steps 2 and 3 until the energy in the system
does not change.

[5]. As a result, the algorithm is not guaranteed to find
the global minimum. However, it does find a good local
minimum, in the sense that the final energy cannot be low-
ered by exchanging any subset of pixels having a common
label with any other subset of pixels having a common la-
bel. Moreover, the algorithm is extremely insensitive to the
initial labeling, falling into local minima only when there
are large untextured surfaces in the scene (in which case
there is not enough local information to guide properly the
search).

While there is no guarantee of the number of iterations1

needed for convergence, in practice we have found two to
be necessary initially, and only one after that (See Figure 7).

After the multiway-cut algorithm has converged, the
connected components of the output are found, in order to
separate regions which may be assigned the same label but
are not physically connected. Then we find the displace-
ment function for each region, as explained below.

5 Finding displacement functions

The affine model describes exactly the motion of a plane
in the world viewed under orthographic projection. Un-
der perspective projection it is usually adequate when only
small motions are involved. Using this model, a point
x = [x y ]T in image I moves to Ax + d in image J ,
where

A =

�
dxx + 1 dxy
dyx dyy + 1

�
and d =

�
dx
dy

�
:

The motion of each region, then, is described by a six-
element vector z = [ dxx dxy dx dyx dyy dy ]

T .

1By iteration, we mean Steps 2-3, collectively.



To find the motion of a region, we minimize the dissim-
ilarity

� =

Z Z
W

[J(Ax + d) � I(x)]2 dx; (2)

where W is the set of pixels in the region. Following [14],
we differentiate Eq. (2) with respect to the unknown entries
in A and d and set the result to zero. The resulting system
is then linearized about the current estimate by truncating
the Taylor series expansion of J(Ax + d), yielding the
following linear system:

T z = a; (3)

where

T =

Z Z
W

ggT dx

a =

Z Z
W

[I(x)� J(x)]gdx:

The motion of the region can be found by using Eq. (3)
iteratively in a Newton-Raphson style minimization.

The elements of the vector g are image coordinates mul-
tiplied by derivatives of image intensity: g = [ u v ]T ,
where u = (@J=@x)p, v = (@J=@y)p, and p =
[x y 1 ]. These equations are identical to those in [14]
but with simplified notation.

In the case of rectified stereo images, dyx = dyy = dy =
0, so the disparities in a region are described by a vector
with only three elements: z = [ dxx dxy dx ], which is
found in the same manner as before but with g = uT .

Either way, the minimization continues until either the
parameters in z do not change significantly or the dissimi-
larity in the region increases.

6 Handling oversegmentation

When these two alternating steps settle on an answer for the
correspondence, the result is occasionally oversegmented.
An extreme example is presented in Figure 3, in which the
ground plane is covered by five different regions.

Solving this problem is rather straightforward. Every
pair of adjacent regions is considered, and affine parameters
are fit to the union of the two (See Figure 4). If the new
internal energy is less than the sum of the two individual
internal energies and the cost of the discontinuity, then the
regions are merged, thereby lowering the overall energy of
the system. This process is repeated until no two regions
can be merged to decrease the energy.

One could imagine situations in which the image is un-
dersegmented. If such were the case, one could generate
a large number of candidate affine parameters (by dividing

Figure 3: LEFT: Segmentation of the Cheerios image after
the convergence of the multiway cut and affine-parameter
fitting steps. RIGHT: Two regions on the ground plane have
been merged, with more to follow.
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Figure 4: Oversegmentation: Two regions are merged if
affine parameters for the union reduce the energy.

the region and fitting parameters to the subregions, for ex-
ample) and then run the multiway cut algorithm to reassign
some of the pixels to some of the new labels. Generating
such parameters will not be easy, however, and we have not
encountered any undersegmentation in our images (accord-
ing to the cost functional).

7 Experimental results

We present the results of the algorithm on three pairs of
stereo images and two pairs of frames from motion se-
quences, as shown in Figure 6. These results demonstrate
the algorithm’s ability to find accurate dispacements and
segmentations for a wide variety of imagery.2 Notice in
particular the precision with which the object contours are
recovered in many cases, such as the outline of the basket-
ball player in the last row.

In the first row, the results are nearly perfect. Each of
the surfaces is properly segmented, with the only mistake
being that of splitting the books, which are to the left of the
Cheerios box, in two. Comparing these results with those
of Figure 1, we see that the scene geometry is now accu-
rately recovered. To help visualize the disparitiescomputed
by the algorithm, we have provided a three-dimensional re-
construction of the scene in Figure 5. From this, one can
tell that the orientations of the surfaces are recovered ac-
curately. Notice, for example, that the two faces of the
Cheerios box meet along a line, the boxes meet the ground

2All the results were generated using the same set of parameters, except
for the threshold used in the right column of the figure.



Figure 5: TOP: Stereo images, displayed for cross-eyed
viewing. MIDDLE and BOTTOM: 3D reconstruction, as
texture-mapped surfaces, from novel viewpoints.

plane at right angles, and the two regions corresponding to
the books are, although not merged, nearly coplanar.

In the second row, whose images are from the well-
known JISCT data set, the individual bushes, automobile,
and two buildings are correctly segmented. Notice that
the main building is correctly recovered as a single, slanted
plane, not the usual pair of fronto-parallel planes. Although
we may wish to have the parking meters segmented from
the bushes, there is actually very little evidence in terms of
disparity for such a conclusion; it takes an extremely small
discontinuity penalty (which of course introduce many false
discontinuities— see the results in [6]) to segment even the
closer one.

The middle row shows the limitations of a simple cost
functional like Eq. (1). Because there is little texture on
the Clorox box and no intensity edges along most of the
vertical crease, the lowest cost solution incorrectly follows
the logo on the front of the box instead of the actual crease.
Our algorithm does successfully minimize the functional,
but the functional does not represent the world in this case.
Notice, however, that much of the scene is accurately recov-
ered, such as the creases between the floor and the boxes
and many of the depth discontinuities around the Clorox

box.

The fourth image contains complex motion due to the
handheld camera, a person walking in the foreground, and
a bicyclist peddling in the background. Nevertheless, all
three planes defining the world (the ground plane and the
two walls of the building) are correctly segmented from
each other. The extra region under the arch appears to be
caused partly by the motion of the bicyclist. Because the
camera translation is rather small, there is little information
to distinguish the various surfaces in the static world, which
explains why the creases are in slightly incorrect locations
and why the bottom of the statue is grouped with the ground
plane. Notice, however, the detailed contour of the torso of
the statue, as well as the outline of the pedestrian, whose
lower leg is moving in a different direction from the rest of
his body.

In the last row, the basketball player is accurately seg-
mented from the crowd (even his elbow is well-preserved),
and the ball is nearly completely segmented from the player.
Although it is not visible in the figure, the motion of the
crowd varies across the image, so that an algorithm search-
ing over quantized motions would split it in two.

We have already seen how the final step to handle over-
segmentation is key to recovering the ground plane in the
Cheerios image. It also played a minor role in two other
images by merging four pairs of regions to form the player’s
left arm and basketball, his body and right arm, and the two
regions of near and far bushes (with parking meters).

After careful investigation we have concluded that none
of the images is undersegmented, according to the cost
functional. Specifically, we tried to find separate affine
parameters for the parking meter and the bush behind it, but
the resulting energy was higher than the result displayed in
Figure 6. Similarly, if either arm of the basketball player is
separated from the rest of its region, the energy increases.

A typical run of the algorithm is shown in Figure 7,
where the energy of the system is plotted versus time.
From these data we notice that the most significant iter-
ation is the first application of the multiway-cut algorithm
using quantized displacements, which reduces the energy
by an amazing 80% in just one step. (Figure 1 shows the
output after two iterations.) The energy is then steadily and
quickly reduced by alternating between the multiway-cut
segmentation and the fitting of affine parameters. Notice
that many of the multiway-cut iterations shown here are
not necessary: only the first two initially and the first one
after every affine fitting. Thus, these same results could
be achieved in just 11 iterations. The step to handle over-
segmentation further reduces the energy by another 10%
on this image, though its impact on other images was less
noticeable.
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Figure 6: LEFT: An image from a stereo or motion pair. MIDDLE: The displacement map (either disparity or motion vector
magnitude), with segmentation overlaid. RIGHT: The image with segmentation overlaid. Lines are thickened where the
change in displacement across the boundary surpasses a threshold, thus distinguishingdepth or motion discontinuities (thick
lines) from creases (thin lines). These images are also available at http://vision.stanford.edu/˜birch.
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Figure 7: The algorithm greedily decreases the energy by
alternating between the two steps of Sections 4 and 5, fol-
lowed by a single run of the oversegmentation step. These
data are from the Cheerios image.

8 Conclusion

Stereo and motion algorithms that search over all possi-
ble displacements to minimize an energy functional have
traditionally assumed that all the surfaces in the world are
parallel to the image plane. We have presented an algo-
rithm to solve the correspondence problem in the presence
of slanted surfaces by alternately segmenting an image into
non-overlapping regions and finding the affine parameters
of the displacement function of each region. An additional
step enables the algorithm to recover when this alternation
settles onto a suboptimal oversegmentation. This iterative,
greedy algorithm is able to find clean, accurate displace-
ment maps for a wide range of images from stereo and
motion.

The main limitation of this work is the restrictiveness
of the energy functional used. For example, the algorithm
may become stuck in local minima if there are extremely
untextured surfaces in the world, in which case it will be
difficult to automatically determine their affine parameters.
Moreover, it is easily distracted when intensityedges do not
accompany the region boundaries, and it prefers to draw
region boundaries along straight lines, thus ensuring a bias
against tracing the contours of curved objects. Future work
should be aimed at incorporating occlusions, the curvature
of boundaries, or the shape of regions.

Acknowledgments

Thanks to Scott Cohen for his suggestions regarding the
manuscript and to A. V. Goldberg for the maximum-flow
code.

References
[1] S. Ayer and H. S. Sawhney. Layered representation of mo-

tion video using robust maximum-likelihood estimation of
mixture models and mdl encoding. In Proc. of the 5th In-
ternational Conference on Computer Vision (ICCV), pages
777–784, 1995.

[2] H. H. Baker and T. O. Binford.Depth from edge and intensity
based stereo. In Proceedings of the 7th International Joint
Conference on Artificial Intelligence (IJCAI), pages 631–
636, 1981.

[3] P. N. Belhumeur. A binocular stereo algorithm for recon-
structing sloping, creased, and broken surfaces in the pres-
ence of half-occlusion. In ICCV, pages 431–438, 1993.

[4] S. Birchfield and C. Tomasi. Depth discontinuities by pixel-
to-pixel stereo. In ICCV, pages 1073–1080, 1998.

[5] Y. Boykov, O. Veksler, and R. Zabih. Energy minimization
with discontinuities. Submitted for publication to Interna-
tional Journal of Computer Vision, 1998.

[6] Y. Boykov, O. Veksler, and R. Zabih. Markov random fields
with efficient approximations. In Proc. of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 648–655, 1998.

[7] P. Fua. Combining stereo and monocular information to
compute dense depth maps that preserve depth discontinu-
ities. In IJCAI, pages 1292–1298, 1991.

[8] D. Geiger, B. Ladendorf, and A. Yuille. Occlusions and
binocular stereo. International Journal of Computer Vision,
14(3):211–226, 1995.

[9] H. Ishikawa and D. Geiger. Segmentation by grouping junc-
tions. In CVPR, pages 125–131, 1998.

[10] V. S. Nalwa. A Guided Tour of Computer Vision. Reading,
MA: Addison-Wesley, 1993.

[11] Y. Ohta and T. Kanade. Stereo by intra- and inter-scanline
search using dynamic programming. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 7(2):139–154,
1985.

[12] S. Roy and I. J. Cox. A maximum-flow formulation of the
n-camera stereo correspondence problem. In ICCV, pages
492–499, 1998.

[13] J. Shi and J. Malik. Motion segmentation and tracking using
normalized cuts. In ICCV, pages 1154–1160, 1998.

[14] J. Shi and C. Tomasi. Good features to track. In CVPR,
pages 593–600, 1994.

[15] J. Y. A. Wang and E. H. Adelson. Representing moving im-
ages with layers. IEEE Transactions on Image Processing,
3(5):625–638, 1994.

[16] Y. Weiss and E. H. Adelson. A unified mixture framework
for motion segmentation: Incorporating spatial coherence
and estimating the number of models. In CVPR, pages 321–
326, 1996.


