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Video-Based Deep Learning for Automated
Assessment of Left Ventricular Ejection

Fraction in Pediatric Patients
Charitha D. Reddy, MD, Leo Lopez, MD, David Ouyang, MD, James Y. Zou, PhD, and Bryan He, BS, Palo Alto,
Los Angeles, and Stanford, California

Background: Significant interobserver and interstudy variability occurs for left ventricular (LV) functional
indices despite standardization of measurement techniques. Artificial intelligence models trained on adult
echocardiograms are not likely to be applicable to a pediatric population. We present EchoNet-Peds, a
video-based deep learning algorithm, which matches human expert performance of LV segmentation and
ejection fraction (EF).
Methods: A large pediatric data set of 4,467 echocardiograms was used to develop EchoNet-Peds. EchoNet-
Peds was trained on 80%of the data for segmentation of the left ventricle and estimation of LVEF. The remain-
ing 20% was used to fine-tune and validate the algorithm.
Results: In both apical 4-chamber and parasternal short-axis views, EchoNet-Peds segments the left ventricle
with a Dice similarity coefficient of 0.89. EchoNet-Peds estimates EF with a mean absolute error of 3.66% and
can routinely identify pediatric patients with systolic dysfunction (area under the curve of 0.95). EchoNet-Peds
was trained on pediatric echocardiograms and performed significantly better to estimate EF (P < .001) than an
adult model applied to the same data.
Conclusions: Accurate, rapid automation of EF assessment and recognition of systolic dysfunction in a
pediatric population are feasible using EchoNet-Peds with the potential for far-reaching clinical impact.
In addition, the first large pediatric data set of annotated echocardiograms is now publicly available for
efforts to develop pediatric-specific artificial intelligence algorithms. (J Am Soc Echocardiogr
2023;36:482-9.)

Keywords: Pediatric cardiology, Echocardiography, Deep learning, Left ventricular function, Artificial
intelligence
Evaluation of left ventricular (LV) size and systolic function is crucial in
the diagnosis and management of children with congenital and ac-
quired heart disease.1 It is used for following disease evolution and
monitoring the effects of interventions in the pediatric population.1-3

Chemotherapy dosing for pediatric cancer patients,4 pacemaker
placement in patients with arrhythmias,5 medication titration in the
setting of heart failure,6 ventricular remodeling after surgical repair,7

and follow-up care for patients with genetic abnormalities8 are a few
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examples that demonstrate thewide range of uses for ventricular func-
tional assessment. Echocardiography is noninvasive, safe, and readily
available, and it is the standardmodality for serial assessment of cardiac
function. Automated quantification of ventricular function may
improve variability, increase efficiency, and democratize specialized
care in areas where access is limited.9-11

Machine learning and artificial intelligence technologies have been
successfully used in adults to improve the reliability and accuracy of
LV functional assessment by echocardiography.9,11-13 Large-scale
studies utilizing machine learning algorithms in pediatric echocardiog-
raphy are scarce, although there has been promising work in LV seg-
mentation with other imaging modalities.14,15 Machine learning is
more challenging in children, partly because the rarity of pediatric heart
disease precludes the collection of the large data sets needed to validate
machine learning models. Children have increased variability in
anatomic abnormality, heart rate, size, and ability to cooperate, all
contributing to a wide range of spatial and temporal resolution as
well as image quality.16 It is unclear whether models trained on adult
data are generalizable to pediatrics given this increased variability.
Automated LV functional assessment is an important initial step in
applying machine learning to pediatric echocardiography. It can serve
as a foundation for models that focus on single ventricles,
l Center from ClinicalKey.com by Elsevier on January 09, 
on. Copyright ©2024. Elsevier Inc. All rights reserved.
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Abbreviations

A4C = Apical 4-chamber

BSA = Body surface area

EF = Ejection fraction

LV = Left ventricular, ventricle

LVEF = Left ventricular

ejection fraction

MAE = Mean absolute error

PSAX = Parasternal short-

axis

RMSE = Root mean squared

error
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cardiomyopathies, and heart
transplants, and it has the poten-
tial to impact models that focus
on disease progression and out-
comes.11

A standard parameter of LV
systolic function is ejection frac-
tion (EF), but studies have re-
vealed significant measurement
variability in adults17,18 and in
children with acquired and
congenital heart disease.19-28 A
human expert usually performs
manual segmentation to trace
LV diastolic and systolic areas in
single or multiple planes in
order to calculate LV
volumes.1,2,29 The segmentation
process is time-consuming and a major source of measurement vari-
ability for EF.28,30,31 Although the standard recommendation involves
the average of EF measurements over 3 to 5 separate cardiac cycles,
this is rarely done in clinical practice.21,32 A few single-center studies
have published normative values for children, but these are limited
because of homogenous patient populations, small sample size, vari-
able measurement performancemethodologies, and other confound-
ing factors, thereby decreasing the generalizability of the final
results.26,27,33,34 Additionally, pediatric echocardiography often pri-
oritizes the area-length or bullet method to calculate LVEF,21,28

whereas adult echocardiography has trained models using the
method of disks to calculate LVEF.13,35,36

We present EchoNet-Peds, a deep learning model in pediatric
echocardiography that automates LV segmentation and calculation
of EF from echocardiographic images and video clips. This is per-
formed by using 2 standard echocardiographic views, namely, the
parasternal short-axis (PSAX) and apical 4-chamber (A4C) views.
The 5/6 area-length method to calculate LV volumes and EF was
used because it is more reliable than other methods for evaluating sys-
tolic function, particularly in pediatrics.21,28
METHODS

Study Population

The study population consisted of patients who underwent an
echocardiographic evaluation at Lucile Packard Children’s Hospital
Stanford as part of routine clinical care from 2014 to 2021. Data
collection was approved by the Stanford University Institutional
Review Board.
The patients were divided into 2 subsets: patients with anatomi-

cally normal hearts with normal EF and patients with anatomically
normal hearts with systolic dysfunction in the absence of congenital
heart disease (e.g., dilated cardiomyopathy and chemotherapy-
induced systolic dysfunction). The patients with an EF by 5/6 area-
length >55% were classified as having normal systolic function, and
those with EF <55% were classified as abnormal. We included pa-
tients with EFs ranging from 5% to 75% on the interpretation report.
All echocardiograms were acquired by trained sonographers or phy-
sicians using Philips iE33 (Koninklijke Philips N.V.), Siemens Acuson
SC2000 (Siemens Medical Solutions), or Philips Epiq 7 (Koninklijke
Philips N.V.) ultrasound machines with videos subsequently stored
r Anonymous User (n/a) at Cedars-Sinai Medica
ersonal use only. No other uses without permissi
and analyzed in a Siemens Syngo Dynamics (Siemens Medical
Solutions) picture archiving and communication system. To better
reflect true clinical practice, video clips were not excluded on the basis
of variable image quality.
Echocardiographic Data and Labeling

The echocardiographic data included grayscale two-dimensional
video clips from A4C and PSAX views for calculation of LVEF using
the 5/6 area-length method.29 Views were identified using a pro-
grammed query within each study based on which video frames
had tracings of LV volumes by a sonographer or cardiologist. The final
measurement included in the report was extracted from the digital
imaging and communications in medicine file linked to the EF. We
used the calculated EF on the finalized clinical report as the gold stan-
dard by which to train and benchmark the success of EchoNet-Peds.
The echocardiographic videos were cropped to remove patient iden-
tifying information and the electrocardiographic tracing, resulting in
square videos. The videos were then downsampled to 112�112 pixel
videos for training and testing. Videos were randomly split into groups
for training, testing, and validation.
Model Training

EchoNet-Pedsmodel development included training and validation
phases for segmentation and automated EF estimation. We used 10-
fold cross-validation to train and evaluate EchoNet-Peds, where
80% of video clips were used for training, 10% for testing, and 10%
for validation. There was no overlap of video clips within the training,
testing, and validation sets. Details of the model development process
are reported in the Supplemental Index. For both tasks, we initialized
model weights using the EchoNet-Dynamic model,13 which was
trained on adult echocardiograms, and fine-tuned the weights using
our pediatric data set. The validation set was used to select the training
epoch with the lowest loss for deployment. We used a stochastic
gradient descent optimizer to train EchoNet-Peds to segment the
left ventricle (LV), minimizing the binary cross-entropy loss between
the generated estimations and sonographer tracing of the LV. The sys-
tolic and diastolic frames selected by the clinicians during the clinical
workflow were used as input, with segmentation throughout the car-
diac cycle as output. We also used a stochastic gradient descent opti-
mizer to train EchoNet-Peds to estimate EF, minimizing the mean
squared error between the generated estimations and human-
measured EF. Video clips of 32 frames using every other frame
were used as input, with a percentage EF as output.
EchoNet-Peds

EchoNet-Peds is made up of 2 separate components (Figure 1): a seg-
mentation task and an EF estimation task. Ground truth for video clip la-
bels were defined by the sonographer’s or cardiologist’s measurements.
The segmentation task replicates the humanworkflowof tracing LVareas
in A4C and PSAX views. Each training video clip included frames with
manual tracings at end systole and end diastole thatwere obtainedduring
clinical workflow; these comprised the 17,600 ‘‘labeled images.’’ Using a
strategy previously described byTran et al.,37 EchoNet-Peds automatically
generates additional areas on the intermediate frames of the video clip as
well. For example, if the LVend-diastolic area human tracing existed on
frame 34/244 and the LVend-systolic area human tracing was on frame
120/244, EchoNet-Peds generates new estimates for the area on each of
the frames between 34 and 120 as the LV is in various stages of
l Center from ClinicalKey.com by Elsevier on January 09, 
on. Copyright ©2024. Elsevier Inc. All rights reserved.



HIGHLIGHTS

� EchoNet-Peds is the first pediatric trained AI model to assess

ventricular function.

� EchoNet-Peds estimates EF with accuracy similar to human ex-

perts.

� EchoNet-Peds is rapid and reproducible among a range of pe-

diatric ages and sizes.

� Training EchoNet-Peds with pediatric data improved perfor-

mance over adult models.
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contraction and expansion, utilizing the whole echocardiographic video
clip rather than 2 isolated frames (Videos 1 and 2). This task allows for
themodel to identify ventricular contractions and for the clinician to visu-
alize the task accuracy.
Second, EchoNet-Peds performs automatic EF estimation across

frames to mimic the EF expected from a 5/6 area-length calculation,
utilizing only the video clip as input. This taskmost closely resembles a
workflow in which a human expert visually estimates EF. EchoNet-
Peds is best trained to approximate 5/6 area-length EF when both
A4C and PSAX video clips are present. However, EchoNet-Peds
can also successfully measure 5/6 area-length EF when only 1 of
those views is available.
Statistical Analysis

Patient statistics are expressed as mean6 SD. The performance for
EF estimation is measured in mean absolute error (MAE), root mean
squared error (RMSE), and coefficient of determination (R2). The
performance for segmenting the LV is measured in terms of the
Figure 1 EchoNet-Peds uses standard A4C and PSAX echocardiogr
tations (blue) of the LV through each frame of the echocardiogram vi
tole and end diastole. EchoNet-Peds then generates an EF by aggr
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Dice similarity coefficient, a widely used statistical tool in machine
learning–derived segmentation to measure the similarity between
2 data sets by comparing the proportion of true positive pixels to
the total number of pixels in an image (e.g., Dice similarity coefficient
of 1 suggests identical segmentation between 2 data sets).38

Confidence intervals were computed using 10,000 bootstrapped
samples and obtaining 95th percentile ranges for each generated esti-
mation. Comparisons of training methods were performed using a 2-
tailed binomial test.
EchoNet-Peds Performance

Because of the larger variation in size among pediatric patients
compared to adult patients, the performance of EchoNet-Peds among
the full range of patients was evaluated by stratifying the patients by
sex, age, and body surface area (BSA). In addition, the performance
of EchoNet-Peds was compared with the EchoNet-Dynamic13 model
to better understand the importance of training pediatric models on
pediatric data versus extrapolating from adult data-derived models.
Comparison models are included. Because the success of a model
is also dependent on weights assigned to various factors determined
during the development of the model, we also compared EchoNet-
Peds, which uses weights similar to EchoNet-Dynamic, against a
model using the baseline weights from the Kinetics-400 data set,39

which does not include medical videos.

RESULTS

Study Population and Data Set

The study data set consisted of 4,467 echocardiograms from 1,958
patients (43% female) ranging from 0 to 18 years (106 5.4) as noted
in Table 1. The A4C video clips and PSAX video clips were extracted
from the echocardiograms, resulting in 7,643 video clips and 17,600
am video clips as input data. EchoNet-Peds generates segmen-
deo clip, bounded by the single-frame tracings done at end sys-
egating information across both A4C and PSAX views.

l Center from ClinicalKey.com by Elsevier on January 09, 
on. Copyright ©2024. Elsevier Inc. All rights reserved.



Table 1 Demographics of patients and visits from Lucile
Packard Children’s Hospital at Stanford

Statistic

Patients 1,958

Gender, female 830 (42)

Age, years 10.2 6 5.4

Total visits 4,467

Visits with A4C 3,176 (71)

Visits with PSAX 4,424 (99)

Visits with both 3,133 (70)

Normal EF (>55%) 3,854 (86)

EF (%) 61 6 10

Data are presented as mean 6SD or n (%). Patients may have mul-

tiple visits included in the data set.
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labeled images. Of the 7,643 video clips, 6,114 (80%) were used for
training, 765 (10%) for testing, and 764 (10%) for validation
(Figure 2). Eighty-six percent of studies had an EF $55%.
Evaluation of Model Performance

EchoNet-Peds estimated EF with an MAE of 3.66% (3.53%-3.82%),
RMSE of 4.98% (4.75%-5.33%), and R2 of 0.77 (0.74-0.80)
compared to human experts when presented with input from both
A4C and PSAX videos (Figure 3A). As expected, the model performs
best when both views are used. However, the model also estimated
an accurate EF compared with the 5/6 area-length EF when pre-
sented with only 1 view. When EchoNet-Peds is presented with
only an A4C video clip, the MAE is 4.15% (4.02%-4.28%), RMSE
is 5.70% (5.41%-6.00%), and R2 is 0.70 (0.66-0.74). If presented
with only a PSAX video clip, the MAE is 3.80% (3.69%-3.91%),
RMSE is 5.14% (4.95%-5.33%), and R2 is 0.74 (0.71-0.77).

A secondary analysis separately evaluated the model’s ability to
differentiate systolic dysfunction from normal function. The com-
bined estimation achieves an area under the curve receiver-
operating characteristic of 0.954 (0.942-0.965) for diagnosing the
echocardiograms from the data set with reduced EF (<55%;
Figure 3B) and increases further to 0.980 (0.970-0.988) for EFs of
<50%. EchoNet-Peds also segmented the LV with Dice similarity co-
Figure 2 (A) Distribution of EFs measured at ea
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efficients of 0.891 (95%CI, 0.889-0.894) and 0.896 (95%CI, 0.894-
0.898) for A4C and PSAX views, respectively.

EchoNet-Peds can estimate EF and segment a video clip in
0.062 seconds using one NVIDIA GeForce GTX 1080 Ti GPU
(NVIDIA).
Consistent Performance Across Population

EchoNet-Peds performed well in estimating EF (Table 2) and seg-
menting the LV (Table 3) among all patient groups stratified by sex,
age, and BSA. EchoNet-Peds’s ability to accurately estimate EF was
particularly high for patients <1 year old or with a low BSA.
Comparison of Training Methods

EchoNet-Peds significantly outperformed EchoNet-Dynamic13 in esti-
mating EF (P < 1e-100). Comparisons were made using only the A4C
view as EchoNet-Dynamic was not trained with PSAX images
(Supplemental Table 1). Additionally, EchoNet-Peds, which is fine-
tuned from the weights of EchoNet-Dynamic,13 sees small improve-
ments over training from Kinetics-40039 weights (P = .09), suggesting
that our pediatric data set is large enough for stand-alone training. Left
ventricular segmentation (Supplemental Table 2), when compared to
the Common Objects in Context (COCO) dataset,40 shows similar
trends, although the difference in performance is smaller.
DISCUSSION

EchoNet-Peds is the first artificial intelligence model trained entirely
on a large pediatric data set to assess ventricular function. EchoNet-
Peds performed well with the identification of patients with
decreased systolic function, particularly for patients with an EF
<50%.More clinically significant is the fact that estimations generated
by EchoNet-Peds have the same or less variability compared with hu-
man expert interobserver variability,20,28,30 which has been reported
in large national data sets to be 4% to 14%.20,21 Patient subgroups
stratified by age and weight had anMAE < 5%, indicating precise esti-
mation of EF, suggesting that EchoNet-Peds could be used to identify
subtle changes in EF on serial examinations. Moreover, EchoNet-Peds
was trained against a gold standard of the reported 5/6 area-length EF
for each echocardiogram, which required both the A4C and PSAX
views. However, once trained, EchoNet-Peds generated EF with
ch visit. (B) Distribution of age at each visit.

l Center from ClinicalKey.com by Elsevier on January 09, 
on. Copyright ©2024. Elsevier Inc. All rights reserved.



Figure 3 (A) The estimated EF vs the human-measured EF. (B) Receiver-operating characteristic curve for classifying reduced EF
(<55%).
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reasonable accuracy if only 1 view was available, allowing for its utility
when echocardiographic windows are limited or 1 view is suboptimal.

The segmentation task does not directly provide the values
required to calculate EF. Instead, EchoNet-Peds is conceptually closer
to an ‘‘expert qualitative assessment,’’ but with improved accuracy
and decreased variability since it is trained against objective measures.
The segmentation task remains important as it provides a visual rep-
resentation of EchoNet-Peds and demonstrates how EF estimations
are generated. The segmentation task generates the equivalent of a
manual tracing for each frame between end systole and end diastole;
for echocardiographic clips with multiple beats, it can average the EF
values for each beat. Our echocardiographic clips had variable
numbers of cardiac cycles, often depending on patient heart rate
and clip length, but EchoNet-Peds performed consistently across all
environments. The success of the segmentation is defined by the
high Dice similarity coefficient, a measure of spatial overlap and
reproducibility broadly used in artificial intelligence segmentation
Table 2 Stratified performance for generated EF by sex, age, and

Group No. of echocardiograms

All echocardiograms 4,467 6

Gender, male 2,557 6

Gender, female 1,898 6

Age:

<1 211 5

1-5 843 6

6-11 1,291 6

12-14 920 6

>15 1,202 6

BSA:

Quartile 1 1,111 6

Quartile 2 1,111 6

Quartile 3 1,111 6

Quartile 4 1,112 6

Patients with missing demographic information are omitted from the strati
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tasks across imaging modalities.38,41 Similarly, we purposefully used
a large data set that was representative of the clinical variability typi-
cally seen in a pediatric echocardiography laboratory, with different
ultrasound machines and image acquisition settings and variable im-
age quality. EchoNet-Peds successfully segmented the LV and gener-
ated accurate EF measurements despite this variability. In addition,
EchoNet-Peds can complete both tasks in 0.06 seconds per video
clip, which is more efficient than human manual assessment.
EchoNet-Peds is accurate, reproducible, and rapid, which lays the
foundation for an end-to-end clinical aid that could be inserted
directly into the existing workflow.

To date, most machine learning tools used in pediatric echocardiog-
raphy have been trained on adult echocardiographic data.42 This is
primarily related to the relative paucity of data available for pediatric
acquired and congenital heart diseases needed to create sufficient
training data sets. Additional limitations include the wide variety of
sizes and ages in pediatric patients, patient movement during
BSA

EF, % R2 MAE, %

1 6 10 0.77 (0.74-0.80) 3.66 (3.56-3.80)

2 6 9 0.74 (0.69-0.78) 3.65 (3.50-3.89)

0 6 11 0.79 (0.74-0.84) 3.67 (3.45-3.95)

4 6 18 0.85 (0.79-0.90) 4.99 (4.37-5.97)

2 6 10 0.79 (0.70-0.85) 3.42 (3.18-3.70)

2 6 9 0.76 (0.69-0.83) 3.42 (3.21-3.61)

1 6 10 0.72 (0.62-0.80) 3.79 (3.51-4.31)

1 6 9 0.71 (0.64-0.76) 3.75 (3.55-4.10)

0 6 12 0.84 (0.78-0.88) 3.70 (3.37-3.96)

2 6 9 0.76 (0.67-0.82) 3.46 (3.22-3.72)

2 6 9 0.72 (0.66-0.78) 3.68 (3.42-4.10)

1 6 9 0.68 (0.55-0.75) 3.77 (3.54-4.09)

fied analysis.

l Center from ClinicalKey.com by Elsevier on January 09, 
on. Copyright ©2024. Elsevier Inc. All rights reserved.



Table 3 Stratified performance for segmenting the LV by sex, age, and BSA

Group

A4C PSAX

No. of echocardiograms Dice coefficient No. of echocardiograms Dice coefficient

All echocardiograms 3,176 0.891 (0.889-0.894) 4,424 0.896 (0.894-0.898)

Gender, male 1,813 0.891 (0.888-0.894) 2,533 0.895 (0.891-0.898)

Gender, female 1,351 0.892 (0.889-0.895) 1,880 0.896 (0.893-0.900)

Age:

<1 169 0.860 (0.848-0.878) 206 0.861 (0.848-0.875)

1-5 631 0.894 (0.891-0.897) 834 0.893 (0.888-0.899)

6-11 890 0.899 (0.897-0.902) 1,283 0.902 (0.898-0.907)

12-14 639 0.892 (0.888-0.896) 910 0.898 (0.893-0.902)

>15 847 0.886 (0.881-0.890) 1,191 0.894 (0.890-0.899)

BSA:

Quartile 1 842 0.887 (0.881-0.893) 1,096 0.888 (0.882-0.892)

Quartile 2 770 0.899 (0.895-0.901) 1,104 0.901 (0.897-0.905)

Quartile 3 752 0.894 (0.891-0.897) 1,103 0.903 (0.900-0.907)

Quartile 4 797 0.885 (0.880-0.890) 1,099 0.891 (0.885-0.895)

Patients with missing demographic information are omitted from the stratified analysis.
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evaluation, and image artifact.43 Recent focus has been placed on
alternative methods, such as iterative segmentation, to augment
limited pediatric data.44 However, our study clearly illustrates the
benefits of training a model on pediatric data; EchoNet-Peds per-
formed significantly better among all age groups and sizes than a cor-
responding model trained on adult data. There was better EF
estimation by R2 in patients <1 year of age compared with the other
ages. Segmentation performance also improved, although less obvi-
ously, suggesting the model is more robust in adapting to the differ-
ences of pediatric and adult populations. The best segmentation
performance occurred in patients age 6 to 11 years old, potentially
correlating to the ages during which improved patient cooperation
and optimal acoustic windows coincide. Previous literature has also
demonstrated that small changes in segmentation can result in expo-
nential errors in EF estimation.45,46 In a Pediatric Heart Network
study by Frommelt et al.,28 there was good reproducibility between
measurements of LV volume, but significant variability in LV function
calculations, suggesting that clinical practice may adjust measure-
ments to correlate to qualitative assessment of function. Therefore,
we hypothesize that the adult model performs less well overall on
the pediatric data due to variability in patient size, weight, heart rates,
and movement, despite relative accuracy with segmentation. It is
important to note, however, that EchoNet-Peds did benefit from
‘‘fine-tuning’’ by utilizing weights derived from EchoNet-Dynamic.
EchoNet-Peds is an important extension of the work done with
EchoNet-Dynamic, but the use of a wholly pediatric data set and
the introduction of a novel echocardiographic view (PSAX) illustrate
the benefits of a pediatric-centric approach, rather than forcibly
applying adult models to pediatric questions. The strategy we used
in this study may serve as a model for adapting adult-trained algo-
rithms more accurately to pediatric data while retaining the benefits
of larger adult data sets.

We worked with a team at Stanford Medicine to make our deiden-
tified data set of 4,467 pediatric echocardiograms publicly available to
the research community at large. At the time of writing, this is the
largest known labeled video data set of pediatric echocardiograms
that include human expert tracings. We aim to make this data set a
Downloaded for Anonymous User (n/a) at Cedars-Sinai Medica
2024. For personal use only. No other uses without permissi
resource for clinicians and researchers interested in validating
pediatric-specific algorithms, and we hope to encourage further
growth in our field.
Limitations

In this study, we used pediatric echocardiographic data derived from
A4C and PSAX views to estimate EF against a gold standard of the
5/6 area-length method. While large studies have shown that the
5/6 area-length method is more accurate in pediatric patients,20,21

we recognize that many clinicians still use other methods to estimate
EF. We also limited our algorithm to two-dimensional imaging only.
Other studies have used three-dimensional echocardiography to
develop machine learning algorithms for estimating EF because it cor-
relates better with EF derived from cardiac magnetic resonance imag-
ing than from two-dimensional echocardiography. Because three-
dimensional echocardiography is still not routinely used in most clin-
ical practice settings due to the need for special training, we opted to
focus our model on a solution with the broadest possible impact.
EchoNet-Peds utilizes supervised learning for the initial segmentation
task with human-labeled images, so there is inherent introduction of
human bias. Lastly, we validated EchoNet-Peds using data obtained at
only 1 institution, mostly because of the challenges in accessing data
from other hospitals. We tried to mitigate this limitation by showing
that EchoNet-Peds works well across a broad range of study quality
and ultrasound machines. Zuercher et al.47 demonstrated a similar
MAE on a single view (A4C) and a smaller subset of approximately
300 echocardiograms at a different institution, suggesting the general-
izability of the algorithm to broader populations. However, wide-
spread external validation with particular focus on adequate
representation of various demographics and diagnoses is an important
direction for future work.

Future Directions

Whilemachine learning has been used widely in adult cardiology over
the past few years, its use in pediatrics has lagged. Left ventricular
functional assessment has been an important area of study,
l Center from ClinicalKey.com by Elsevier on January 09, 
on. Copyright ©2024. Elsevier Inc. All rights reserved.
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particularly in point-of-care ultrasounds performed by noncardiolo-
gists or in rural areas without access to experts.48-50 EchoNet-Peds
has an end-to-end workflow that can easily be implemented at the
bedside to make accurate assessments of cardiac function and guide
clinical decisions rapidly.Moreover, Dykes et al.51 showed that parent-
driven acquisition of LVA4C and PSAX video clips on handheld ul-
trasounds is feasible, and EchoNet-Peds has the potential to improve
this clinical workflow. Since EchoNet-Peds performs very well in esti-
mating EF even when only 1 view of the LV is obtained, this could in-
crease utility, decrease parental burden, and provide more data. Since
our data were derived from expert-obtained ultrasounds, further
testing will need to be performed to assess generalizability in these
limited settings. We additionally hope to expand to patients with
congenital heart disease and explore validity in patients with varied
LV or single ventricular geometry. Lastly, we hope the difference in
performance between the adult and pediatric models convinces the
pediatric community of the importance of creating large-scale data
sets to better explain these differences and minimize bias. Our
hope is that the release of the EchoNet-Peds data set and code for
the algorithm will allow for broad exposure, implementation, and
improvement to have the highest clinical benefit for patients.
CONCLUSION

EchoNet-Peds is an automated system for evaluating LV function in pe-
diatric patients. EchoNet-Peds achieves good performance in esti-
mating EF and segmenting the LV across all subgroups of pediatric
patients. EchoNet-Peds accurately segments the LV and estimates
LVEF when compared to a human expert, even when only a single
view is available, which is particularly beneficial when appropriate im-
age acquisition is limited by patient movement or inexperienced im-
agers. It outperforms models trained on adult echocardiograms,
highlighting the benefit of training pediatric algorithms with dedicated
pediatric data. EchoNet-Peds can be used to reduce the time and
manual labor needed tomeasure LV function, potentially reduce errors
from human variability, and improve access to care in areas without
local experts.
CODE AND DATA SET AVAILABILITY

We have made source code and data set available at https://echonet.
github.io/pediatric.
SUPPLEMENTARY DATA

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.echo.2023.01.015.
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