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IMPORTANCE Early detection and characterization of increased left ventricular (LV) wall
thickness can markedly impact patient care but is limited by under-recognition of
hypertrophy, measurement error and variability, and difficulty differentiating causes of
increased wall thickness, such as hypertrophy, cardiomyopathy, and cardiac amyloidosis.

OBJECTIVE To assess the accuracy of a deep learning workflow in quantifying ventricular
hypertrophy and predicting the cause of increased LV wall thickness.

DESIGN, SETTINGS, AND PARTICIPANTS This cohort study included physician-curated cohorts
from the Stanford Amyloid Center and Cedars-Sinai Medical Center (CSMC) Advanced Heart
Disease Clinic for cardiac amyloidosis and the Stanford Center for Inherited Cardiovascular
Disease and the CSMC Hypertrophic Cardiomyopathy Clinic for hypertrophic cardiomyopathy
from January 1, 2008, to December 31, 2020. The deep learning algorithm was trained and
tested on retrospectively obtained independent echocardiogram videos from Stanford
Healthcare, CSMC, and the Unity Imaging Collaborative.

MAIN OUTCOMES AND MEASURES The main outcome was the accuracy of the deep learning
algorithm in measuring left ventricular dimensions and identifying patients with increased LV
wall thickness diagnosed with hypertrophic cardiomyopathy and cardiac amyloidosis.

RESULTS The study included 23 745 patients: 12 001 from Stanford Health Care (6509
[54.2%] female; mean [SD] age, 61.6 [17.4] years) and 1309 from CSMC (808 [61.7%] female;
mean [SD] age, 62.8 [17.2] years) with parasternal long-axis videos and 8084 from Stanford
Health Care (4201 [54.0%] female; mean [SD] age, 69.1 [16.8] years) and 2351 from CSMS
(6509 [54.2%] female; mean [SD] age, 69.6 [14.7] years) with apical 4-chamber videos. The
deep learning algorithm accurately measured intraventricular wall thickness (mean absolute
error [MAE], 1.2 mm; 95% CI, 1.1-1.3 mm), LV diameter (MAE, 2.4 mm; 95% CI, 2.2-2.6 mm),
and posterior wall thickness (MAE, 1.4 mm; 95% CI, 1.2-1.5 mm) and classified cardiac
amyloidosis (area under the curve [AUC], 0.83) and hypertrophic cardiomyopathy (AUC,
0.98) separately from other causes of LV hypertrophy. In external data sets from
independent domestic and international health care systems, the deep learning algorithm
accurately quantified ventricular parameters (domestic: R2, 0.96; international: R2, 0.90). For
the domestic data set, the MAE was 1.7 mm (95% CI, 1.6-1.8 mm) for intraventricular septum
thickness, 3.8 mm (95% CI, 3.5-4.0 mm) for LV internal dimension, and 1.8 mm (95% CI,
1.7-2.0 mm) for LV posterior wall thickness. For the international data set, the MAE was 1.7
mm (95% CI, 1.5-2.0 mm) for intraventricular septum thickness, 2.9 mm (95% CI, 2.4-3.3 mm)
for LV internal dimension, and 2.3 mm (95% CI, 1.9-2.7 mm) for LV posterior wall thickness.
The deep learning algorithm accurately detected cardiac amyloidosis (AUC, 0.79) and
hypertrophic cardiomyopathy (AUC, 0.89) in the domestic external validation site.

CONCLUSIONS AND RELEVANCE In this cohort study, the deep learning model accurately
identified subtle changes in LV wall geometric measurements and the causes of hypertrophy.
Unlike with human experts, the deep learning workflow is fully automated, allowing for
reproducible, precise measurements, and may provide a foundation for precision diagnosis of
cardiac hypertrophy.
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D espite rapidly advancing developments in targeted
therapeutics and genetic sequencing,1,2 persistent
limits in the accuracy and throughput of clinical

phenotyping has led to a widening gap between the poten-
tial and the actual benefits realized by precision medicine.
This conundrum is exemplified by current approaches to
assessing morphologic alterations of the heart.3,4 If reliably
identified, misdiagnoses of certain cardiac diseases (eg, car-
diac amyloidosis and hypertrophic cardiomyopathy [HCM])
could be avoided, and specific targeted therapies could be
initiated efficiently. Systematic screening paradigms, includ-
ing through imaging and automated medical record feature
review, have shown the opportunity to identify patients
with underdiagnosed diseases that are increasingly recog-
nized as more prevalent than was previously thought.5-9 The
ability to reliably distinguish between cardiac disease types
with similar morphologic features but different causes
would also enhance specificity for linking genetic risk vari-
ants and determining mechanisms.

The heart is a dynamic organ capable of remodeling and
adapting to physiological stress and extracardiac perturba-
tion. Both intrinsic cardiac disease and systemic insults can
result in similar presentations of increased left ventricular (LV)
wall thickness and LV hypertrophy (LVH), which are difficult
to distinguish on routine imaging by human observation. Pres-
sure overload from long-standing hypertension and aortic ste-
nosis can cause cardiac remodeling to compensate for addi-
tional physiological work, and HCM and cardiac amyloidosis
can similarly manifest with an increase in LV mass in the ab-
sence of physiological stress.6,10

In addition to the presence of LVH, the degree of ventricu-
lar thickness also has substantial prognostic value in many
diseases.10-12 Ventricular wall thickness is used to risk-
stratify patients for risk of sudden cardiac death and help
determine which patients should undergo defibrillator
implantation.10 Nevertheless, quantification of ventricular wall
thickness remains subject to substantial intraprovider and in-
terprovider variability across imaging modalities.13,14 Even with
the high image resolution and signal-to-noise ratio of cardiac
magnetic resonance imaging, there is marked test-retest vari-
ability owing to the laborious, manual nature of wall thick-
ness measurement.15,16 Although abundant,17,18 low cost, and
without ionizing radiation, echocardiography relies on ex-
pert interpretation, and its accuracy is dependent on careful
application of measurement techinques.19,20

Recent work21-24 has shown that deep learning applied
to medical imaging can identify clinical phenotypes beyond
conventional image interpretation and with higher accuracy
than interpretation by human experts. We hypothesized that
echocardiography, the most common form of cardiovascular
imaging on the basis of cardiology society guidelines for
diagnosing hypertrophy including those of the European
Society of Cardiology,10 when enhanced with artificial intel-
ligence (AI) models, could provide additional value in under-
standing disease states by predicting both the presence and
the potential cause of LVH in a screening population. To
address current limitations in the assessment of ventricular
hypertrophy and disease diagnosis, we developed an end-to-

end deep learning approach for labeling the LV dimensions,
quantifying ventricular wall thickness, and predicting the
cause of LVH. We first conducted frame-level semantic seg-
mentation of the left ventricular wall thickness from para-
sternal long-axis echocardiogram videos and then per-
formed beat-to-beat evaluation of ventricular hypertrophy.
After identifying LVH, we used a 3-dimensional convolu-
tional neural network with residual connections to predict
the cause of the LVH, including predictions for cardiac amy-
loidosis and aortic stenosis among a background of other
hypertrophic diseases.

Methods
Data Curation
A standard full resting echocardiogram study consists of a se-
ries of 50 to 100 videos and still images visualizing the heart
from different angles, locations, and image acquisition tech-
niques (eg, 2-dimensional images, tissue Doppler images, and
color Doppler images). In this cohort study, patients were iden-
tified in physician-curated cohorts from the Stanford Amy-
loid Center and Cedars-Sinai Medical Center (CSMC) Ad-
vanced Heart Disease Clinic for cardiac amyloidosis and the
Stanford Center for Inherited Cardiovascular Disease and the
CMSC Hypertrophic Cardiomyopathy Clinic for hypertrophic
cardiomyopathy from January 1, 2008, to December 31, 2020.
This research was approved by the Stanford University and
CMSC institutional review boards. Written informed consent
was obtained from patients for inclusion in the cohorts, but
the need for consent for echocardiographic imaging analysis
was exempted by the participating institutional review boards
because of the use of deidentified images.

Relevant parasternal long-axis (PLAX) and apical 4-cham-
ber 2-dimensional videos were extracted from each echocar-
diogram study (Table 1 and Table 2). Human clinician anno-
tations of intraventricular septum (IVS), LV internal dimension
(LVID), and LV posterior wall (LVPW) measurements were used
as training labels to assess ventricular hypertrophy. Paraster-
nal long-axis videos obtained from Stanford Health Care (SHC)
were split and used as follows: 9600 for the training set, 1200

Key Points
Question Can deep learning be used to automate measurements
of left ventricular dimensions and identify patients who could
benefit from screening for underdiagnosed diseases?

Findings In this cohort study of 23 745 patients that used a deep
learning algorithm to automatically measure left ventricular
dimensions and to identify patients with increased wall thickness
who may benefit from additional screening for hypertrophic
cardiomyopathy and cardiac amyloidosis, the algorithm performed
consistently across multiple cohorts while also delivering results in
a shorter time than required for human assessment.

Meaning In this study, a deep learning workflow was able to
automate wall thickness evaluation while facilitating identification
of hypertrophic cardiomyopathy and cardiac amyloidosis.
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for the validation set, and 1200 for the test set. An additional
7767 SHC echocardiogram studies were from patients with de-
fined disease characteristics, including cardiac amyloidosis,
HCM, and severe aortic stenosis. From these studies, the api-
cal 4-chamber videos were extracted and used as input data
for the hypertrophic disease classification task. Videos were
processed in a previously described automated preprocess-
ing workflow in which identifying information and human jla-
bels had been removed.21,25

Domestic and International External Health Care System
Test Data Sets
Transthoracic echocardiogram studies from CSMC and the
Unity Imaging Collaborative16 were used to evaluate the deep
learning algorithm’s performance in identifying key points in
PLAX videos and measuring ventricular dimensions. Previ-
ously described methods were used to identify PLAX and api-
cal 4-chamber–view videos and to convert Digital Imaging and
Communications in Medicine files to AVI files.22 We ex-
tracted a total of 3660 videos from CSMC as a domestic held-
out test data set. Labeled images from the Unity Imaging jCol-
laborative were used as an additional held-out international
test data set not seen during model training. These echocar-

diogram videos were obtained from the British echocardiog-
raphy laboratories and were retrospectively annotated by
echocardiography-certified cardiologists.

Deep Learning Algorithm Development and Training
Model design and training were done in Python, version
3.8.5 (Python Software Foundation) using the PyTorch deep
learning library. A modified DeepLabv326 architecture
trained on parasternal long-axis images to minimize a
weighted mean square error loss was used to identify key
points used for measuring ventricular dimensions. Three-
dimensional implementations of a segmentation model took
substantially more computational resources without marked
improvement in performance. An Adam optimizer with a
learning rate of 0.001 was used, and the model was trained
for 50 epochs, with early stopping based on the validation
loss. We evaluated different video lengths, resolutions, and
temporal resolutions as hyperparameters to optimize model
performance. Computational cost was evaluated using 1
NVIDIA GeForce GTX 3090.

For video-based disease classification, an 18-layer
ResNet3D27 architecture was used to classify videos. Given the
potential for patients who had diagnoses of both aortic steno-

Table 1. Baseline Characteristics of Patients With Parasternal Long-Axis Videos of Echocardiograms
From SHC and CSMCa

Characteristic

SHC
CSMC test set
(n = 1309)

Training set
(n = 9601)

Validation set
(n = 1200)

Test set
(n = 1200)

Total
(N = 12 001)

Age, mean (SD), y 61.6 (17.4) 61.3 (17.8) 61.7 (17.5) 61.6 (17.4) 62.8 (17.2)

Sex

Female 5268 (54.9) 618 (51.5) 623 (51.9) 6509 (54.2) 501 (38.3)

Male 4333 (45.1) 582 (48.5) 577 (48.1) 5492 (45.8) 808 (61.7)

Race and ethnicity

American Indian 24 (0.2) 2 (0.2) 6 (0.5) 32 (0.3) 4 (0.3)

Asian 1377 (14.3) 176 (14.7) 180 (15.0) 1733 (14.4) 85 (6.5)

Black 373 (3.9) 53 (4.4) 50 (4.2) 476 (4.0) 239 (18.3)

Hispanic 1076 (11.2) 135 (11.2) 117 (9.8) 1328 (11.1) 178 (13.6)

Non-Hispanic White 4043 (42.1) 518 (43.2) 516 (43.0) 5077 (42.3) 697 (53.2)

Pacific Islander 140 (1.5) 14 (1.2) 23 (1.9) 177 (1.5) 4 (0.3)

Otherb 742 (7.7) 98 (8.2) 96 (8.0) 936 (7.8) 83 (6.3)

Unknown 1826 (19.0) 204 (17.0) 212 (17.7) 2242 (18.7) 19 (1.5)

Atrial fibrillation 2067 (39.3) 281 (40.7) 258 (39.6) 2606 (39.5) 315 (24.1)

Congestive heart
failure

3162 (60.1) 417 (60.3) 398 (61.1) 3977 (60.2) 451 (34.5)

Hypertension 3783 (71.9) 502 (72.6) 466 (71.6) 4751 (71.9) 543 (41.5)

Diabetes 1852 (35.2) 265 (38.4) 249 (38.2) 2366 (35.8) 248 (18.9)

Coronary artery
disease

2517 (47.8) 343 (49.6) 316 (48.5) 3176 (48.1) 369 (28.2)

Chronic kidney
disease

2066 (39.3) 265 (38.4) 252 (38.7) 2583 (39.1) 257 (19.6)

LVPWd thickness,
mean (SD), cm

1.00 (0.21) 1.01 (0.21) 1.01 (0.21) 1.01 (0.21) 1.09 (0.25)

LVIDd, mean (SD), cm 4.70 (0.83) 4.69 (0.85) 4.71 (0.82) 4.70 (0.83) 4.70 (0.90)

LVIDs, mean (SD), cm 3.28 (0.90) 3.26 (0.90) 3.28 (0.88) 3.28 (0.90) 3.29 (1.05)

IVSd, mean (SD), cm 1.03 (0.24) 1.03 (0.24) 1.03 (0.25) 1.03 (0.24) 1.12 (0.29)

LVEF, mean (SD), % 55.71 (12.31) 55.62 (12.28) 56.08 (12.01) 55.74 (12.28) 55.92 (15.67)

LV mass, mean (SD), g 173.29 (68.71) 173.57 (69.97) 174.92 (68.84) 173.48 (68.84) 195.19 (83.16)

Abbreviations: CSMC, Cedars-Sinai
Medical Center; IVSd, intraventricular
septal thickness (diastole); LV, left
ventricular; LVEF, left ventricular
ejection fraction; LVIDd, left
ventricular internal dimension
(diastole); LVIDs, left ventricular
internal dimension (systole);
LVPWd, left ventricular posterior wall
(diastole); SHC, Stanford Health Care.
a Data are presented as number

(percentage) of patients unless
otherwise indicated.

b Other racial and ethnic groups were
not available because they were not
included in the electronic health
records.
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sis and cardiac amyloidosis with multiple causes of LVH,28 par-
allel binary classification deep learning models were trained
to predict probability of cardiac amyloidosis, HCM, and aor-
tic stenosis secondary to uncontrolled hypertension and in the
context of end-stage kidney disease independently. Distinct
from previous literature,7,8 for each classification task, the
negative controls were images from patients with other causes
of LVH to mimic the clinical workflow. For example, during
amyloid classification, the negative training examples in-
cluded videos from patients with diagnosed HCM, aortic ste-
nosis, hypertension, and end-stage kidney disease as other
causes of LVH. This model was trained to minimize binary
cross-entropy loss using an Adam optimizer with a learning rate
of 0.01. The model was trained for 100 epochs with a batch size
of 14, with early stopping based on area under the curve (AUC)
on the validation set (eMethods in the Supplement).

Comparison With Variation in Human Measurement
Using the reporting database of the Stanford Echocardiogra-
phy Laboratory, we identified paired studies of the same

patient for which the reviewing cardiologist determined there
was no substantial change from the current study to the previ-
ous study by a structured reporting element. Of these studies
with clinical stability, we analyzed the subset of 23 874 studies
for which LVID, IVS, and LVPW at diastole were measured for
both the current and the subsequent studies. The variance in
measurement between the previous and subsequent studies was
used as a surrogate of clinician variation and was compared with
the variation of the deep learning algorithm. In the CSMC data
set, we identified 99 random studies; blinded relabeling was per-
formed by 2 level 3 echocardiography-certified cardiologists, and
their performance was compared with the performance of the
deep learning algorithm on the consensus label.

Statistical Analysis
The 95% CIs were computed using 10 000 bootstrapped
samples and by obtaining 95th percentile ranges for each pre-
diction. The performance of the semantic segmentation task
was evaluated by comparing the length of LVID, LVPW, and IVS
with human labels in the hold-out test data set. The centroid

Table 2. Baseline Characteristics of Patients With Apical 4-Chamber Videos of Echocardiograms
From SHC and CSMCa

Characteristic

SHC
CSMC test set
(n = 2351)

Training set
(n = 6461)

Validation set
(n = 814)

Test set
(n = 809)

Total
(N = 8084)

Cardiac amyloidosis 950 (14.7) 117 (14.4) 120 (14.8) 1187 (14.7) 358 (15.2)

Hypertrophic
cardiomyopathy

2344 (36.3) 298 (36.6) 294 (36.3) 2936 (36.3) 146 (6.2)

Aortic stenosis 1061 (16.4) 133 (16.3) 132 (16.3) 1326 (16.4) 468 (19.9)

Other LVH 2106 (32.6) 266 (32.7) 263 (32.5) 2635 (32.6) 1379 (58.7)

Age, mean (SD), y 69.0 (16.9) 70.0 (16.6) 69.4 (16.0) 69.1 (16.8) 69.6 (14.7)

Sex

Female 3352 (51.9) 414 (50.9) 435 (53.8) 4201 (52.0) 731 (31.1)

Male 3109 (48.1) 400 (49.1) 374 (46.2) 3883 (48.0) 1620 (68.9)

Race and ethnicity

American Indian 11 (0.2) 1 (0.1) 1 (0.1) 13 (0.2) 4 (0.2)

Asian 586 (9.1) 77 (9.5) 53 (6.6) 716 (8.9) 105 (4.5)

Black 252 (3.9) 24 (2.9) 37 (4.6) 313 (3.9) 353 (15.0)

Hispanic 551 (8.5) 59 (7.2) 56 (6.9) 666 (8.2) 266 (11.3)

Non-Hispanic White 2895 (44.8) 387 (47.5) 346 (42.8) 3628 (44.9) 1468 (62.4)

Pacific Islander 58 (0.9) 7 (0.9) 2 (0.2) 67 (0.8) 3 (0.1)

Otherb 666 (10.3) 86 (10.6) 96 (11.9) 848 (10.5) 146 (6.2)

Unknown 1442 (22.3) 173 (21.3) 218 (26.9) 1833 (22.7) 6 (0.3)

Atrial fibrillation 2209 (49.5) 293 (51.3) 262 (50.0) 2764 (49.8) 630 (26.8)

Congestive heart failure 3632 (81.5) 467 (81.8) 422 (80.5) 4521 (81.4) 876 (37.3)

Hypertension 3657 (82.0) 473 (82.8) 423 (80.7) 4553 (82.0) 1290 (54.9)

Diabetes 1462 (32.8) 178 (31.2) 180 (34.4) 1820 (32.8) 478 (20.3)

Coronary artery disease 2858 (64.1) 359 (62.9) 324 (61.8) 3541 (63.8) 840 (35.7)

Chronic kidney disease 2238 (50.2) 297 (52.0) 292 (55.7) 2827 (50.9) 513 (21.8)

LVPWd thickness,
mean (SD), cm

1.18 (0.25) 1.19 (0.24) 1.17 (0.24) 1.18 (0.25) 1.44 (0.26)

LVIDd, mean (SD), cm 4.58 (0.75) 4.61 (0.75) 4.58 (0.72) 4.58 (0.75) 4.52 (0.86)

LVIDs, mean (SD), cm 3.15 (0.78) 3.19 (0.81) 3.17 (0.77) 3.15 (0.78) 3.07 (0.81)

IVSd, mean (SD), cm 1.27 (0.31) 1.28 (0.31) 1.26 (0.32) 1.27 (0.31) 1.52 (0.37)

LVEF, mean (SD), % 56.92 (11.70) 56.50 (11.61) 56.73 (12.03) 56.86 (11.72) 59.06 (13.68)

LV mass, mean (SD), g 215.73 (80.61) 219.52 (76.97) 213.66 (78.67) 215.91 (80.06) 278.64 (96.53)

Abbreviations: CSMC, Cedars-Sinai
Medical Center; IVSd, intraventricular
septal thickness (diastole); LV, left
ventricular; LVEF, left ventricular
ejection fraction; LVIDd, left
ventricular internal dimension
(diastole); LVIDs, left ventricular
internal dimension (systole);
LVPWd, left ventricular posterior wall
(diastole); SHC, Stanford Health Care.
a Data are presented as number

(percentage) of patients unless
otherwise indicated.

b Other racial and ethnic groups were
not available because they were not
included in the electronic health
records.
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of each predicted key point was used to calculate measure-
ments with Python software, version 3.8.5.

Results
The study included 23 745 patients: 12 001 from SHC (6509
[54.2%] female; mean [SD] age, 61.6 [17.4] years) and 1309 from
CSMC (808 [61.7%] female; mean [SD] age, 62.8 [17.2] years)
with parasternal long-axis videos and 8084 from SHC (4201
[54.0%] female; mean [SD] age, 69.1 [16.8] years) and 2351 from
CSMS (6509 [54.2%] female; mean [SD] age, 69.59 [14.7] years)
with apical 4-chamber videos. The deep learning workflow for
screening of HCM and cardiac amyloidosis had 2 components
(Figure 1). First, we designed a deep learning model with atrous
convolutions for semantic segmentation of PLAX echocardio-
gram videos and identification of the IVS, LV internal dimen-
sion, and LV posterior wall. With atrous convolutions to cap-
ture longer-range features, full-resolution PLAX frames were
used as input images for higher-resolution assessment of LVH.
Given the tedious nature of annotation, in the standard clini-
cal workflow, only 1 or 2 frames of a video are often labeled,
but each video records multiple heartbeats that can be used
for clinical measurements (Figure 2). Therefore, we general-
ized a neural network trained on these sparse annotations into
measurement predictions for every frame of the entire video
to allow for beat-to-beat estimation of ventricular wall thick-
ness and dimensions. Representative example parasternal long
axis videos with model annotations are shown in the Video.

After detection of LVH, identifying the specific cause (eg,
infiltrative disease, inherited cardiomyopathies, or chronic
elevated afterload) can help guide therapy. We trained a video-
based convolutional neural network model with spatiotem-
poral convolutions to predict the cause of LVH (Figure 3).
Integrating spatial and temporal information, the model ex-
panded on previous work21 with video-based model interpre-
tation of echocardiograms and classified videos based on prob-
ability of hypertension, aortic stenosis, HCM, or cardiac
amyloidosis as causes of ventricular hypertrophy. In addi-
tion, we performed a video-based model architecture and
hyperparameter search to identify the optimal base architec-
ture for the deep learning algorithm (eFigure 1 in the Supple-
ment). The deep learning algorithm was trained on a data set
of 17 802 echocardiogram videos from SHC and then evalu-
ated on held-out test cohorts from SHC, CSMC, and Unity
Imaging Collaborative.

Evaluation of Hypertrophy Detection
From the held-out test data set from SHC not seen during model
training (n = 1200), the deep learning algorithm predicted ven-
tricular dimensions with an R2 of 0.97 compared with anno-
tations by human experts (eFigure 2 in the Supplement). The
deep learning algorithm had a mean absolute error (MAE) of
1.2 mm (95% CI, 1.1-1.3 mm) for IVS thickness, 2.4 mm (95%
CI, 2.2-2.6 mm) for LVID, and 1.4 mm (95% CI, 1.2-1.5 mm) for
LVPW thickness. This compared favorably with clinical inter-
provider variation, which had an MAE of 1.3 mm (95% CI, 1.3-
1.3 mm) for IVS thickness, 3.7 mm (95% CI, 3.6-3.7 mm) for LVID,

and 1.3 mm (95% CI, 1.3-1.3 mm) for LVPW thickness. The deep
learning algorithm also performed well compared with the pro-
spective consensus annotation of 2 level-3 echocardiography-
certified cardiologists in 99 random studies from CSMC (eFig-
ure 3 in the Supplement). To assess the reliability of the model
across health care systems internationally, the deep learning
algorithm was also tested without any tuning on an external
test data set of 1791 videos from Unity Imaging Collaborative
and 3660 videos from CSMC. On the Unity Imaging Collabora-
tive external test data set, the deep learning algorithm showed
a robust prediction accuracy, with an overall R2 of 0.90 and
MAEs of 2.2 mm (95% CI, 1.7-2.6 mm) for IVS thickness,
4.5 mm (95% CI, 3.7-5.3 mm) for LVID, and 2.4 mm (95% CI,
2.0-2.7 mm) for LVPW thickness. When fine-tuned using the
training split of the Unity Imaging Collaborative data set, the
deep learning algorithm showed an improved performance
with an overall R2 of 0.92 and MAEs of 1.7 mm (95% CI, 1.5-
2.0 mm) for IVS thickness, 2.9 mm (95% CI, 2.4-3.3 mm) for
LVID, and 2.3 mm (95% CI, 1.9-2.7 mm) for LVPW thickness on
the Unity Imaging Collaborative validation data split, indicat-
ing data shift and potential variations in practice across insti-
tutions and continents (eTable 1 in the Supplement).

A rapid, high-throughput automated approach allowed for
measurement of every individual frame, which would be te-
dious for manual tracing (Figure 2). Differences in filling time
and irregularity in the heart rate can cause variation in mea-
surement, but beat-to-beat model assessment can provide
higher-fidelity overall assessments. Although the SHC and
Unity Imaging Collaborative data sets were directly com-
pared on annotated individual frames, we evaluated the deep
learning algorithm’s beat-to-beat evaluation on the CSMC data
set compared with study-level annotations of ventricular di-
mensions. In this data set, human measurements were not as-
sociated with specific frames of the echocardiogram video, and
beat-to-beat analysis was used to predict diastole and mean
measurements from each heartbeat throughout the entire
video. On the CSMC external test data set, the deep learning
algorithm showed a robust prediction accuracy with an over-
all R2 of 0.96 and MAEs of 1.7 mm (95% CI, 1.6-1.8 mm) for IVS
thickness, 3.8 mm (95% CI, 3.5-4.0 mm) for LVID, and 1.8 mm
(95% CI, 1.7-2.0 mm) for LVPW thickness with beat-to-beat
evaluation.

Prediction of Cause of LVH
The cause derivation, validation, and test cohorts from SHC
had 6215, 787, and 765 videos, respectively. In the held-out test
cohort, the deep learning algorithm distinguished cardiac amy-
loidosis with an AUC of 0.83, HCM with an AUC of 0.98, and
aortic stenosis with an AUC of 0.89 from other causes of LVH.
On the held-out test cohort, the area under the precision-
recall curve of the deep learning algorithm was 0.77 for car-
diac amyloidosis, 0.95 for HCM, and 0.79 for aortic stenosis.
The proposed ensemble of binary classification video-based
deep learning classifiers in the deep learning algorithm was
similar in performance to a multilabel, multiclass deep learn-
ing model for disease detection but had the flexibility of being
able to identify patients who had diagnoses of both aortic ste-
nosis and cardiac amyloidosis. In an external test data set of
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Figure 1. Deep Learning Workflow Combining Evaluation of Ventricular Dimensions and Suspicion for Underdiagnosed Diseases
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2351 apical 4-chamber–view videos from CSMC with 358 vid-
eos of cardiac amyloidosis, 146 videos of aortic stenosis, 468
videos of HCM, and 1379 videos of other causes of LVH, the
deep learning algorithm had an AUC of 0.79 for predicting car-
diac amyloidosis and an AUC of 0.89 for predicting HCM. For
the CSMC cohort, the area under the precision-recall curve of
the deep learning algorithm was 0.54 for cardiac amyloido-
sis, 0.69 for HCM, and 0.08 for aortic stenosis. The model per-
formance was consistent across body mass index and image
quality (eTable 2 in the Supplement).

Phenotypic Mimics and Disease-Specific Training Pipeline
To highlight the benefit of training a model with negative con-
trols derived from other causes of LVH instead of normal con-
trols, we performed a series of experiments to see how a model
that was trained without seeing other phenotypic mimics would
perform when encountering phenotypic mimics. A confusion
matrix was generated in the 2 experimental settings (eTable 3
in the Supplement) in which a higher AUC outside the diago-
nal showed the model confusion and a lower AUC suggested im-
proved discrimination between phenotypic mimics. In this ex-
periment, although the model produced a higher AUC (0.96 for
cardiac amyloidosis, 0.98 for aortic stenosis, and 0.97 for HCM),
there was substantial confusion when other causes were intro-
duced, suggesting that a model trained only on age- and sex-
matched controls would primarily identify LVH.

Discussion
The AI-guided workflow used in this cohort study was a deep
learning system that automatically quantified LV wall thick-

ness on echocardiography while also predicting the cause of
LVH as either HCM or cardiac amyloidosis. The deep learning
algorithm performed measurements of ventricular thickness
and diameter well within the variance of human clinical test-
retest assessment while aiding the detection of subtle ven-
tricular phenotypes that tend to be challenging for human read-
ers. This integration of LV measurement and prediction of cause
offers an automated workflow for disease screening from ech-
ocardiography, the most frequently used form of cardiac
imaging. As such, echocardiography-based screening can pro-
vide a high index of suspicion that can facilitate more effi-
cient clinical evaluation, diagnosis, and care. Assimilation of
automated diagnostic algorithms with widely available clini-
cal imaging can reduce physician burden while streamlining
opportunities for more targeted cardiovascular care.

Studies28-30 have suggested that diseases such as cardiac
amyloidosis are underdiagnosed rather than rare. Given the
large heterogeneous population of patients with heart failure
with preserved ejection fraction,31 methods that might appro-
priately and efficiently increase suspicion for under-
recognized causes, such as subtypes of amyloidosis with newly
available targeted therapies, may help address a persistent
unmet need. Accordingly, an opportunity exists in the appli-
cation of efficient AI algorithms to increase recognition of his-
torically underdiagnosed diseases in stored images in data-
bases of large echocardiography laboratories. Notwithstanding
that all patient data should be interpreted in the clinical con-
text, our findings suggest that automated image analysis work-
flows could be feasibly implemented to rapidly identify pa-
tients who could benefit from follow-up screening in large
populations. As such, more prospective work is needed to
evaluate the potential of such algorithms to expedite appro-

Figure 2. Beat-to-Beat Evaluation of Ventricular Dimensions
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priate clinical evaluation, targeted testing, and confirmation
before eventual diagnosis and initiation of disease-
modifying therapy.

The results of the present study represent a step toward
the automated assessment of cardiac structures in echocar-
diogram videos through deep learning. Although individual
linear measurements take only seconds to measure, there is
inherent variation in frame and video selection that sets a floor
to the precision of manual measurements derived from ech-
ocardiography. Future work should augment echocardio-
graphic labels with annotations and information from car-
diac magnetic resonance imaging and other imaging modalities
to have more precision automation. By using an automated
method, potentially more precise measurements can be ob-
tained in busy clinical and research settings. Combined with

previous work8 assessing cardiac function, the present study
showed that deep learning models on echocardiogram im-
ages can automate an increasingly larger proportion of tasks
for assessing cardiac function and structure to provide more
holistic evaluation of cardiovascular disease. With improved
precision to detect ventricular remodeling and cardiac dys-
function, AI systems offer the potential for earlier detection
and treatment of subclinical cardiovascular disease, includ-
ing less common or underdiagnosed conditions.

Strengths and Limitations
This study has several strengths. A key challenge in the use of AI
in health care has been the lack of benchmark data sets for direct
comparison of models and engineering workflows across insti-
tutions. Data set inclusion criteria, differences in annotations and

Figure 3. Performance of Disease Cause Classification in the Independent External Validation Cohort
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disease definitions, and protocols of how to annotate images are
sources of data set shift that limit the direct comparison of model
performance.32,33 With fine-tuning on site-specific data, our
model compares favorably with prior state-of-the-art approaches
to assessing ventricular wall thickness and hypertrophy on open
benchmarks.16 Expanding on previous work,21 we collaborated
with stakeholders across Stanford Medicine to release our data
set of 12 000 deidentified PLAX echocardiogram videos as a re-
source for the medical machine learning community for future
comparisonandvalidationofdeeplearningmodels.Thisexpands
the prior data set of 10 030 apical 4-chamber videos21 to a total
of 22 030 echocardiogram videos made publicly available, which
to our knowledge, is the largest data set release of labeled medi-
cal videos with matched clinician annotations. We hope this data
set will facilitate new echocardiogram- and medical video–based
machine learning approaches. We also released the full code for
our algorithm and data-processing workflow.

This study also has limitations. First, because the training
images for this study were obtained from curated cohorts of pa-
tients from tertiary care specialty clinics, biases in patient se-
lection for these clinics can be present in deployment of such
algorithms. For example, although hereditary cardiac amyloi-
dosis is known to disproportionately affect Black individuals in
the US, they are underrepresented in study cohorts, and care
must be taken to extrapolate performance of deep learning
algorithms in populations with different demographic
characteristics.34,35 Second, our model was trained on videos

obtained by expert sonographers at an academic medical cen-
ter. With expansion in the use of point-of-care ultrasonogra-
phy for evaluation of cardiac function by noncardiologists, fur-
ther work is needed to understand model performance with
input videos of more variable quality and acquisition exper-
tise as well as in comparison with other imaging modalities.
Although our analyses across health systems suggest that our
deep learning algorithm is robust to variation in practice pat-
terns across continents, prospective deployment and testing of
AI systems in diverse clinical environments remain to be done.
A key limitation of research in this field has been a dearth of pro-
spective trials and evaluation of model performance during clini-
cal deployments.34 As such, further work and prospective vali-
dation are needed to more fully understand the effect of
AI-guided screening workflows on clinical care.

Conclusions
n this cohort study, using measurements across multiple heart-
beats and validated against 3 international cohorts, the deep
learning model more accurately identified subtle changes in
LV wall geometric measurements than did human assess-
ment and accurately identified the cause of LVH. A rapid, fully
automated workflow, the deep learning algorithm allows for
reproducible, precise measurements and may provide the foun-
dation for precision diagnosis of cardiac hypertrophy.
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