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Introduction

Cardiovascular diseases range from electrical conduction abnormalities to myocardial

dysfunction and structural abnormalities leading to abnormal blood flow. Due to the diversity of

cardiovascular conditions, many different diagnostic tools and imaging modalities are needed to

gather comprehensive information about an individual patient’s cardiac physiology. To assess

the heart, echocardiograms assess heart motion, electrocardiograms (ECGs) evaluate electrical

conduction, angiograms evaluate coronary artery blockages, and chest X-rays (CXRs) can

identify fluid buildup (examples in Figure 1a). While the data differ greatly in appearance

(ranging from waveforms to images and videos), these modalities share complementary

information that can uncover information not apparent in another modality. In parallel, diseases

frequently result in findings across diagnostic tests (a coronary artery blockage results in

electrical changes seen on ECG as well as myocardial dysfunction on echocardiogram videos).

While all these cardiovascular diagnostic modalities encode information about the heart, prior

work in machine learning predominantly focuses on one modality at a time. In applying deep

learning to cardiology, models have been developed to predict left ventricular ejection fraction

from echocardiograms1, identify rhythm disorders from ECGs2, interpret angiographic coronary

artery stenosis from angiograms3, and estimate cardiac size and pulmonary edema from CXRs4.

In clinical practice, physicians use orthogonal diagnostic tests because findings can be more

apparent in a particular modality than another (a subtle ECG change can be visualized as an

obvious occlusion on a coronary angiogram). However, modalities vary in cost, availability, and

invasiveness. Given the close relationship of findings for the same disease between these

diagnostic modalities, it is important to have a shared multimodal representation between them.

A recent development in machine learning is the use of contrastive learning to link images and

corresponding text captions5,6. These contrastive methods have also been used to link medical

images and text reports in several different areas, including radiology7–9, pathology10,11, and

cardiac ultrasound12.

In this work, we introduce Contrasting Learning Embedding Representation of Cardiology

(CLERC), a multimodal model linking diagnostic modalities across cardiovascular testing.

CLERC builds on the key insight that information from the same patient, even of different
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modalities, are closely related and, as a result, can be treated as positive pairs in contrastive

learning. CLERC learns encoders for each of the diagnostic modalities, as well as for the

corresponding text reports. We show that the representations learned by CLERC can perform

retrieval across modalities and that the representations can be used to perform important

clinical diagnostic tasks.

Results

Curating a multimodal cardiology dataset
We collected a dataset of 382,803 patients from Cedars-Sinai Medical Center from 2005 to

2022. The dataset consisted of four diagnostic modalities (echocardiograms, EKGs,

angiograms, and CXRs), along with the text reports of clinician interpretations for each of the

diagnostic modalities. While sharing some similar vocabulary, text reports vary tremendously

across modalities, so each text report language is treated as an additional modality. In the

dataset, 102,480 patients had echocardiograms, 307,559 patients had EKGs, 17,338 patients

had angiograms, and 226,835 patients had CXRs. The number of patients with each pair of

modalities is given in Table 1, and the demographics of the patients in the dataset are given in

Table 2.

Learning multimodal representations with contrastive learning
CLERC is a medical model linking echocardiogram videos, ECG waveforms, angiogram videos,

and CXR images, along with the corresponding clinician text reports into a shared latent space.

CLERC trains separate video convolutional neural networks as encoders for echocardiogram

and angiogram videos, a 1-D convolutional neural network as the encoder for the ECG

waveforms, a vision transformer as the encoder for CXR images, and a shared transformer for

all of the text report modalities. CLERC is trained using a contrastive learning loss between all

pairs of distinct modalities. In each batch, a set of inputs from each modality from distinct

patients is given to CLERC, and the contrastive loss trains the encoders to move embeddings

from the same patient closer together while moving embeddings from distinct patients further

apart.

Cross-modal retrieval



The latent space learned by CLERC is shared across modalities, allowing us to identify related

concepts or similar findings across modalities. To assess this ability, we use CLERC to match

samples across modalities measured from the same patient (Figure 1b).

For each distinct pair of modalities, we select all patients that have both modalities available and

select one sample from each modality. If multiple samples are available, the pair of samples that

are closest temporally are selected. Next, CLERC is provided one sample from the first

modality, and ranks all samples from the second modality by cosine similarity to attempt to

identify the matched sample from the same patient. This retrieval process is repeated for all

samples from the first modality, and the median percentile of the retrievals is used to measure

CLERC’s performance. This task is then repeated for all distinct pairs of modalities (Table 3).

The cross-modal retrievals fall into several groups: (1) diagnostic modality and corresponding

text report (ex. echocardiogram video used to retrieve echocardiogram text report), (2)

diagnostic modality to retrieve distinct diagnostic modality (ex. echocardiogram video to retrieve

EKG waveform), (3) diagnostic modality to retrieve mismatched text report (ex. echocardiogram

video to retrieve EKG text report), and (4) text report to retrieve distinct text report (ex.

echocardiogram text report to retrieve EKG text report).

First, we find that diagnostic modality and corresponding text reports can be retrieved with high

accuracy, with all pairs resulting in a median percentile of at most 13.7. Other than the

angiogram modalities, which had the smallest amount of training data and the least variation

between patients, all other diagnostic-to-text and text-to-diagnostic retrievals resulted in a

median percentile of at most 4.1.

Next, we find that CLERC is able to accurately retrieve across the diagnostic modalities, with

EKG waveform-to-angiogram video retrieval resulting in the worst performance with a median

percentile of 8.6. Similarly, if the angiogram modalities are excluded, the worst performance

remaining is 3.1.

We additionally find that diagnostic modality to mismatched text reports and text-to-text retrieval

perform well above random. However, retrieval using the raw diagnostic data performs better in

all cases, suggesting that the raw diagnostic data contains a substantial amount of information

not present in the text reports.



Predictive tasks
Next, we assess the ability of CLERC’s embeddings to predict various clinical measurements

from each modality (Table 4). We assess this predictive ability in two settings: zero-shot and

linear probing. In the zero-shot setting (Figure 1c), there is no explicit training; instead, the text

encoder is used to generate an embedding for a prompt corresponding to each predictive task,

and its cosine similarity with the embedding of the corresponding diagnostic modality is used as

the prediction (full list of prompts in Supplementary Table 1). In the linear probing setting, the

training set is used to train a linear regression or logistic regression model over the embeddings

of the diagnostic modality.

In the zero-shot setting, CLERC’s embeddings predict all tasks well above the random baseline.

In the linear probing setting, the performance improves on all tasks. The echocardiogram and

EKG prediction tasks perform comparably to prior fully supervised models. The angiogram

predictive tasks are the most challenging: the training set is the smallest, the views are less

standardized than those of echocardiograms, and occlusions are not visible in all videos.

Cross-modality predictions
The shared representation of CLERC allows predictions of measurements using other

modalities, which can allow cheaper and faster modalities to estimate measurements from the

more difficult-to-obtain modalities. We also find that the embeddings are closely linked to

common demographic attributes.

First, we find that the CLERC’s representations for all modalities are closely linked to the age

(R2 of at least 0.529 across all modalities) and gender (AUROC of at least 0.905 across all

modalities) of patients. Several potential cross-modal predictions are also of potential interest.

First, we find EKGs are able to estimate LVEF with an AUROC of 0.415. While the performance

is lower than that of using echocardiograms, EKGs are much faster to obtain, potentially

allowing EKGs to be used as a screening tool. Similarly, echocardiograms perform relatively well

in predicting occlusion, consolidation, and edemas, potentially enabling their use as a screening

or triage tool to reduce the invasiveness of angiograms or the radiation of CXRs.

Discussion



Leveraging contrastive learning to inform the relationship between medical diagnostics for the

same patient, multimodal models can recapitulate the relationships between complementary

medical tests. Different diagnostic modalities provide distinct insights into the heart, and a joint

embedding from a foundation model can highlight important clinical findings of cardiac diseases.

In this study, we utilize the comprehensive cardiac testing of over 300,000 patients from an

academic medical center to train CLERC, a multimodal cardiovascular foundation model.



Methods
Data curation
We collected a dataset consisting of 382,803 distinct patients from Cedars-Cinai Medical Center

between 2005 and 2022. The dataset was split into training, validation, and test sets by patient.

The training set consisted of 306,242 patients, the validation set consisted of 38,281 patients,

and the test set consisted of 38,201 patients.

For each patient, we collected all available echocardiogram videos, echocardiogram text

reports, EKG waveforms, EKG text reports, angiogram videos, angiogram text reports, chest

X-ray images, and chest X-ray text reports. The echocardiogram videos were cropped to a tight

square around the scanning sector and scaled to 112 x 112 pixels. The EKG we processed as

12-channel waveforms at 500 Hz. The angiogram videos were scaled to 112 x 112 pixels. The

chest X-ray images were cropped to 256 x 256 pixels.

This research was approved by the Cedars-Sinai Medical Center Institutional Review Boards.

Encoders

For each modality, we use a deep learning model to encode the samples into 512-dimensional

embeddings. We use separate weights for the echocardiogram, EKG, angiogram, and CXR

modalities, and a shared set of weights for all text modalities.

We used the R(2+1)D-18 architecture, a convolutional neural network with decomposed spatial

and temporal convolutions, as echocardiogram and angiogram encoders13. The models were

initialized with Kinetics-400 weights14, and trained separately after initialization. For the

echocardiogram videos, clips of 16 frames were generated by sampling every other frame

(videos were natively 30 frames per second). For the angiogram videos, clips of 16 frames were

generated by sampling every frame (videos were natively 15 frames per second). For data

augmentation, both echocardiogram and angiogram videos were padded with 12 pixels per side

and cropped back to 112 x 112 pixels.
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We used a 1D convolutional neural network as the EKG encoder15. The model was initialized

with random weights. Clips of 2500 samples were sampled as input (waveform is natively 5000

samples at 500 Hz).

We used the ViT-B/32 architecture, a vision transformer, as the CXR encoder16. The model was

initialized with weights trained by CLIP6. For data augmentation, random 224 x 224-pixel crops

were used as input.

We used a masked self-attention transformer as the encoder for all text modalities17. The model

was initialized with weights trained by CLIP6. No data augmentation was applied. We used the

CLIP byte pair encoding as the tokenizer18.

Model training
We train CLERC using the sum of the CLIP losses between all pairs of modalities present in a

batch. We use a stochastic gradient descent optimizer with an initial learning rate of 1e-4, a

momentum of 0.9, and batch size of 32 for 60 epochs. The learning rate is decayed by a factor

of 10 every 20 epochs. The epoch with the lowest validation loss is selected as the final model.

During training, each patient appears once per epoch. If a patient has multiple samples from a

modality, a random sample is selected for that batch. We group the patients into batches based

on the modalities available for that patient. The remaining unmatched patients are randomly

grouped into batches.

Retrieval
We performed pairwise retrieval for each distinct pair of modalities. For each pair, we sampled

all patients with samples from both modalities. If a patient had multiple samples from either

modality, the pair of samples that were the closest temporally was selected. For all samples, the

corresponding encoder is used to generate an embedding. Then, for each sample of the first

modality, the cosine similarity is used to rank all samples of the second modality to retrieve the

sample from the matching patient. This process is repeated in the opposite direction and then

for all pairs of modalities.

Zero-shot predictions
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We perform zero-shot prediction tasks for both regression and binary classification tasks. For

both tasks, we use the encoder to compute the embeddings for all test samples of the selected

modality.

For binary classification tasks, we used a single text prompt and calculated an embedding for it

using the text encoder. The cosine similarity between the embedding of the sample and the

embedding of the text prompt was used as the prediction for the label.

For regression tasks, we used a list of text prompts sweeping the normal range of values for the

parameter. To predict the parameter, we use the embedding of the sample to calculate a

probability distribution over the values, and use the expected value of this distribution as the

estimate. To do this, we generate an embedding for each text prompt using the text encoder. We

then calculate the cosine similarity between the sample embedding and the embedding of each

prompt. We scale the cosine similarities by the temperature learned during training and take the

softmax of the resulting values to generate the distribution.

For both binary classification and regression tasks, we average the predictions over all samples

in a study.

Linear Probing
For both regression and binary classification tasks, we calculate embeddings for all samples in

the training, validation, and test sets. The training embeddings are used to train a linear

regression model for regression tasks and used to train a logistic regression model for binary

classification tasks. The validation set is used to select a regularization value, and the test set is

used to report final performance.

For both binary classification and regression tasks, we average the predictions over all samples

in a study.

For the cross-modal predictions, we select patients with the modality used for making the

prediction, along with the modality used to determine the ground truth label. If multiple labels are

available, the closest label temporally is used.



(a)

(b)

(c)
Figure 1: (a) Example diagnostic modalities used in cardiology. (b) Cross-modal retrieval using

CLERC. (c) Zero-shot predictions using CLERC.

Table 1: Number of patients with each pair of modalities.

Table 2: Patient demographics in the dataset.



Table 3: Median percentile for retrieval across modalities in the test set.



Table 4: Zero-shot and linear probing of CLERC embeddings using standard modalities for

predicting various measurements.

Table 5: Cross modal predictions with linear probing.
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Supplementary Table 1: Text prompts used for zero-shot predictions.


