
www.thelancet.com/digital-health   Vol 6   January 2024	 e70

Articles

Lancet Digit Health 2024; 
6: e70–78

Published Online 
December 7, 2023 
https://doi.org/10.1016/
S2589-7500(23)00220-0

See Comment page e4

Department of Cardiology, 
Smidt Heart Institute 
(D Ouyang MD, J Theurer BS, 
N R Stein MD, N Yuan MD, 
G Duffy BS, R K Sandhu MD, 
J Ebinger MD, P Botting BS, 
M Jujjavarapu BS, S S Chugh MD, 
S Cheng MD, C M Albert MD), 
Division of Artificial 
Intelligence in Medicine, 
Department of Medicine 
(D Ouyang, S S Chugh), and 
Division of Anesthesia, 
Department of Surgery 
(M Nurok MD), Cedars-Sinai 
Medical Center, Los Angeles, 
CA, USA; Department of 
Computer Science 
(J W Hughes BS, B He PhD, 
J Y Zou PhD), Division of 
Cardiology (J E Tooley MD, 
M Perez MD) and Division of 
Bioinformatics Research 
(J H Chen MD PhD), Department 
of Medicine, and Department 
of Biomedical Data Science 
(J Y Zou), Stanford University, 
Palo Alto, CA, USA; Milstein 
Division of Cardiology, 
Department of Medicine 
(P Elias MD, T Poterucha MD, 
A Perotte PhD) and Department 
of Biomedical Informatics 
(P Elias), Columbia University 
Irving Medical Center, 
New York, NY, USA; Division of 
Cardiovascular Medicine 
(B Claggett PhD) and Division of 
Preventive Medicine 
(N R Cook PhD), Department of 
Medicine, Brigham and 
Women’s Hospital, Boston, 
MA, USA

Electrocardiographic deep learning for predicting post-
procedural mortality: a model development and validation 
study
David Ouyang, John Theurer, Nathan R Stein, J Weston Hughes, Pierre Elias, Bryan He, Neal Yuan, Grant Duffy, Roopinder K Sandhu, 
Joseph Ebinger, Patrick Botting, Melvin Jujjavarapu, Brian Claggett, James E Tooley, Tim Poterucha, Jonathan H Chen, Michael Nurok, Marco Perez, 
Adler Perotte, James Y Zou, Nancy R Cook, Sumeet S Chugh, Susan Cheng, Christine M Albert

Summary
Background Preoperative risk assessments used in clinical practice are insufficient in their ability to identify risk for 
postoperative mortality. Deep-learning analysis of electrocardiography can identify hidden risk markers that can help 
to prognosticate postoperative mortality. We aimed to develop a prognostic model that accurately predicts postoperative 
mortality in patients undergoing medical procedures and who had received preoperative electrocardiographic 
diagnostic testing.

Methods In a derivation cohort of preoperative patients with available electrocardiograms (ECGs) from Cedars-Sinai 
Medical Center (Los Angeles, CA, USA) between Jan 1, 2015 and Dec 31, 2019, a deep-learning algorithm was 
developed to leverage waveform signals to discriminate postoperative mortality. We randomly split patients (8:1:1) 
into subsets for training, internal validation, and final algorithm test analyses. Model performance was assessed 
using area under the receiver operating characteristic curve (AUC) values in the hold-out test dataset and in 
two external hospital cohorts and compared with the established Revised Cardiac Risk Index (RCRI) score. The 
primary outcome was post-procedural mortality across three health-care systems.

Findings 45 969 patients had a complete ECG waveform image available for at least one 12-lead ECG performed 
within the 30 days before the procedure date (59 975 inpatient procedures and 112 794 ECGs): 36 839 patients in 
the training dataset, 4549 in the internal validation dataset, and 4581 in the internal test dataset. In the held-out 
internal test cohort, the algorithm discriminates mortality with an AUC value of 0·83 (95% CI 0·79–0·87), 
surpassing the discrimination of the RCRI score with an AUC of 0·67 (0·61–0·72). The algorithm similarly 
discriminated risk for mortality in two independent US health-care systems, with AUCs of 0·79 (0·75–0·83) and 
0·75 (0·74–0·76), respectively. Patients determined to be high risk by the deep-learning model had an unadjusted 
odds ratio (OR) of 8·83 (5·57–13·20) for postoperative mortality compared with an unadjusted OR of 2·08 
(0·77–3·50) for postoperative mortality for RCRI scores of more than 2. The deep-learning algorithm performed 
similarly for patients undergoing cardiac surgery (AUC 0·85 [0·77–0·92]), non-cardiac surgery (AUC 0·83 
[0·79–0·88]), and catheterisation or endoscopy suite procedures (AUC 0·76 [0·72–0·81]).

Interpretation A deep-learning algorithm interpreting preoperative ECGs can improve discrimination of postoperative 
mortality. The deep-learning algorithm worked equally well for risk stratification of cardiac surgeries, non-cardiac 
surgeries, and catheterisation laboratory procedures, and was validated in three independent health-care systems. 
This algorithm can provide additional information to clinicians making the decision to perform medical procedures 
and stratify the risk of future complications.

Funding National Heart, Lung, and Blood Institute.

Copyright © 2023 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 
license.

Introduction
In the USA, more than 20 million surgeries are 
performed annually.1 Preoperative risk assessment for 
adverse procedural outcomes—the most serious of 
which include death—is routinely performed in clinical 
practice.2,3 However, current approaches to predicting 
postoperative risk remain inadequate.4–6 Over the past 
three decades, expert guidelines and tools for facilitating 
preoperative assessments have evolved to include 

biomarkers and demographic and clinical data.6–8 
However, even the most comprehensive risk scores based 
on recognised risk markers provide only a modest ability 
to discriminate postoperative outcomes, with areas under 
the receiver operating characteristic curve (AUC) ranging 
from 0·57 to 0·75.6,9–12

Early identification of patients at high risk for post-
procedural mortality can guide patient care and the 
consideration of alternative treatment pathways, and aid in 
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shared decision making and communication of risk to 
patients.13,14 Post-operative biomarker levels have been used 
to stratify patients according to risk of postoperative 
mortality, with strong discrimination;15–17 however, the 
dependence on post-procedural information limits the 
opportunity to risk-stratify preoperatively. Novel methods 
of perioperative risk assessment are needed to achieve 
better discrimination across the heterogeneous population 
of preoperative patients than is currently possible.

The emergence of deep-learning analyses now offers the 
opportunity to capture previously unmeasured risk 
markers and simultaneously assess complex, interactive 
relationships from readily available clinical resources for 
risk prediction.18–20 One such ideal resource for perioperative 
risk discrimination is the 12-lead electrocardiogram (ECG). 
ECGs are inexpensive, non-invasive, and rapid diagnostic 
tests that are routinely obtained in the preoperative setting 
as per clinical guidelines.21,22 Previous studies have applied 
deep-learning algorithms to ECG waveforms to identify 
clinical traits and outcomes not previously associated with 
conventional ECG measures or even expert human ECG 
interpretations.3,23–27 Therefore, we hypothesised that deep-
learning algorithms applied to a single preoperative ECG 
could reliably discriminate postoperative mortality 
outcomes and improve upon established clinical 
approaches to preoperative assessment. To evaluate this 
hypothesis, we did a comprehensive study of an artificial 
intelligence (AI) algorithm trained on perioperative ECGs 
and evaluated the performance of the resulting model on 
cohorts from three independent health-care systems.

Methods
Derivation cohort
For this model development study, all patients undergoing 
inpatient procedures at Cedars-Sinai Medical Center 
(CSMC) between Jan 1, 2015 and Dec 31, 2019 were included 
in the derivation cohort. Of this source population, we 

included in the analysis all patients who had a complete 
ECG waveform image available for at least one 12-lead ECG 
performed within the 30 days before the procedure date. 
From this derivation cohort, we randomly split 
patients (8:1:1) into subsets for training, internal validation, 
and final algorithm test analyses using a computer-
generated random sequence. All ECG waveform data were 
acquired through the clinical enterprise data warehouse at 
a sampling rate of 500 Hz and extracted as 12 × 5000 matrices 
of amplitude values corresponding to a 10 s period. We 
excluded ECGs with missing leads from the analyses. We 
also obtained associated clinical data for each patient from 
electronic health records. The study was approved by the 
Institutional Review Boards of Cedars-Sinai Medical 
Center, Stanford University, and Columbia University. 
Exemption from informed consent was obtained given the 
use of retrospective, de-identified data for the study. We 
used the TRIPOD reporting guidelines for this Article.

Clinical and outcome assessments
Patients’ demographic, clinical, and outcome data were 
assessed from electronic health records at the time of 
each procedure. From these data, the preoperative 
clinical characteristics needed for calculating the Revised 
Cardiac Risk Index (RCRI)13 were identified, including 
coronary artery disease, congestive heart failure, stroke 
or transient ischaemia attack, preoperative insulin use, 
creatinine concentrations higher than 2 mg/dL, and 
surgery with increased risk of complications as defined 
by American College of Cardiology and American Heart 
Association guidelines.2 For the main analysis, the 
outcome was death during hospitalisation or during 
readmission within 30 days. Procedures were classified 
by type, including procedures performed in the operating 
room by cardiac surgeons (cardiac surgeries), procedures 
performed in the operating room by other surgeons 
(non-cardiac surgeries; appendix p 1), and procedures 

Research in context

Evidence before this study
Early identification of patients at high risk for post-procedural 
mortality can guide patient care and the consideration of 
alternative treatment pathways, and aid in shared decision 
making and communication of risk to patients. We did a search 
of PubMed for society guidelines and primary research articles 
to inform our understanding of the field. We did not do a formal 
meta-analysis but relevant literature from English-language 
publications was reviewed. We found that postoperative 
biomarker levels have been used to risk-stratify patients for 
postoperative mortality, with intermediate discrimination 
ability. However, even the most comprehensive risk scores 
based on recognised risk markers provide only a modest ability 
to discriminate postoperative outcomes. All available literature 
was reviewed between July 1, 2021 and Jan 1, 2023 before 
publication of this Article.

Added value of this study
Deep-learning approaches applied to preoperative 
electrocardiograms (ECGs) can offer additional information that 
could improve discrimination of postoperative mortality 
outcomes and improve on current preoperative risk-
stratification tools. PreOpNet is a deep-learning algorithm that 
leverages ECG waveform signals to augment discrimination of 
postoperative mortality outcomes, and its performance was 
evaluated in three independent health-care systems.

Implications of all the available evidence
ECGs contain a lot of information that can assist in preoperative 
risk stratification, and the evaluation of ECGs using deep 
learning can discriminate postoperative mortality better than 
when using the established Revised Cardiac Risk Index.

See Online for appendix



Articles

www.thelancet.com/digital-health   Vol 6   January 2024	 e72

performed in the catheterisation laboratory or endoscopy 
suite. Procedural complications were identified using 
relevant postoperative diagnoses that were present for 
the first time after the procedure date or at discharge. 
Outcomes were adjudicated up to 30 days after the date 
of procedure, with multiple procedures having 
independent outcome windows on the basis of procedure 
date. If the same outcome fell within the 30-day window 
for multiple procedures, the outcome was attributed to 
each of the procedures. Diagnoses were encoded by 
International Classification of Diseases (ICD)-9 or 
ICD-10 codes, and major adverse cardiovascular events 
(MACE) were identified using previously validated 
criteria from the electronic health record.28,29

ECG assessments
We trained and validated a deep-learning algorithm 
based on waveform signals from a single preoperative 
12-lead ECG, termed PreOpNet, on the outcome of 
postoperative mortality (figure 1). The input of the model 
was a 12-lead ECG obtained within the 30 days before an 
operative procedure, and the outputs were the 
hospitalisation-level outcomes following that procedure. 
Patients with multiple procedures were treated 
independently during model training, with each ECG 
paired with the most proximal subsequent procedure. To 
maximise sample size, similar to previous studies of 
deep learning using electrocardiography, all ECGs in the 
window of interest were used in the training set as 
training examples. In the internal validation and test 
cohorts, the analysis was limited to a single ECG (ie, the 
most proximal to the procedure of interest for an 
individual patient) to mimic how the model would be 
applied in clinical practice. When used, clinical features 
were input into the last fully connected layer before 
model output. Models were trained using the PyTorch 
deep-learning library.

Deep-learning algorithm development
Based on previous literature regarding lightweight, deep-
learning model architecture design and neural 
architecture search, PreOpNet was designed to analyse 
12-lead ECG waveform data starting with atrous 
convolutions followed by subsequent multi-channel 
one-dimensional convolutions. The number of layers 
paralleled the design of EfficientNet and were limited to 
less than a tenth of the size of previously described 
architectures to optimise model run-time and minimise 
model complexity.3–5 After initial atrous layers, PreOpNet 
incorporated convolutional layers with an inverted 
residual structure, for which the input and output are 
bottleneck layers with an intermediate expansion layer. 
In each set of expansion layers with bottleneck layers 
preceding and succeeding, the number of input channels 
gradually increased to allow for the integration of 
information across ECG leads. The deep-learning model 
had only the 12-lead ECG waveform data as inputs, and 

Figure 1: CSMC cohort sampling
(A) ECGs within 30 days of an inpatient procedure were selected for the study and paired with postoperative 
outcomes. (B) A novel, lightweight model architecture was trained to discriminate postoperative mortality 
outcomes and complications, with input of the nearest 12-lead ECG. (C) Participant selection flow chart. 
CAD=coronary artery disease. CSMC=Cedars-Sinai Medical Center. CUMC=Columbia University Medical Center. 
ECG=electrocardiogram. MACE=major adverse cardiovascular events. SHC=Stanford Healthcare.
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comparison, non-deep-learning models included clinical 
data, such as age and sex, as well as structured ECG 
information.

We initialised the model with random weights and 
trained with a loss function of binary cross-entropy for 

100 epochs using an Adam optimiser with an initial 
learning rate between 0·005 and 0·0001. Early stopping 
was done on the basis of the validation dataset’s AUC. In 
the process of hyperparameter tuning, we grid-searched 
the atrous convolution’s dilation and step-size for optimal 

Figure 2: Interpretability analysis of PreOpNet
Select electrocardiograms before procedures with positive and negative outcomes are presented, highlighting the most relevant features as determined by 
interpretability analysis: discrimination of mortality and major adverse cardiovascular events.
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AUC with all other hyperparameters held constant 
(appendix p 6). We note that our new model architecture is 
less than a 50th of the size of previous models and efficient 
enough to be run on a standard computer (appendix p 2). 
Local, interpretable, model-agnostic explanations were 
used to identify and visualise relevant features in the ECG 
used for model decision making (figure 2).

Evaluation of model performance and comparison with 
an established risk calculator
Following algorithm development in the training and 
internal validation datasets, the ability of PreOpNet to 
discriminate the primary outcome of postoperative 
mortality in the held-out internal test dataset was assessed 
using AUC values. To understand the model’s performance 
in key patient populations, we did independent analyses 
that were limited to either: (1) patients undergoing cardiac 
surgery, (2) non-cardiac surgery, or (3) interventional 
endoscopy suite or catheterisation laboratory procedures; 
or (4) patients with known cardiovascular disease or 
undergoing intermediate-risk or high-risk surgeries. We 
compared the performance of PreOpNet in the held-out 
internal test dataset with an established risk calculator 
(using the RCRI score),6 conventional ECG measures and 
interpretations, and alternative algorithms based on ECG 
measurement data.

The association of PreOpNet with perioperative 
outcomes was compared with that of an RCRI score >2, a 
commonly used threshold to identify high perioperative 
risk associated with a MACE rate greater than 8% in 
meta-analyses. In the training set, 15% of the cohort had 
an RCRI score >2; thus, we set a similar threshold for 
high perioperative risk (ie, the top 15%) for PreOpNet. We 
estimated odds ratios (ORs), sensitivity, and specificity for 
postoperative mortality and MACE at this threshold. In 
addition, we did secondary analyses with MACE as the 
outcome. We calculated the continuous and categorical 
net reclassification index (NRI) for mortality and MACE 
rate associated with the addition of PreOpNet to an RCRI 
score >2, and used 10 000 bootstrapped samples to obtain 
95% CIs for each estimate. To discern the potentially 
most informative features of the ECG waveform, in the 
context of comparing performance to that of the RCRI, 
0·5% of the waveform for 1000 samples per study were 
iteratively randomly perturbed to identify which changes 
most affected model performance. We evaluated 
implementation timings using Python’s timeit module.

External validation of PreOpNet for discrimination of 
postoperative mortality
To assess algorithm performance in other hospital 
settings, the PreOpNet algorithm was applied without 
any additional further fine-tuning or training to patients 
from two separate external health-care systems. We did 
not transfer patient data across institutions to maximise 
the rigour of external validation; instead, investigators 
from each external institution independently collected 

information on outcomes and ran model inference on 
their datasets to report summary statistics. The Stanford 
Healthcare (SHC) cohort included patients from 
May 1, 2007 to June 30, 2018. All data on clinical 
characteristics and outcomes were provided through the 
Stanford Research Data Repository Observational Medical 
Outcomes Partnership common data model. ECG 
waveform data were provided through the TraceMaster 
data management system (Philips Healthcare; Boston, 
MA, USA) and pre-processed with a low-pass filter to 
correct for wandering baselines and normalisation of 
waveform data. The Columbia University Medical Center 
(CUMC) cohort included patients from Jan 1 to 
March 31, 2020. At CUMC, data on clinical characteristics 
and outcomes were obtained from the clinical enterprise 
data warehouse and ECG waveform data were obtained 
from the Muse data management system (GE Healthcare, 
Chicago, IL, USA). For each of the two external cohorts, 
the AUC for postoperative mortality from analyses of a 
single preoperative ECG was calculated. Procedures were 
linked to the most proximal preceding ECG performed 
within 30 days before, and postoperative mortality was 
assessed as mortality within 30 days of the procedure or 
during hospitalisation (appendix p 1).

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report.

Results
Between Jan 1, 2015 and Dec 31, 2019, 153 465 patients 
aged 18 years or older in the CSMC underwent 
261 328 procedures in the operating room, catheterisation 
laboratory, or endoscopy suite. Of these individuals, 
45 969 patients had a complete ECG waveform image 
available for at least one 12-lead ECG performed within 
the 30 days before the procedure date (corresponding 
to 59 975 inpatient procedures and contributing 
112 794 ECGs; figure 1). After randomisation, there were 
36 839 patients (contributing 90 633 ECGs) in the training 
dataset, 4549 patients (contributing 11 217 ECGs) in the 
internal validation dataset, and the remaining 
4581 patients (contributing 10 944 ECGs) in the internal 
test dataset (table 1).

The mean age at the time of preoperative ECG was 
65·1 years (SD 15·9), 45·1% were women, and 21·7% had 
pre-existing coronary artery disease (table 1). There were 
1065 (1·8%) subsequent deaths and 1730 (2·9%) post-
procedural MACE events during hospitalisation in the 
cohort (table 1). Compared with patients who were 
excluded on the basis of not having ECG data within 
30 days of their procedure, patients with preoperative 
ECGs were more likely to be older, male, and with more 
cardiovascular risk factors (appendix p 3).

For the outcome of mortality, the PreOpNet algorithm 
was developed in the derivation cohort using training, 
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validation, and test datasets (figure 3). In the held-out test 
dataset, the algorithm was then shown to discriminate 
mortality with an AUC of 0·83 (95% CI 0·79–0·87; 
table 2). By contrast, the conventional RCRI score 
discriminated postoperative mortality with an 
AUC of 0·67 (0·61–0·72). In the 15% of patients who had 
an RCRI score of 2 or higher, the unadjusted OR for 
postoperative mortality was 2·08 (95% CI 0·77–3·50). In 
comparison, patients in the top 15% of the 
PreOpNet algorithm had an adjusted OR of 9·17 (95% CI 
5·85–13·82) for postoperative mortality (appendix p 5). 
The addition of the components of the RCRI score to the 
PreOpNet algorithm trained only on 12-lead ECG 
waveforms did not significantly improve model 
performance (AUC 0·83 [95% CI 0·77–0·89]) in the test 
dataset (appendix p 7). There were no significant 
differences in model performance in patient subsets 
defined by age, sex, or race. At the pre-specified calibrated 

threshold of risk comparable to an RCRI score of 2 or 
higher, the PreOpNet algorithm demonstrated a 
specificity of 0·87 (0·86–0·88) and sensitivity of 0·57 
(0·48–0·68) for postoperative mortality (appendix p 5). 
In comparison, the RCRI score of 2 or higher had slightly 
higher specificity (0·94 [0·93–0·94]) but much lower 
sensitivity (0·12 [0·05–0·19]). At this threshold, the 
positive predictive value was slightly higher for PreOpNet 
than for the RCRI score (table 2).

PreOpNet performed well both in patients undergoing 
major surgical procedures in the operating room and in 
patients undergoing procedures in the catheterisation 
laboratory or endoscopy suite. For patients with surgeries 
in the operating room, PreOpNet discriminated 
postoperative mortality with an AUC of 0·84 (0·76–0·92), 
compared with an AUC of 0·70 (0·61–0·78) for the RCRI 
score (appendix p 7). For patients with procedures in the 
catheterisation laboratory or endoscopy suite, PreOpNet 
discriminated postoperative mortality with an 
AUC of 0·76 [0·72–0·81]), compared with an AUC of 0·66 
(0·60–0·72) for the RCRI score (appendix p 7). PreOpNet 
performed similarly in discriminating mortality in 
patients undergoing cardiovascular surgery (AUC 0·85 
[0·77–0·92]) and patients undergoing non-cardiac 
surgery (AUC 0·83 [0·79–0·88]; appendix p 7). The RCRI 
score discriminated postoperative mortality with an 
AUC of 0·62 (0·52–0·72) in patients undergoing cardiac 
surgery and an AUC of 0·70 (0·63–0·77) in patients 
undergoing non-cardiac surgery (appendix p 7).

Given that ECGs are often not obtained in low-risk 
patients undergoing low-risk procedures, a secondary 
analysis was performed in patients most likely to be 
considered at least moderate-risk (patients either with 
known cardiovascular disease or those undergoing 
elective intermediate-risk or high-risk surgery). Without 
additional subset-specific fine-tuning, the PreOpNet 
algorithm discriminated postoperative mortality in those 
considered to be at least moderate-risk with an 
AUC of 0·80 (0·71–0·88; appendix p 7). In clinical 
practice, preoperative risk assessment most commonly 
occurs in the elective procedural setting. Thus, secondary 
analyses were performed that were limited to those 
patients in the CSMC test cohort who were undergoing 
elective procedures (3691 patients contributing 
5165 ECGs). In this setting, the PreOpNet algorithm 
discriminated postoperative mortality with an AUC of 
0·80 (0·67–0·92; appendix p 7).

To assess the external validity of the PreOpNet algorithm, 
its discriminatory ability was evaluated in two external 
health system cohorts. The external test evaluation 
cohorts included 101 375 patients in the SHC system, 
contributing 162 540 ECGs, and 9028 patients in the 
CUMC system, contributing 9028 ECGs. In the SHC 
cohort, the postoperative mortality rate was 1·3% and 
PreOpNet discriminated this outcome with an 
AUC of 0·75 (95% CI 0·74–0·76). In the CUMC cohort, 
the postoperative mortality rate was 1·6% and the 

Training 
subcohort

Validation 
subcohort

Test subcohort

Patients, n 36 839 4549 4581

Procedures, n 48 033 6013 5929

Electrocardiograms, n 90 633 11 217 10 944

Demographic and clinical characteristics

Age, years (SD) 65·2 (15·8) 65·0 (16·4) 64·6 (16·1)

Female 21 744 (45·3%) 2706 (45·0%) 2641 (44·6%)

Male 26 289 (54·7%) 3307 (55·0%) 3288 (55·4%)

Caucasian 34 412 (71·6%) 4255 (70·8%) 4143 (69·9%)

Black 5323 (11·1%) 662 (11·0%) 739 (12·5%)

Asian 3298 (6·9%) 406 (6·7%) 401 (6·8%)

Other 4998 (9·9%) 652 (10·5%) 685 (11·6%)

Heart failure 8689 (18·1%) 1192 (19·8%) 1119 (18·9%)

Diabetes 7880 (16·4%) 998 (16·6%) 1061 (17·9%)

Hypertension 16 638 (34·6%) 2187 (36·4%) 2063 (34·8%)

Coronary artery disease 10 421 (21·7%) 1293 (21·5%) 1305 (22·0%)

Stroke 2697 (5·6%) 352 (5·9%) 343 (5·8%)

Renal disease 4475 (9·3%) 640 (10·6%) 568 (9·6%)

Procedure types

Cardiovascular 19 840 (41·3%) 2595 (43·2%) 2447 (41·3%)

Intraperitoneal, intrathoracic, or suprainguinal 
vascular

8679 (18·1%) 1074 (17·9%) 1090 (18·4%)

Insulin use before admission 3022 (6·3%) 366 (6·1%) 374 (6·3%)

Creatinine >2 mg/dL 4408 (9·2%) 637 (10·6%) 557 (9·4%)

RCRI >2 2784 (5·8%) 327 (5·4%) 378 (6·4%)

Postoperative outcomes

Death during hospitalisation 865 (1·8%) 109 (1·8%) 91 (1·5%)

Cardiovascular death 21 (<0·1%) 7 (0·1%) 4 (0·1%)

Major adverse cardiovascular events 1400 (2·9%) 190 (3·2%) 140 (2·4%)

Cardiac arrest 182 (0·4%) 27 (0·4%) 18 (0·3%)

Myocardial infarction 203 (0·4%) 30 (0·5%) 20 (0·3%)

Heart block 129 (0·3%) 22 (0·4%) 9 (0·2%)

Pulmonary oedema 40 (0·1%) 4 (0·1%) 4 (0·1%)

Data are n (%), unless otherwise stated. RCRI=Revised Cardiac Risk Index.

Table 1: Characteristics and outcomes of the derivation cohort
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algorithm discriminated this outcome with an 
AUC of 0·79 (0·75–0·83; table 2). The PreOpNet algorithm 
pre-specified high-risk group (>15%) had an unadjusted 
OR of 5·88 (5·00–7·00) in SHC and 6·20 (3·87–10·41) in 
CUMC for mortality. Results from analyses of specificity, 
sensitivity, and positive and negative predictive value 
were similar in the external validation cohorts when 
compared with results observed in the CSMC cohort 
(table 2).

Secondary analyses were performed within the 
internal test dataset, which used a combined secondary 
MACE outcome that included non-fatal MACE and 
postoperative mortality. For this secondary outcome, the 
PreOpNet algorithm discriminated events in the held-
out internal test dataset with an AUC of 0·77 (95% CI 
0·73–0·80), whereas the RCRI score had an AUC of 0·63 
(0·59–0·68; table 2). Patients with an RCRI score of 2 or 
higher had an unadjusted OR of 1·67 (0·77–2·68) for 
MACE when compared with those with an RCRI score 
less than 2. By contrast, patients identified by the 
PreOpNet algorithm to be high-risk had an unadjusted 
OR of 5·38 (3·75–7·49) for MACE (table 2). The 
PreOpNet algorithm demonstrated a specificity of 0·88 
(0·88–0·89) and sensitivity of 0·41 (0·33–0·49), and the 
RCRI score again had higher specificity (0·94 
[0·93–0·94]) but much lower sensitivity (0·10 
[0·05–0·15]). The positive predictive value for MACE 
was higher for PreOpNet than for the RCRI, with 
similar negative predictive values (table 2).

The ability of the PreOpNet algorithm to reclassify risk 
in the internal hold-out test dataset was also evaluated. 
When compared with the RCRI score, application of the 
PreOpNet algorithm led to significant improvement in 
the continuous NRI (0·53 [95% CI 0·38 to 0·68]). In 
categorical analyses using the pre-specified threshold of 
risk (top 15% PreOpNet prediction), 981 (82·4%) of 
1190 patients originally classified as high-risk for MACE 
by the RCRI score (RCRI ≥2) were identified as low-risk by 
PreOpNet (appendix p 4). Of these high-to-low-risk 
reclassified patients, 33 (3·4%) experienced a MACE. By 
contrast, of the 4739 patients classified as low-risk by RCRI 
(RCRI <2), the PreOpNet algorithm reclassified 327 
(6·9%) as high-risk; of these patients, 26 (8·0%) 
experienced a MACE. Despite a fair amount of 
reclassification, the categorical NRI at this cutoff point 
was not significant for MACE (0·06 [95% CI –0·04 to 0·18]).

To compare the performance of our architecture with 
other deep-learning models, we implemented a recently 
described model for ECG waveforms to perform the 
same task and trained this benchmark model with the 
same training data with labels of postoperative outcomes. 
The previously published deep-learning architecture had 
an AUC of 0·68 (95% CI 0·65–0·70) for predicting death 
and an AUC of 0·57 (0·55–0·59) for predicting MACE.

In addition to superior performance in predicting 
mortality and complications, PreOpNet is a highly 
efficient deep-learning model architecture with fewer 

parameters and requiring less computational power to 
train (up to 100 times smaller) than other published 
architectures (appendix p 2). The improvement in 
speedup and computational efficiency allows for the 
model to be run solely on a standard central processing 
unit at inference time, which allows for a web interface 
deployment for ready access by clinicians (appendix p 7). 
In a series of repeated run-time experiments, the 
PreOpNet application accessed on a standard clinical 
workstation (Windows 10 64-bit operating system, 
3·8 GHz processor) was able to take in image data from 
50 de-novo ECGs and output postoperative risk estimates 
within 0·032 s (SD 0·004) per ECG for the local software 
installation and 0·041 s (SD 0·006) per ECG for the web 
application accessed by a mobile phone.

AUC Specificity Sensitivity PPV NPV OR*

Death

PreOpNet (CSMC) 0·83 
(0·79–0·87)

0·87 
(0·86–0·88)

0·57 
(0·48–0·68)

0·06 
(0·05–0·08)

0·99 
(0·99–0·99)

9·17 
(5·85–13·82)

PreOpNet (CUMC) 0·79 
(0·75–0·83)

0·86 
(0·80–0·92)

0·49 
(0·48–0·50)

0·03 
(0·02–0·03)

1·00 
(0·99–1·00)

6·20 
(3·87–10·41)

PreOpNet (SHC) 0·75 
(0·74–0·76)

0·93 
(0·91–0·94)

0·32 
(0·32–0·32)

0·02 
(0·02–0·02)

1·00 
(1·00–1·00)

5·88 
(5·00–7·00)

RCRI 0·67 
(0·61–0·72)

0·94 
(0·93–0·94)

0·12 
(0·05–0·19)

0·03 
(0·01–0·05)

0·99 
(0·98–0·99)

2·08 
(0·77–3·50)

MACE

PreOpNet (CSMC) 0·77 
(0·73–0·80)

0·88 
(0·88–0·89)

0·41 
(0·33–0·49)

0·08 
(0·06–0·10)

0·98 
(0·98–0·99)

5·38 
(3·75–7·49)

RCRI 0·63 
(0·59–0·68)

0·94 
(0·93–0·94)

0·10 
(0·05–0·15)

0·04 
(0·02–0·06)

0·98 
(0·97–0·98)

1·67 
(0·77–2·68)

CSMC denotes results for the internal held-out test dataset from the derivation cohort, and SHC and CUMC denote 
results for the external validation cohorts. AUC=area under the receiver operating characteristic curve. CSMC=Cedars-
Sinai Medical Center. CUMC=Columbia University Medical Center. MACE=major adverse cardiovascular events. 
NPV=negative predictive value. OR=odds ratio. PPV=positive predictive value. RCRI=Revised Cardiovascular Risk Index. 
SHC=Stanford Healthcare. *Unadjusted ORs for the outcome of interest (death or MACE) were calculated for patients 
in the 85th percentile or higher of risk compared with those in the lower percentiles of risk, as determined by either 
PreOpNet or the RCRI (corresponding to an RCRI score ≥2).

Table 2: Discrimination of postoperative outcomes by the PreOpNet or RCRI algorithms

Figure 3: PreOpNet workflow and results
Performance of PreOpNet at CSMC, SHC, and CUMC, and RCRI in discriminating postoperative mortality and major 
adverse cardiovascular events. CSMC=Cedars-Sinai Medical Center. CUMC=Columbia University Medical Center. 
RCRI=Revised Cardiac Risk Index. SHC=Stanford Healthcare.
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Discussion
In a large cohort of patients undergoing inpatient 
procedures, a deep-learning algorithm using the 
waveforms of a single preoperative 12-lead ECG identified 
risk for postoperative death for cardiac surgeries, non-
cardiac surgeries, and catheterisation laboratory or 
endoscopy suite interventions. Compared with a widely 
used standard perioperative risk assessment tool and 
alternative ECG assessment tools, PreOpNet was able to 
more effectively identify high-risk patients who went on 
to experience postoperative mortality. Furthermore, the 
accuracy of PreOpNet for discriminating postoperative 
mortality was re-affirmed in two external health-care 
system cohorts with diverse patient populations. 
Additionally, in secondary analyses, PreOpNet identified 
high-risk patients who went on to experience MACE 
within the internal test dataset in the CSMC patient 
population. To our knowledge, PreOpNet is the first 
deep-learning architecture designed to aid clinicians in 
discriminating postoperative outcomes.

Over the past several years, the 12-lead ECG has been 
the subject of deep-learning algorithm development for 
potential clinical applications, with promising results. 
Previously applied to improve the detection of occult 
cardiovascular traits (eg, atrial fibrillation, hypertrophic 
cardiomyopathy, myocardial infarction, cardiac 
amyloidosis, and ventricular dysfunction), recent deep-
learning ECG models have been shown to also identify 
non-cardiovascular-specific traits, such as liver disease,30 
anaemia,26 age,27 and long-term mortality.23 These latter 
results highlight the potential of deep-learning methods 
to extract broad as well as specific novel information 
from ECG waveforms. Therefore, to optimise per
formance for the task of preoperative risk assessment, 
our algorithm used readily available ECG waveform data 
collected from large and diverse real-world patient 
cohorts. The resulting PreOpNet algorithm demonstrated 
ability not only to discriminate postoperative mortality, 
but to do so while outperforming a conventional clinical 
risk score and human-interpretable features from the 
ECG. As indicated in other clinical fields in which AI has 
leveraged latent features from a medical image to refine 
diagnosis or prognosis,20 our results indicate the potential 
value of the PreOpNet algorithm to augment clinical 
decision making for preoperative risk assessment.

Several limitations of this preliminary study merit 
consideration. Many ambulatory procedures for clinically 
assessed low-risk patients do not involve acquiring a 
preoperative ECG. Therefore, this algorithm might not 
be applicable to such low-risk patients. Additionally, 
RCRI is most applicable and designed to be evaluated in 
patients undergoing non-cardiac surgery, so the most 
direct comparison is in this setting with an AUC of 0·83 
for PreOpNet versus 0·70 for RCRI. Other comparisons 
only accentuate the difference in performance. In 
addition, all analyses were performed on retrospective 
cohorts. For each site, investigators at that site performed 

their own cohort selection as well as running inference, 
with only code and model weights shared across 
institutions. In our analyses, we noticed decreases in 
model performance in external validation, probably due 
to changes in cohort make-up and procedural definition. 
For example, data for the CUMC cohort were only 
collected from 3 months at the beginning of the 
COVID-19 pandemic and the SHC ECG data were 
extracted from a separate ECG data storage system, 
resulting in differences in cohort selection that could 
change model performance. Additional prospective 
validation studies are needed in large and diverse external 
cohorts—particularly of the exploratory, secondary 
MACE endpoint—to precisely evaluate PreOpNet’s 
performance in discriminating events. Notwithstanding 
these limitations, the current study offers several 
strengths including the ability to leverage internal 
training, validation, and test datasets within a large 
derivation cohort of patients undergoing inpatient 
procedures over a decade. The algorithm was also able to 
be externally validated for post-procedural mortality in 
two large, diverse medical centres.

In summary, our findings demonstrate how a novel 
deep-learning algorithm, applied to a single preoperative 
ECG, can improve discrimination of postoperative adverse 
outcomes while running efficiently on a standard clinical 
workstation. Recognising that clinicians have limited time 
for making clinical assessments and decisions around 
potential post-procedural outcomes, conventional risk 
calculators using easily accessible information have been 
recommended by professional society practice guidelines 
to aid in perioperative risk stratification.21,22 The opportunity 
to implement potentially more informative and easier-to-
use prediction algorithms, in a manner that integrates 
with existing clinical workflows, offers a potential path 
towards improving postoperative outcomes. These 
promising results warrant further studies to establish the 
prospective validity of deep-learning algorithms for 
prognosticating post-procedural risk.
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