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This report is intended to inform the reader about our experiences and strategies in programming
an artificially intelligent Othello client. More specifically, we will describe what went right, what
went wrong, and what we would do if we were to do it again. There is a brief discussion on various
searching, training, and evaluation techniques, accompanied by analysis on what we found to work
the best. The last section provides some thoughts on future work and extension.

1. INTRODUCTION AND OVERVIEW

Games such as chess and Othello have showcased the
power of applying artificial intelligence to develop win-
ning strategies and out-compete humans at their own
game. In this report we will consider the game of Othello
to introduce ideas in programming an intelligent agent
and present an interesting training algorithm that we
found to work well.

With the enormity of the game the search space, games
such as Othello are virtually unsolvable by humans or
computers. Yet, it is not a game of chance. Good Othello
players consistently do well at tournaments and novices
consistently get beaten. What, then, separates the good
players from the bad? Since no human or computer could
look at every possibility, there must be some key features
that distinguish a good position from a bad one. That
is, there are some evaluation features that are important
in playing Othello competitively. We will consider these
evaluation features first.

2. EVALUATION FEATURES

Our evaluation function, given a board, returns a nu-
merical score indicating the desirability of a particular
board configuration. The evaluation function that we
use in our Othello client incorporates a total of nine fea-
tures, each given a particular weight in different stage of
the game. They are explained as follows:

Piece Differential

Piece Differential = number of our pieces − number
of the opponent’s pieces

This simply measures the difference between the num-
ber of our pieces and the number of opponent’s pieces. It
should almost definitely be a feature in any Othello game
since in the end, it is the piece differential that matters
and not anything else.

Mobility Differential

Mobility Differential = number of legal moves on our
side − number of legal moves on the opponent’s side

This simply measures the difference between the num-
ber of legal moves on our side and the number of le-
gal moves on the opponent’s side. This feature is sup-
ported by the function MLGetMobility(), which returns
the number of legal moves, given a board configuration
and the current player (see section 4 for more details on
optimizations).

4-Corners Differential

4-Corners Differential = number of 4-corners on our
side − number of 4-corners on the opponent’s side

Corners are considered to be good moves in the Oth-
ello. Not only are they stable (described later), but they
also provide strategic significance for future flips. The
4 corners are defined as the top-right, top-left, bottom-
right and bottom-left cells.
The 4-Corners Differential simply measures the differ-

ence between the number of 4-corners that we have and
the number of 4-corners our opponent has.

FIG. 1: 4-Corner Squares
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8-Corners Differential

8-Corners Differential = number of 8-corners on our
side − number of 8-corners on the opponent’s side

Similar to the 4-corners, 8-corners are also considered
to be good moves in the Othello game. 8-corners are
defined as the following:

FIG. 2: 8-Corner Squares

We decided to distinguish the 8-squares from the 4-
squares due to differences in diagonal control and mid-
board play.
The 8-Corners Differential simply measures the differ-

ence between the number of 8-corners that we have and
the number of 8-corners of our opponent.

C-Squares Differential

C-Squares Differential = number of C-Squares on our
side − number of C-Squares on the opponent’s side

C-squares are squares directly next to the 4-corners on
the board (but not diagonally adjacent to). C-squares
can potentially be good or bad. Since they are directly
adjacent to corner squares they may allow opponents to
grab the corner squares. However, they are also on the
edge of the board, which means that they have less op-
portunity to be flipped. They can then setup to flip an
entire row or column of enemy discs. C-squares can po-
tentially play an important role in Othello games.

FIG. 3: The C-Squares

The C-Squares Differential simply measures the differ-
ence between the number of C-squares on our side and
the number of C-squares of our opponent.

X-Squares Differential

X-square Differential = number of X-squares on our
side − number of X-squares on the opponent’s side

X-squares are squares directly next to the corners on
the board. They are considered bad in our evaluation,
since occupying X-squares tends to make it easy for the
opponent to capture the corners. X-squares are consid-
ered to be undesirable moves by many Othello experts
and we too, are assigning a negative weight to this fea-
ture. The differential simply measures the difference be-
tween the number of X-squares occupied for both sides.

The X-squares:

FIG. 4: The X-Squares
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Frontier Differential

Frontier Differential = our Frontier measure − the
opponent’s Frontier measure

Frontier is a measure of the number of our pieces ad-
jacent to an empty square in any direction (horizontally,
vertically or diagonally). The more pieces we have on
the frontier, the less likely we will increase our mobil-
ity. If, for instance, we surround our opponent entirely,
we have no mobility, but the opponent has significant
mobility. While frontier squares are certainly linked to
mobility issues, they can actually distinguish between po-
sitions where the mobility measure fails to see a differ-
ence. Whereas mobility looks only at the moves that are
possible starting at a given board configuration, frontier
squares also mark off squares that are not directly liable
to be captured at the moment, but run a high risk of
being captured later in the game. In a sense, frontier
squares counting helps refine the accuracy of the mobil-
ity estimation.

Stable Pieces Differential

Stable Pieces Differential = number of our stable
pieces - number of the oppponent’s stable pieces

Stable Pieces are simply the pieces which cannot be
flipped by the opponent and cannot be flipped in the
future. Unlike measuring a simple piece difference, the
stable piece differential gives a more accurate measure of
the material advantage of a given side during the game.
In Othello, common strategies include minimizing the
number of pieces relative to the opponent early in the
game; however, such strategies overlook the importance
of obtaining squares that will stay for the rest of the
game. Ideally, the program should be able to recognize
when it is grab pieces early in the game and when it is
not.

Sandwich Squares Differential

Sandwich Squares Differential = number of our sand-
wich squares − number of the oppponent’s sandwich
squares

Sandwich squares are squares which are trapped be-
tween two of the opponent’s pieces, horizontally, verti-
cally or diagonally. The higher the number of sandwich
squares in the board, the more favorable the board is,
since there are more moves with which we can flip the op-
ponent’s pieces. Furthermore, it is less likely for our piece
to be flipped.We expected that the evaluation function

would give positive weight towards boards with a higher
number of sandwich squares early in the game. Instead it
turned out that this feature was given a strong negative
weight. While researching Othello strategies, we later
found out that these sandwich squares are commonly re-
ferred to as “wedges” in certain Othello literature.

Wipe-out Avoidance

We have also included a special case in the evaluation
function to penalize a complete wipe out. If the number
of our pieces is zero in the board, the evaluation function
will simply return negative infinity. The situation
of having all the pieces being completely wiped out
might seem really good from the frontier minimization
standpoint, thus we need to include this special case to
avoid this from happening. We came across this idea
when reading a paper by Jimmy et. al. [5]

3. SEARCH STRATEGIES

In the game of Othello, even an extra 2-ply look ahead
over the opponent’s search could make a huge difference
in the outcome of the game. In this section we discuss
various startegies to boost our look ahead depth and
correctly distribute our time to effectively maximize our
score. We also consider pre-computation strategies and
a history heuristic to improve our in-game performance.

Alpha-Beta Pruning

We improve upon the normal alpha-beta pruning by
employing a more efficient algorithm that we came across
during research. After running many tests and evaluation
games, we ended up selecting MTD(f ).

NegaScout

NegaScout is an enhanced version of Principal Varia-
tion Search which makes use of restricted α-β window
sizes to achieve a speed-up in search performance. In
this algorithm, move ordering attempts to find the best
line of play when evaluating a game node in the tree.
After searching the ”principal variation” with a normal
α-β window, searches for later variations are perform-
ing using null windows (windows of ”zero” size for which
0 < β − α < ε for some small value of ε). Null windows
restrict the range of the search considerably and allow
the program to quickly identify moves that lead to worse
positions quickly. When a β-cutoff occurs for a variation
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other than the primary line of play, then the program
must perform a re-search with increased window size.
NegaScout is a frequently used algorithm for Othello

programs, including Logistello. Sample code is provided
at http://www.zib.de/reinefeld/nsc.html. We eventually
discarded NegaScout in favor of a superior algorithm,
MTD(f ).

MTD(f)

MTD(f ) is a minimax search algorithm simpler and
more efficient than its predecessors, including NegaScout.
The algorithm calls a version of alpha-beta search that
stores its nodes in memory as it has determined their
value, retrieving these values in subsequent searches.
This is achieved in our program by calls to SmarterSearch
and the transposition table, which covers the overhead of
search tree reexploration.
Instead of using a wide search window as with conven-

tional alpha-beta searches, MTD(f ) performs repeated
searches with windows of zero size, using each return
value as an upper or lower bound on the minimax value.
When the bounds converge, the minimax value and corre-
sponding position are returned. Iterative deepening im-
proves MTD(f )’s efficiency by providing initial guesses of
the minimax value from the results of previous searches.
Less than 15 lines of code were necessary to incorporate

MTD(f ). More information about MTD(f ) is available
at http://cs.vu.nl/∼aske/mtdf.html.

Multi-ProbCut

In one version of our project we implemented Multi-
ProbCut, a stochastic estimator for forward cutting
search trees at multiple levels [3,4]. To do this we pro-
grammed a linear regression utility to determine the es-
timate for the least-squares correlation between searches
of different depths at various stages in the game. Using
these statistics, we could selectively prune branches of
a search tree using reduced depth searches and relying
on the least-squares fit line to predict the result of the
deeper search in order to determine if a cutoff would oc-
cur with a high enough probability. Given a small enough
variance in scores, then future scores could be predicted
with relatively high probability.
After running Multi-ProbCut (MPC) with multiple pa-

rameters, we found that our implementation was not
yielding the correct cuts. There was no significant boost
in ply searches either. We are unsure whether the fail-
ure was due to a lack of sufficient statistical data (each
MPC parameter was based on 750 sample boards due to
development time constraints), instability of our evalua-
tion function, or incorrect implementation. However, due
to the success of MPC to elevate game play in programs

such as Logistello, we still consider MPC a worthwhile
method to look into even though it did not work for us.
After testing our version against our previous versions we
decided to “probCut” ProbCut.

Quiescence Search

We attempted to incorporate quiescence search into
our search mechanism, but the results were not satisfac-
tory. The essence of quiescence search is to dynamically
increase the search depth when the search reaches
certain points which we regard as unstable. This is to
avoid the horizon effects which might lead to unreliable
search results. One strategy we tried is to search a
further 2-ply down when the score of the board at the
end of search differs by more than a certain threshold
than the score of the board 2-ply up. The reasoning
is that when the difference between the scores is too
big, the position we reached in the search is not a quiet
position and the search result might not be reliable.
We search further, trying to reach a position which is
relatively more stable.

Another approach we tried is to dynamically increase
the search depth when we hit certain moves. For
example, when we hit a corner move i.e. when we place
a disc on a corner, we choose to search further down
the tree. The reasoning behind is that corner moves are
critical in the game of Othello, and we want to see if the
opponent is intentionally sacrificing a corner position to
capture another position which is more valuable. We
want to dynamically increase the search depth to see if
this kind of behavior is occuring.

Neither approach resulted in any significant improve-
ment in our search mechanism. In some cases, it even
weakens our client, the reason we believe being that
quiescence search wastes time and decreases the amount
time we allocate for later searches. We tried different
variations like limiting the quiescence search depth and
changing some other search parameters, but the result
was not satifactory.

Another strategy for quiescence search in chess is to
increase the search depth when the number of moves for
a particular side is 1. Note that this does not work as
well in Othello since there tend to be many moves for
a particular side during the game at most times (pro-
vided both sides do a decent job of maximizing mobility).
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Time management

The advanced features used in time management include
a branching factor time estimator for each depth level
of a search, dynamic scheduling, and a deep endgame
search with greedy evaluation, in addition to traditional
iterative deepening. The client usually finishes with over
40 seconds remaining.

Scheduling

Each move has a maximum time limit based on the
current number of pieces on the board and total time
remaining. This limit is reevaluated after every turn.
Due to the success of the branching factor time estimate,
each move almost always has more time allocated to it
than the last. The scheduler equally partitions the time
between all remaining moves except for the end-game,
in which it gives the greedy search slightly more time to
solve the end-game configuration.

Iterative Deepening

For each move, we use iterative deepening to calcu-
late the optimal move for successive depth levels, taking
the value returned by the search of highest depth that
is fully completed. Before searching a new depth, the
time is checked to see if the time has been exceeded.
The first 5-6 plies of each search find numerous hits from
the transposition table, and thus finish almost instan-
taneously. Recursive calls to the search process do not
execute any time-checks, which improves our efficiency
while searching.

Branching Factor Time Estimation

The average mobility in the leaf nodes is likely to be
highly representative of the branching factor for the next
evaluation level of the tree. We multiply the time esti-
mate by the square root of the branching factor since α-β
on average (given perfect move ordering) tends to result
in a square-root reduction in effective branching factor.
Thus, using the sum of mobility scores from our evalu-

ation function, running total of nodes evaluated, and the
time taken by the search at current its depth, we calcu-
late a branching factor and use it to predict the running
time of the next depth level, as follows:

branchingFactor =

∑
nodesEvaluatedMobility

nodesEvaluated

estimatedT ime =
√
branchingFactor ∗ levelT ime

For the milestone, we used a basic assumption that a
search of depth N+1 will take longer than a search of
depth N for all nontrivial search times. Iterative deep-
ening was thus halted whenever the time remaining for
the move was less than the time taken by the search of
the most recent depth, saving some time for each search.
However, searches of high depth still tended to run and
abort frequently, consuming time with no benefit. Using
estimated time from the above calculations, the program
cancels all searches that are predicted to abort.
Since our final Othello agent averaged 40 seconds left

on the clock after a game, we adjusted the parameters to
test different time allocations given to the search process.
We found that allocating more time did not present the
search with enough time to finish another ply depth and
used up time unnecessarily. However, we did not test this
with our time-abort mechanism turned off. The extra
time, then, would not have been wasted, but it is highly
likely that the time usage would have become less efficient
overall.

Endgame Greedy Search

The endgame greedy evaluator starts when 14 or fewer
empty spaces exist on the board, i.e. when about 14
plies remain in the search. Since the goal of the game is
to win by as many pieces as possible, the greedy evalu-
ator scores positions solely by piece differential. During
the endgame, each step is allocated 50% extra time to
search more deeply, as the impact of each move is sign-
ficant in determining the final outcome. A comparative
advantage of just 2-3 depth levels over an opponent’s
endgame search is often enough to turn a close loss into
a comfortable win.
By allocating almost all of the remaining time to the

move at the beginning of the endgame search, the client
can extend the endgame search by a few plies. However,
this cramps the time of subsequent searches and some-
times comes dangerously close to running out of time,
so we decided not to incorporate this under tournament
conditions.

Transposition Table

The purpose of the transposition table is to exploit the
information from previous searches. Much like cache
in computer systems, the effectiveness of transposition
tables makes use of the fact that board configurations
searched now will probably also be searched in the near
future. Before actually searching and spending time to
evaluate a given board position, we first check to see if
that board configuration is stored in the transposition ta-
ble; if it is found, we will go ahead and use the best move
stored in the table if the entry in the table has a depth
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equal or greater than that desired by the search. This
saves the program the trouble of having to recursively
search and evaluate different board configurations.
The transposition table is implemented as a hash table

of a fixed size. We originally stored all entries of the hash
table on a priority queue so that we could sort all nodes
in terms of least recently used access. However, each
update required an update of the priority queue, which
required many calls to memcpy. Instead, we ended up
selecting a simpler, more efficient hash table where no
update costs were necessary. The hash function we chose
utilized bit shifts and masks to mix bits quickly [6]. As
you will see in the table presented later in this section,
it was also effective in distributing the entries (in the

table, less than one percent of the buckets are left empty).
Coincidentally, after implementing this hash function, we
discovered that last year’s Othello coompetition winners
had also used this integer hashing method [5].

To find the appropriate size of our transposition table,
we generated somewhat intelligent (ply search depth of 4
with random elements) game boards for various stages of
a game. With 1000 boards, we did a 4-ply search on each
board with the transposition table turned on. We varied
our hash functions (not shown in table) and transposition
table sizes. The following data was run on a Pentium 4,
2 GHz computer running Windows XP through Cygwin.
Some important data is produced below:

Transposition Test Data

Table Size Bucket Size Time to Complete Bucket Distribution

65532 buckets 4 12 min 8 sec All buckets full

2097152 buckets 4 2 min 3 sec empty:20141, 1:83141, 2:260851, 3:528187, 4:1548334

1048576 buckets 4 2 min 4 sec empty:106, 1:786, 2:4086, 3:13542, 4:1034928

1048576 buckets 2 8 min 20 sec empty:411811, 1:843926, 2:2938567

1048576 8 3 min 15 sec roughly normal distribution with mean at 4

The first row shows that table sizes too small take a
large hit because either a lot of useful boards are thrown
out before we can use them or there are too many replace-
ment searches. As expected, by increasing the number of
hash buckets and keeping bucket sizes small, we can re-
duce search time drastically to improve our performance.
Experimentally, table sizes of 2097152 were too large be-
cause it would require a total of 368 megabytes of mem-
ory on the stack. We reduced our table size to 1048576
which gave us stable and fast performance on the Elaines.
Keeping a small number of buckets also helped reduce
search time because there is less linear searching within
the bucket.

History Heuristic

The history heuristic holds a 10x10x2 table, H which
contains one entry for each square of the board per side.
Every time a search of depth d (at any level in the re-
cursive search process) reports that a particular move
(x, y) is good for a particular player p, then we up-
date the history table by the update rule: H [x][y][p] ←
H [x][y][p] + 2d. This gives higher weights to moves that
have historically been good for a particular side. These
history scores are then used in move ordering.

Opening Book

By precomputation we can list out probable board con-
figurations for games of depth 6 (determined by our pre-
vious Othello clients). From this we can apply a 10-16 ply
search and store the results in an opening book. When
we load our Othello client, we load in the opening book
into a special opening book that is only searched in the
first few moves. This gives the Othello client a large time
advantage in the beginning since it can make 8-ply deci-
sions in just the time it takes to do a lookup.

4. BIT BOARDS AND OPTIMIZATIONS

We decided to re-write the board structure in a
manner that was more efficient for hashing and board
evaluation. Since there are 100 total squares (including
invalid squares) on the board, we chose to bit-pack the
boards using four longs (4 × 32 = 128 bits). This could
have been done with one fewer long, as only 92 squares
are relevant, but we decided to use 4 for simplicity’s
sake. Each “board type” would store this bit-packed
board representation (one for pieces played and one for
side information), the number of pieces for each side,
and the player’s turn for that particular board. The
board that stores player side information stores a 0 for
all white’s pieces and 1 for all of black’s. The board that
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keeps track of filled cells sets a 1 in every filled cell and
a 0 everywhere else. We later added depth and score for
the transposition table.

There are a number of big advantages to using this bit-
board representation. First, in move generation, we can
efficiently calculate all possible moves by a bit shifting
technique described below:

• To initialize the algorithm we may extract bit-
boards containing only our pieces and only our op-
ponent’s pieces.

• We can also find the empty squares by complement-
ing the bitboard that stores the positions filled.

• Create a results bitboard to hold the results of the
search

• For all eight directions (up, down, left, right,
up-left, up-right, down-left, down-right) do the
following:

1. Make a copy of ourPieces into temp

2. Move all pieces of ourPieces in the direction
given. This may be accomplished with bit-
shifting.

3. Check that an opponent’s piece is found

4. Now, continue moving pieces in that direction
until an empty square is found (in which case
a move exists), our piece is found (no move
exists), or the edge of the board is hit (no
moves exist).

5. If a move is found, add it to our results bit-
board

The following is a simplified version of the bitboard
move generation technique we used:

if (ourSide == 0)

ourPieces = posFilled & ∼posSide & BOARD-MASK
oppPieces = posFilled & posSide & BOARD-MASK

else

ourPieces = posFilled & posSide & BOARD-MASK

oppPieces = posFilled & ∼posSide & BOARD-MASK
empty Squares = ∼posFilled & BOARD-MASK
for(direction = 0; direction < 8; direction++)

temp = ourPieces

temp = temp � DIRECTION-SHIFT[direction]
& BOARD-MASK

temp = temp & oppPieces

while (temp �= 0)
temp = temp � DIRECTION-SHIFT[direction]

& BOARD-MASK

result = result | (temp & emptyPieces)
temp = temp & oppPieces

Using bit masks and bit manipulation, we can accom-
plish the board shifting and checking for all cells at the
same time! This gives us an efficient method to generate
valid moves.

Another feature of the bit board implementation is
an efficient mobility evaluation. From the algorithm
above we already know how to get moves quickly
and accurately. For a given board we can calculate
the possible moves for a particular player and use an
efficient bit-counting technique to sum up the mobility
factor for a given player. The algorithm for counting the
number of bits that are set to “1” is given below (where
Number is the bit string):

while (Number)
Number = Number & (Number - 1)
count++;

Each iteration takes out the least significant bit that
is a 1. The total run-time is O(T), where T is the total
number of bits that are set to 1. We also did a mask
check and lookup to efficiently find the location of a 1 in
a bit stream.
The bit board implementation also give us a good
estimation for stability. First, we set the bound-
ary to be stable. Then, using the shifting method,
we can check each cell in parallel for all cells that
are stable in four directions (column, row, diagonal-
negative-slope, diagonal-positive-slope). It is considered
stable in a given direction if there it is adjacent to a
stable disc in that direction. We loop until no more
stable pieces are found. Some pseudocode is given below:

if (ourSide == 0)

ourPieces = (posFilled & ∼posSide) |
∼BOARD-MASK

else

ourPieces = (posFilled & posSide)

| ∼BOARD-MASK
stablePieces = ∼BOARD-MASK
newStablePieces = 0

do

stablePieces = stablePieces | newStablePieces
newStablePieces = newStablePieces &

((ourPieces � UP) | ∼BOARD-MASK) |
((ourPieces � DOWN) | ∼BOARD-MASK)

newStablePieces = newStablePieces &

((ourPieces � LEFT) | ∼BOARD-MASK) |
((ourPieces � RIGHT) | ∼BOARD-MASK)

newStablePieces = newStablePieces &

((ourPieces � UP-LEFT) | ∼BOARD-MASK) |
((ourPieces � DOWN-RIGHT) | ∼BOARD-MASK)

newStablePieces = newStablePieces &

((ourPieces � UP-RIGHT) | ∼BOARD-MASK) |
((ourPieces � DOWN-LEFT) | ∼BOARD-MASK)

newStablePieces = newStablePieces & BOARD-MASK
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until newStablePieces = 0

This method is only an estimation, however, since it
will miss cases when a stable piece is sandwiched between
opponent pieces that make it stable. Consider the follow-
ing two examples:

FIG. 5: Stability Example 1

FIG. 6: Stability Example 2

In the first example, the white (blue-ish) piece is sta-
ble because no red discs can flip it. In figure 2, the piece
diagonally up-right from the blue corner disc is stable
as well. However, since we check for stable pieces of
the same color, we do not catch this case. One way to
calculate actual stability, then, would be to consider all
rows, columns, and diagonals to check for filled rows and
columns. Then if a particular row, column, or diago-
nal is filled, then stable discs are stable for any color
in that given direction. If a cell is stable in all direc-
tions, it is considered stable (remember, there are 4 di-
rections, up/down, left/right, positive sloped diagonal,
negative sloped diagonal). At the time of programming,
this computation seemed too expensive for quick evalu-
ation purposes. However, if we were to do this project
again, we might consider calculating true stability by us-
ing bit masks to find filled rows, columns, and diagonals.
From there we can set universally stable discs and find
true stability.

There is also a stability optimization that we forgot to
include when finalizing our project. Since stable pieces,
by definition, are stable, we can store previously calcu-
lated stable pieces and calculate new stable pieces in-
crementally. This would give us a greater speedup in
evaluation, especially in the end where nearly all pieces
are stable.
Frontier squares and sandwich squares are calculated

similarly to the methods described above.
Bit board representation also gave us an easy and ef-

ficient way to translate tables and mask out certain re-
gions using bit masks and look up tables. Overall, the
bit board implementation alone gave us at least a 4 times
speed up.

5. TRAINING

We implemented method #2 given in the assignment
handout but found that the program generally did not
converge to values that were reflective of the true ”cor-
rect” values for the weights. It also seemed problem-
atic because it would select the “true” values based on
guesses from its untrained weights. The final program
uses weights corresponding to 87 stages of the game as
described below. The method used is based on one de-
scribed by the winners of the CS 221 Othello competi-
tion two years ago[1]. Essentially, the game is divided
into stages, and the weights for the stages are trained
in reverse order from the end of the game towards the
beginning. This ensures that the target evaluations are
trained or actual (pure greedy at the end).

Stage Training

We divided the game into 88 stages ranging from when
there are 5 pieces on the board to when there are 91 pieces
on the board. Our evaluation function never needs to
evaluate a board with only 4 pieces, and the evaluation
for when all 92 pieces are on the board was chosen to
be the piece difference between the evaluating player and
the opponent.

Training Data

For each stage, we constructed 5000 training boards by
playing the program against itself using a 4-ply greedy
search. The boards were not checked for uniqueness, but
we did introduce randomness in the move selection to en-
sure variety in the games. The 4-ply search would return
a list of n possible moves ordered by decreasing expected
value. The probability P (i) of choosing the ith best move
was set by P (i) = 10P (i+ 1) and the sum of the proba-
bilities set to 1.
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More realistic boards could have been generated by
a ”bootstrapping” method in which the trained weights
were used instead of the greedy player to create the
boards; furthermore, the probabilities of selecting each
move could be chosen as a function of the expected value
for the move. Using the greedy player to generate moves
was done for the sake of speed; this was not necessarily
a bad choice, however, since the Othello brain should be
able to handle positions against any type of player, not
just boards selected to be ”good”, we decided that this
approach would suffice.

Training Procedures and Failed Attempts

This section will describe the various methods tested to
train our Othello program. The first method is a trial us-
ing the learning technique described in the Othello hand-
out. The second is a neural network that groups our eval-
uation features into different categories and introduces
two hidden layers. The final method is the method we
eventually selected to be submitted in our final version.

Method 2 in handout

This training method looked at the current state, an
opponent’s move, and based on the predicted evalua-
tion values trains the current weights to fit the predicted
value. As noted by the handout, this would only work if
each player selected its optimal move. There are a few
problems with this assumption. First, the opponent we
are competing against may not have trained weights ei-
ther (which was the case when we started) and it might
not take the optimal move. Second, the best we can train
to is highly dependent on how effective our opponent is.
If our opponent is not strong, it is unlikely that we will
train to be stronger. Third, to train for the general case
game (not simply for a single agent), we need to have
many well-trained opponents to train against. If we use
the same opponent over and over, we will most likely
overtrain our agent to only defeat our training opponent.
After 1000 iterations through this training method the
weights still did not converge. In some cases, our origi-
nal untrained player would defeat our “trained” player.
This led us to seek for a training method that would train
against “true” target values.

Neural Network

In designing an appropriate neural network topology
for the Othello client, we created a scheme with four
general categories of inputs which we chose to group as
follows:

1. Positional: corner squares, X-squares, C-squares

2. Configurational: stability, frontier, sandwich
squares

3. Temporal: mobility, board parity

4. Tactical: piece differential

We then used back-propagation to train the weights
at each stage of the game (where stages are described
above). The output layer in the last stage is simply the
greedy piece differential output at the end of the game.
In all other stages the target output is taken to be the
evaluation 4 plies down using the trained weights from
the next stage (trained before since we go from end-game
to begin-game).

Linear Combination

The scheme we initially used was very similar to the
method described in an earlier paper by McAlister and
Wright [1]. The last stages of the game were trained first
by performing stochastic gradient descent using the piece
difference evaluation as the target output. Successively
earlier stages were then trained by using the results of a
4-ply search based on the already trained weights. This
method gives the advantage of using trained weights for
establishing the target for convergence.
In our interpretation of the method, the difference be-

tween the target score and the one predicted using either
piece difference or the trained stages of the evaluation
function was taken as an indication of the correct direc-
tion for moving. We trained using different parameters
and found learning rate values optimized for our imple-
mentation.
We also tried splitting up the weights into weights for

the red player and wieghts for the white player. We
thought that the strategies of both sides may be dif-
ferent enough to warrant different weights. However,
both weights must be trained at the same time since
the weights at one stage of the game for the red player
depends on the weights at the next stage for the white
player. Hence, simultaneous training was required and
there was no need to train separately. In fact, when
trained separately, our client consistently lost to the
client where both sides’ weights were trained together.
In the end we concluded that the weights were not suf-
ficiently different as changes in parity during the game
make it nearly impossible to distinguish between the ap-
propriate weights for the two players. Thus, our final
trained version uses only a single set of weigthsf for each
stage.

Our Training Strategy

By far the greatest obstacle in training our data was
convergence. The normal gradient descent method posed
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some major drawbacks in terms of training speed and
quick convergence. Of our numerous attempts to arrive
at ideal convergence, we found that a small learning rate
would take many iterations to account for large dispari-
ties between target and predicted weights. On the other
hand, large learning rates would miss small disparities
between the target and predicted values. For instance, if
we are given weight w1 that starts out at 8.7 and weight
w2 that starts at 5.4, and the ideal weights for w1 and
w2 are 556 and 5.8 respectively, then a learning rate of
0.05 (which we found good for the fine-tuned detail in
our implementation) could take hours for w1 to converge
at 556 over a 5000-sized data set. A learning rate greater
than 1 may miss the ideal weight for w2 altogether.
What we ended up implementing to solve this prob-

lem is an algorithm that is similar to performing a line
search (using the Golden Section method [2]) after batch
gradient descent. In our approach, we set the learning
rate to be very low (in our case 0.02) and then perform a
gradient descent over all 5000 boards in the training set
for a particular stage. We compute the total change in
each of the weights following this training pass. Then,
instead of simply just iterating until convergence as done
in the method by McAlister and Wright, we attempted
to see the effects of doubling the changes in all weights,
quadrupling the changes, multiplying the changes by a
factor of eight, etc. For each attempt, we compute the
total sum squared error of the predictions on the train-
ing set. We keep doing this until we go too far in a given
direction and the overall error rate increases rather than
decreasing. At this point, we step back a factor of 2 and
begin our individualized descent. This process is similar
to the above process except here, we consider only the
effects of adjusting individual weights rather than all at
once. This allows us to converge extremely quickly in
only a few iterations through the training data. As a re-
sult, we were able to train all 88 stages to convergence in
less than one and a half hours. To note the effectiveness
of this method, we must note that all weights converged
and that for no stage was the training process aborted
due to using too many iterations of training.
Some pseudocode is presented below:

for (stage = 87; stage ≥ 0; stage–)

weights[stage] = weights[stage + 1]

for (board = 0; board < NUM-BOARDS; board++)
target[board] = PerformSearch (boards[board],
weights,LOOK-AHEAD)

for (i = 0; i < MAX-CONVERGENCE-STEPS; i++)
oldweights[stage] = weights[stage]

// gradient descent
for (board = 0; board < NUM-BOARDS; board++)
for (j = 0; j < MAX-INDIV-CONVERGE-STEPS; j++)
result = Evaluate (boards[board], weights)
for (k = 0; k < NUM-WEIGHTS; k++)
weights[stage][k] += LEARN-RATE ×
(target[board] - result) × values[k]

// group speculative jumping
deltas = weights[stage] - oldweights[stage]
currError = GetError (boards, weights)
while (true)
weights[stage] += deltas
newError = GetError (board, weights)
if (newError > currError)
weights[stage] −= deltas
break else
currError = newError
deltas ×= 2

// individual speculative jumping

max = 0

for (j = 1; j < NUM-WEIGHTS; j++)

if (abs(deltas[j]) > abs(deltas[max]))

max = j

deltas = weights[stage][max] - oldweights[stage][max]

currError = GetError (boards, weights)

while (true)

weights[stage][max] += deltas[max]

newError = GetError (board, weights)

if (newError > currError)

weights[stage] −= deltas[max]
break

else

currError = newError

deltas[max] ×= 2
if (Converged(weights, oldweights)) break

Here is a chart that shows the importance of each fea-
ture over each stage of the game:
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FIG. 7: Chart of Trained Weights

We noticed that around stage 16 some of our trainined
weights were somewhat erratic. We think this is due to
the fast convergence of the method described above, and
it could actually be the case that we overtrained those
weights, essentially memorizing our sample data.
We variedMAX-CONVERGENCE-STEPS andMAX-
INDIV-CONVERGENCE-STEPS and found that val-
ues for MAX-CONVERGENCE-STEPS did not really
matter because the algorithm converged very fast. If
we are given a data set of many boards, MAX-INDIV-
CONVERGENCE-STEPS also does not need to be large
because there is a lot of data that allows the train-
ing to converge quickly. For a smaller data set,MAX-
INDIV-CONVERGENCE-STEPS is important because
it greatly affects the learning rate. We believe that our
success in the Othello competition is due to the training
strategy used and the features chosen, especially since
many opponents actually sought deeper per move.
Since we set our lookahead for training to be of depth

4, we noticed that our weights were four-periodic (i.e.
the weights for stage i are based on the weights for stage
i+ 4). In the future it might be better to take a combi-
nation of different look aheads. Also, at a cost of greater
training time, we could use a larger look ahead to increase
performance.

FUTURE WORK

We ended up discovering our training algorithm too
late in the project to have time to train our neural net-
work. Using the doubling strategy we might have been
able to get our neural network to learn the game of Oth-
ello.

A relatively difficult feature to do efficiently would be
to include region parity in our evaluation function. This
would require the agent to recognize empty regions on
the board and quickly count the number of empty cells
in that region.

Rather than using linear combination of the features
we could instead use a third order polynomial function
for each feature (whose coefficients would be determined
by training). Given the fast convergence of the train-
ing method, this should be feasible. Early experiments
with quadratic functions looked promising. These exper-
iments show strong quadratic correlations.
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