
Proximal regularization for online and batch learning

Chuong B. Do CHUONGDO@CS.STANFORD.EDU

Quoc V. Le QUOCLE@CS.STANFORD.EDU

Computer Science Department, Stanford University, Stanford, CA 94305, USA

Chuan-Sheng Foo CSFOO@CS.STANFORD.EDU

Institute for Infocomm Research, Singapore 138632, Singapore

Abstract
Many learning algorithms rely on the curvature
(in particular, strong convexity) of regularized
objective functions to provide good theoretical
performance guarantees. In practice, the choice
of regularization penalty that gives the best test-
ing set performance may result in objective func-
tions with little or even no curvature. In these
cases, algorithms designed specifically for regu-
larized objectives often either fail completely or
require some modification that involves a sub-
stantial compromise in performance.

We present new online and batch algorithms for
training a variety of supervised learning models
(such as SVMs, logistic regression, structured
prediction models, and CRFs) under conditions
where the optimal choice of regularization pa-
rameter results in functions with low curvature.
We employ a technique calledproximal regular-
ization, in which we solve the original learning
problem via a sequence of modified optimization
tasks whose objectives are chosen to have greater
curvature than the original problem. Theoreti-
cally, our algorithms achieve low regret bounds
in the online setting and fast convergence in the
batch setting. Experimentally, our algorithms
improve upon state-of-the-art techniques, includ-
ing Pegasos and bundle methods, on medium and
large-scale SVM and structured learning tasks.

1. Introduction

Consider the task of training a linear SVM:

min
w∈Rn

λ

2
‖w‖2 +

1

m

m
∑

i=1

max(0, 1− y(i)wTx(i)). (1)

Appearing inProceedings of the26 th International Conference
on Machine Learning, Montreal, Canada, 2009. Copyright 2009
by the author(s)/owner(s).

In this optimization problem, theL2 regularization penalty
plays two important roles: not only does the quadratic term
prevent overfitting to the empirical loss on the training data,
but in fact, it also controls a measure of curvature of the
objective function, known as itsstrong convexity.

In the past several years, a number of approaches have been
proposed for training linear SVMs, ranging from batch
methods such as the cutting plane algorithm (Joachims,
2006) to online methods such as the PEGASOS subgra-
dient algorithm (Shalev-Shwartz et al., 2007). In essen-
tially all of these algorithms (for which the relevant bounds
are known), theory indicates that the number of itera-
tions required to obtain anǫ-accurate solution is roughly
O(1/λǫ). For example, cutting-plane methods require
O(1/λǫ) passes through the training set (Smola et al.,
2008), whereas PEGASOS must processÕ(1/λǫ) train-
ing examples to ensureǫ accuracy on expectation. In both
cases, the theoretical bounds depend largely on the chosen
value of the regularization hyperparameterλ.

For many real world problems, however, the ideal choice
of λ can be quite small. When this is the case, state-of-
the-art cutting plane and subgradient algorithms give un-
nacceptably slow convergence, both in theory and in prac-
tice. Recently, (Bartlett et al., 2008) described anadaptive
online gradient descentalgorithm based on the simple in-
tuition that an objective function with low curvature can
be stabilized by adding extra terms whose purpose is to
increase curvature. In this paper, we extend these ideas
to construct new online and batch algorithms suitable for
training a wide variety of supervised learning models.

Specifically, we design a sequence of optimization tasks,
each of which is a variant of the original problem modi-
fied to include an extraproximal regularizationterm. We
show how to choose these proximal terms in an adaptive
fashion such that the resulting sequence of minimizers (or
approximate minimizers) converge to the solution of the
original optimization problem. Finally, we describe some
simple heuristic modifications to these algorithms that re-
tain all optimality guarantees while resulting in consider-
able performance improvements in practice. In the on-

Proximal regularization for online and batch learning

line setting, our analysis leads naturally to a stochastic
subgradient-style algorithm along the lines of the PEGA-
SOS. In the batch setting, our analysis yields an improved
cutting-plane/bundle method. Both in theory and in exper-
iments, our methods exhibit comparable performance for
largeλ (high curvature) compared to existing methods and
dramatic improvements for smallλ (low curvature).1

2. Preliminaries

Let ‖·‖ denote the Euclidean norm,‖x‖ :=
√

xTx. Given
a pointx ∈ R

n and a compact (i.e., closed, bounded) sub-
setS ⊆ R

n, let ΠS [x] := arg miny∈S ‖x− y‖ denote the
Euclidean projection ofx onto S. For notational conve-
nience, we use notational shorthandca:b :=

∑b
i=a ci for

any sequence of scalarsca, ca+1, . . . , cb−1, cb ∈ R. For a
vectorx ∈ R

n andc ∈ R, let [x; c] ∈ R
n+1 denote the con-

catenation ofc onto the end ofx. Forx,y ∈ R
n, letx � y

denote the component-wise inequalities,xi ≥ yi,∀i. Let 0
and1 denote the vectors of all 0’s and all 1’s, respectively.

A function f : R
n → R is said to beλ-strongly convexif

for anyx,y ∈ R
n and any subgradientg belonging to the

subdifferential2 ∂f(x) of f at x, f(y) ≥ f(x) + gT(y −
x)+ λ

2 ‖y − x‖2. Here, we consider learning problems as-
sociated with the optimization ofλ-strongly convex func-
tions in both the online and batch settings.

In the online setting, we base our analyses on the concept of
aconvex repeated game. A convex repeated game is a two-
player game consisting ofT rounds. During roundt, the
first player proposes a vectorwt belonging to some com-
pact convex setS, the second player responds by choos-
ing a λt-strongly convex function of the formft(w) :=
λt

2 ‖w‖
2
+ℓt(w) for some convex functionℓt, and then the

first player suffers lossft(wt). We assume thatλt ≥ 0, and
that the same setS is used in each round; for simplicity, we
assume throughout thatS is an origin-centered closed ball
of radiusR. Here, we seek an algorithm to minimize the
first player’sregret,

∑T
t=1 ft(wt) − minu∈S

∑T
t=1 ft(u),

i.e., the excess loss suffered compared to the minimum loss
possible for any fixed choice ofw ∈ S.

In the batch setting, we are given aλ-strongly convex func-
tion of the formf(w) = λ

2 ‖w‖
2

+ ℓ(w), whereℓ is again
a convex function. Here, we will assumeλ > 0 in order
to ensure that the optimization problem is well-posed. If
w∗ = arg minw∈Rn f(w), then our goal will be to find an
approximate minimizerw such thatf(w)− f(w∗) ≤ ǫ.

1For an extended version of this paper with proofs, see
http://ai.stanford.edu/˜chuongdo/papers/proximalproofs.pdf

2Thesubdifferential∂f(x) of a convex functionf : R
n → R

atx is the set of all vectorsg such thatf(y) ≥ f(x) + g
T(y −

x) for all y ∈ R
n; elements belonging to the subdifferential are

known assubgradients.

Algorithm 1 Projected subgradient descent
Initialize w1 ← 0.
for t← 1, . . . , T do

Receive aλt-strongly convex functionft.
Choosegt ∈ ∂ft(wt).
Setηt ← 1/λ1:t.
Setwt+1 ← ΠS [wt − ηtgt].

end for
return wT+1.

Algorithm 2 Proximal projected subgradient descent
Initialize w1 ← 0.
for t← 1, . . . , T do

Receive aλt-strongly convex functionft.
Choosegt ∈ ∂ft(wt).

Setτt ←
−λ1:t−τ1:t−1+

r

(λ1:t+τ1:t−1)2+
G2

t

R2

2 .
Setηt ← 1/(λ1:t + τ1:t).
Setwt+1 ← ΠS [wt − ηtgt].

end for
return wT+1.

3. Online proximal learning

As a starting point, we recall the projected subgradient
algorithm for strongly convex repeated games proposed
by (Hazan et al., 2007) and later generalized by (Bartlett
et al., 2008), as stated in Algorithm 1. In this algo-
rithm, the first player updates his parameter vector in each
round by taking a projected subgradient step,wt+1 ←
ΠS [wt − ηtgt]. When the step sizeηt = 1/λ1:t, we ob-
tain the following regret bound (Bartlett et al., 2008):

Lemma 1. Suppose thatλt > 0 and‖gt‖ ≤ Gt for t =
1, . . . , T . Then, for anyu ∈ S, Algorithm 1 satisfies

T
∑

t=1

(ft(wt)− ft(u)) ≤ 1

2

T
∑

t=1

G2
t

λ1:t
. (2)

Whenλt = λ andGt = G in each round, then the right
hand side of the inequality can be further upper-bounded
by G2

2λ
(1 + log T). Algorithm 1, thus, is an example of an

algorithm with logarithmic regret. Whenλ is small, how-
ever, this guaranteed regret can still be large.

3.1. Proximal regret bound

Now, suppose we run Algorithm 1 on the sequence of mod-
ified functions,

f ′
t(w) := ft(w) +

τt

2
‖w −wt‖2 . (3)

for some setting of constantsτ1, . . . , τT ∈ R. We refer to
the additional quadratic term in each of our modified func-
tions as aproximal regularization term. Whereas eachft is
λt-strongly convex, each modified functionf ′

t is (λt + τt)-
strongly convex. Also, since the gradient of the proximal

Proximal regularization for online and batch learning

regularization term is zero when evaluated atwt, it follows
immediately that∂f ′

t(wt) = ∂ft(wt). Thus, the updates
in the proximal regularization case differ from the non-
proximal algorithm only in the choice of step sizes, since
we can still use the same subgradients.

The idea of adding temporary regularization terms in order
to achieve better bounds on the regret of a learning algo-
rithm was first introduced in (Bartlett et al., 2008), who
considered modified objective functions of the form

f ′′
t (w) := ft(w) +

τt

2
‖w‖2 . (4)

Unlike in the proximal case,∂f ′′
t (wt) 6= ∂ft(wt). In Sec-

tion 5, we compare empirically these two choices.

To analyze the proximal regularization method, we apply
Lemma 1 to the sequence of functions in (3) to obtain
Corollary 1. Define

RT (τ1, . . . , τT) :=
1

2

T
∑

t=1

[

4τtR
2 +

G2
t

λ1:t + τ1:t

]

. (5)

For any fixedτ1, . . . , τT ≥ 0, running Algorithm 1 on the
sequence of functionsf ′

1, . . . , f
′
T from (3) gives

T
∑

t=1

(ft(wt)− ft(u)) ≤ RT (τ1, . . . , τT). (6)

Here, the proof depends on the fact that‖w −wt‖ ≤ 2R
for anyw,wt ∈ S. The strength of the regret bound, de-
pends on the choice of constantsτ1, . . . , τT . The key to the
proximal regularization algorithm, then, is picking these
constants so as to ensure that the regret is small.

3.2. Choosing proximal parameters

Suppose that the valuesλt andGt for t = 1, . . . , T are
determined independently of the choices made in the algo-
rithm. We describe two approximate schemes for choosing
τt’s. The first scheme is a practical online balancing heuris-
tic due to (Bartlett et al., 2008). The second scheme, makes
the additional assumptions that theλt andGt do not vary
with t but has the benefit of allowing us to choose theτt’s
so that the regret bound is as tight as possible.

Strategy 1: Balancing heuristic. In the first approach,
observe that the expression in (5) consists of two terms,
one of which increases and one of which decreases asτt

increases. During thetth step of the algorithm, consider the
choice ofτt ≥ 0 that ensures that the two terms are equal,

i.e., 2τtR
2 =

G2
t

2(λ1:t+τ1:t)
. This is a quadratic equation,

with positive solution,

τt = 1
2

(

−λ1:t − τ1:t−1 +

√

(λ1:t + τ1:t−1)2 +
G2

t

R2

)

.

In Algorithm 2, we provide pseudocode for the proximal
projected subgradient descent algorithm using the balanc-
ing heuristic. Applying Lemma 3.1 from (Bartlett et al.,
2008), we obtain the following bound:3

3For comparison, (Bartlett et al., 2008) derived a bound of

Theorem 1. The regret obtained by Algorithm 2 is at most
twice that of the optimal offline choice ofτ1, . . . , τT , i.e.,

T
X

t=1

(ft(wt) − ft(u)) ≤ 2 min
τ1,...,τT

1

2

T
X

t=1

»

4τtR
2 +

G2
t

λ1:t + τ1:t

–

.

Strategy 2: Bound optimization. In the second approach,
we bound the regret directly, via the following proposition:

Proposition 1. Let
(τ∗

1 , . . . , τ∗
T) = arg min

τ1,...,τT ≥0
RT (τ1, . . . , τT). (7)

Thenτ∗
i = 0 for all i 6= 1.

The benefit of the above proposition is that it allows us to
reduce an optimization over many variables to a much sim-
pler convex optimization problem over just a single vari-
able,τ∗

1 (which we simply callτ). If λt = λ > 0,4 and
Gt = G, then we can upper bound the regret with a simple
closed form expression, parameterized byτ :

Theorem 2. Under the above assumptions, letRT denote
the worst-case regret suffered by Algorithm 2. Then, for
anyτ > 0, we have the upper bound,RT ≤ B(τ), where

B(τ) := 4τR2 +
G2

λ

[

1

1 + τ/λ
+ log

(

T + τ/λ

1 + τ/λ

)]

.

Since the upper bound is a convex differentiable function of
τ over the domainτ ≥ 0, one could optimize the bound di-
rectly using standard line search techniques. Alternatively,
by substituting different values forτ into the expression
above, we can obtain various upper bounds on the regret
that Algorithm 2 will achieve. In particular,

Corollary 2. Whenτ = 0, thenB(τ) := G2

λ
(1 + log T).

Corollary 3. Whenτ = G
√

T
2R

, thenlim
λ→0

B(τ) = 4RG
√

T .

The key intuition behind the efficiency of Algorithm 2 is
that in some cases, one of these bounds may be better than
the other. For example, whenRG is sufficiently small rel-
ative to G2

λ
, the seemingly inferior square root bound can

actually be better than the logarithmic regret bound for val-
ues ofT that are not too large. Regardless of the situation,
Theorem 1 implies that Algorithm 2 achieves a total regret
no worse than twice the best bound for anyτ .

3.3. Application: Linear SVMs

In this section, we consider the task of training a linear
SVM. The approach we take here was inspired by the Pe-
gasos algorithm (Shalev-Shwartz et al., 2007), currently re-
garded as one of the fastest methods for SVM training on

T
X

t=1

(ft(wt) − ft(u)) ≤ min
τ1,...,τT

T
X

t=1

»

3τtR
2 + 2

G2
t

λ1:t + τ1:t

–

,

when using the modified functions in (4). These two expression
are not directly comparable, though as we show in Section 5, the
proximal algorithm performs better in our experiments.

4Note that if λ = 0, then the bound reduces to2τR2 +
PT

t=1 G2
t /2τ , whose minimum occurs atτ =

q

PT

t=1 G2
t /4R2.

Proximal regularization for online and batch learning

large-scale datasets. At its core, the Pegasos algorithm is
essentially a wrapper for Algorithm 1.

Given training inputs{x(i), y(i)}mi=1, the Pegasos algo-
rithm defines a sequence of functionsf1, . . . , fT . In the
tth round, Pegasos randomly samples a subsetAt of fixed
sizek from {1, 2, . . . ,m}, definesft(w) to be

λ

2
‖w‖2 +

1

|At|
∑

i∈At

max(0, 1− y(i)wTx(i)). (8)

and runs Algorithm 1 withλt = λ, Gt =
√

λ +
maxi

∥

∥x(i)
∥

∥, R = 1√
λ

, andS = {w ∈ R
n : ‖w‖ ≤ 1√

λ
}.5

To characterize the relationship between the strongly con-
vex game defined by Pegasos and the linear SVM training
problem, we state the following theorem and its corollary,
both of whose proofs closely mirror that of Theorems 2 and
3 from (Shalev-Shwartz et al., 2007):

Theorem 3. Let f : R
n → R be a (strongly) convex

function, letS ⊆ R
n be compact, and supposew∗ :=

arg minw∈S f(w). LetA be an algorithm for (strongly)
convex repeated games with regret boundRT . Now, sup-
pose we runA on a sequence of (strongly) convex func-
tions f1, . . . , fT which satisfy, for allt ∈ {1, . . . , T}, (1)
Ef1,...,ft,w1,...,wt

[ft(w)] ≤ f(w) for all w ∈ S; and (2)
Ef1,...,ft,w1,...,wt−1|wt

[ft(wt)] = f(wt). If r is drawn uni-
formly at random from{1, . . . , T}, then

ErEf1,...,ft,w1,...,wT
[f(wr)− f(w∗)] ≤ RT

T
. (9)

Informally, this result provides an estimate of the average
suboptimality Pegasos obtains in terms of the existing re-
gret bound for its underlying algorithm for convex games.6

Using Markov’s inequality, it turns out that convergence in
expected suboptimality implies convergence to optimality
with high probability in the following sense:

Proposition 2. Letδ ∈ (0, 1). Under the conditions above,
with probability at least1− δ, f(wr)− f(w∗) ≤ RT

δT
.

Now, we turn to the task of converting Algorithm 2 into an
SVM solver, in the same manner as Pegasos. This time,
we again assume that the functionsf1, . . . , fT are sampled
as in the same manner for the Pegasos algorithm, and for
now, we assume the same settings of the constantsλt and
Gt. We now analyze the efficiency of our optimization al-
gorithm by characterizing the number of iterations needed
to guaranteeǫ-optimality with high probability.

5As shown in (Shalev-Shwartz et al., 2007), one can guaran-
tee using a strong duality argument that the optimal solution will
always have norm at most1√

λ
, so usingS as the feasible set does

not impose any additional restrictions.
6Note that a version of the theorem replacingwr with w =

1
T

PT

t=1 wt follows easily from Jensen’s inequality. Though this
leads to a potentially more stable version of Algorithm 3, the
resulting algorithm in practice often converges less quickly and
may be less computationally efficient to implement (for problems
where the feature vectorsxi are sparse).

Using Corollaries 2 and 3 from Section 3.2, and applying
Proposition 2 we have

• With probability at least1 − δ, f(wr) − f(w∗) ≤
G2(1+log T)

δλT
. To ensure that the right hand side is no

greater thanǫ requiresT ≥ Õ(G2

δλǫ
) iterations.

• With probability at least1−δ, f(wr)−f(w∗) ≤ 4RG

δ
√

T
.

To ensure that the right hand side is no greater thanǫ

requiresT ≥ 16R2G2

δ2ǫ2
iterations.

In the first bound, we recover thẽO(G2

δλǫ
) convergence rate

of the Pegasos algorithm. In the second bound, we recover
theO(R2G2

δ2ǫ2
) rate of (Zinkevich, 2003), that, at least at first,

appears not to depend onλ, suggesting that perhaps the
proximal algorithm ought to give improved convergence
whenλ is small. On a closer examination, however, the
dependence onλ is “hidden” inside theR = 1√

λ
bound

from the Pegasos algorithm. Making this dependence ex-
plicit, we achieve a rate of onlyO(G2

δ2λǫ2
).7

Here, the weak link in our analysis is the dependence of
R on λ. In practice, however, the boundR = 1√

λ
is

often quite loose. Knowing ahead of time the norm of
w∗ = arg minw f(w) would help by allowing us to de-
fine a smaller feasible setS and thus obtain tighter bounds.

3.4. An optimistic strategy

With the above motivation in mind, we propose the adap-
tive strategy shown in Algorithm 3. In this method, we as-
sume that we are initially given some desired level of sub-
optimality ǫ. Optimization proceeds in several phases. At
the beginning of each phase, we “hypothesize” a setting of
R. During each phase, we run the proximal projected sub-
gradient strategy until either (1)‖wt‖ gets “close” toR,
forcing us to increaseR by a factor of

√
2 and start a new

phase; or (2) enough iterations pass without this occurring,
allowing us to declare convergence. The algorithm is “op-
timistic” in the sense that it initially assumesR to be small
and only increases it as necessary. One can prove that:

Lemma 2. Suppose that some particular phase ends with-
out any increase inR. Definew∗ = arg minw∈S f(w).
Let r be chosen uniformly at random from{1, . . . , T}.
Then with probability at least1 − δ̂, wr is ǫ-optimal, i.e.,
f(wr)− f(w∗) ≤ ǫ.

Theorem 4. For ǫ < 1
2 , Algorithm 3 terminates after pro-

cessing at most̃O(G2

δλǫ
) examples; with probability at least

1− δ, the resulting parameterswr will be ǫ-optimal.

Our analysis thus shows that the modified algorithm, in the
worst case, is asymptotically equivalent to Pegasos up to

7These results are not particularly surprising, given the recent
minimax analysis of (Abernethy et al., 2008), who showed that
under certain assumptions, the regret bound of the regular pro-
jected subgradient algorithm is worst case optimal.

Proximal regularization for online and batch learning

Algorithm 3 Optimistic proximal SVM solver

input Training set{(x(i), y(i))}mi=1

Regularization parameterλ
Desired suboptimalityǫ
Allowed failure probabilityδ
Mini-batch sizek

DefineS := {w ∈ R
n : ‖w‖ ≤ 1/

√
λ}.

SetG← maxi

∥

∥x(i)
∥

∥ +
√

λ.

Setδ̂ ← δ
3−log2 λ

.

Initialize R← min(1, 1√
λ
).

Initialize w1 ← 0.
repeat

Set CONVERGED← true.
Find smallestT such thatmin(G2(1+log T)

δ̂λT
, 4RG

δ̂
√

T
) ≤ ǫ.

for t← 1, . . . , T do
SampleAt ⊆ {1, . . . ,m} such that|At| = k.
Defineft(w) according to (8).
Choosegt ∈ ∂ft(wt).

Setτt ←
−λ1:t−τ1:t−1+

q

(λ1:t+τ1:t−1)2+
G2

R2

2 .
Setηt ← 1/(λ1:t + τ1:t).
Setwt+1 ← ΠS [wt − ηtgt].

if ‖wt+1‖ ≥ R−
√

2ǫ
λ

then

SetR←
√

2R.
Set CONVERGED← false.
break

end if
end for

until CONVERGED

Chooser uniformly at random from{1, . . . , T}.
return wr.

logarithmic factors. In practice, however, Algorithm 3 can
be significantly faster when‖w∗‖ ≪ 1√

λ
. In these cases,

the algorithm will tend to operate in the regime of smallR,
and will achieveO(R2G2

δ2ǫ2
) regret, independent ofλ.8

4. Batch proximal learning

In the batch learning setting, we are no longer presented
with a sequence of objective functions but rather we are
given a singleλ-strongly convex objective functionf :
R

n → R that we would like to optimize. Batch algorithms
are often appropriate when the training set is not partic-
ularly large, but the cost of inference with respect to any
individual training example is high. This type of scenario
occurs frequently in structured prediction problems, where

8As an anecdotal example, on the “combined” dataset in our
experiments, the parameter norm bound corresponding to theλ
which gave the best test set performance was1√

λ
≈ 3 × 105,

whereas‖w∗‖ = 12.94. On this run, the proximal algorithm
estimated an upper bound ofR = 16.

Algorithm 4 Proximal bundle method
Initialize w1 ← 0.
for t← 1, . . . , T do

Chooseat ∈ ∂ℓ(wt).
Setbt ← ℓ(wt)− aT

t wt.

Setτt ←
−λt−τ1:t−1+

q

(λt+τ1:t−1)2+
(λR+At)

2

R2

2 .
Computeαt = arg max

α∈Rt:α�0,αT 1≤tD′
t(α).

Setwt+1 =
Pt

i=1(τiwi−αt,iai)

λt+τ1:t
.

end for
return wT+1.

inference may involve either a computationally expensive
dynamic programming step, or even solving a combinato-
rial optimization problem as a subroutine.

The prototypical batch algorithm from which we start is
the cutting plane optimization method of (Joachims, 2006)
as reformulated and generalized in (Teo et al., 2007) and
(Smola et al., 2008). In this method,f is assumed to be
everywhere nonnegative, and one creates a sequence of
lower-bound approximations tof of the form,

Pt(w) =
λ

2
‖w‖2 + max

(

0, max
i∈{1,...,t}

(

aT

i w + bi

)

)

.

Initially, w1 = 0. During each iterationt ∈ {1, . . . , T},
at and bt are chosen so thataT

t w + bt is the first-order
Taylor expansion ofℓ(w) at wt, andwt+1 is chosen to
be the minimizer ofPt. To date, the best convergence re-
sults known for bundle methods state that at mostO(1

λT
)

iterations are needed to achieveǫ-optimality, as proved in
(Teo et al., 2007) and (Smola et al., 2008). However, when
λ ≈ 0, the number of iterations needed can still be very
large, just as in the online case.

To counter these problems, we propose aproximal bundle
method, as shown in Algorithm 4. In particular, consider
the sequence of primal and dual optimization problems,

min
w∈Rn

P ′
t(w) for t = 1, 2, . . . , T (10)

max
α∈Rt:α�0,αT1≤t

D′
t(α) for t = 1, 2, . . . , T (11)

where
P′

t(w) := t · Pt(w) +

t
X

i=1

τi

2
‖w − wi‖2

D′

t(α) :=

t
X

i=1

„

τi

2
‖wi‖2

+ αibi

«

−
‚

‚

Pt
i=1(τiwi − αiai)

‚

‚

2

2(λt + τ1:t)
.

for some constantsτ1, . . . , τT . As in the standard bun-
dle algorithm,wt+1 := arg minw∈Rn Pt(w). If αt =
arg max

α∈Rt:α�0,αT1≤tD′
t(α), then the two optima are

related bywt+1 =
Pt

i=1(τiwi−αt,iai)

λt+τ1:t
using strong duality.

In most cutting plane analyses, convergence rates are es-
tablished by lower-bounding the dual improvement in each

Proximal regularization for online and batch learning

Table 1.Convergence ofPegasos, Adaptive, andProximalon nine binary classification tasks. The second through fifth columns give the
size of the training and testing sets, number of features, and the optimal regularization parameter. The last two sets of three columns
report the best SVM training loss,̂f = mint∈1,...,T f(wt), seen for each tested algorithm, and the number of iterations needed to reduce
the initial objective function by0.99(f(w1) − f̂). n/a is reported for cases where the optimizer failed to find a better objective than the
starting parameter set. The best numbers in each group are shown in bold.

Dataset mtrain mtest n λbest Best training loss Eff. iterations to convergence
Pegasos Adaptive Proximal Pegasos Adaptive Proximal

a9a 32,561 16281 123 10−4 0.3537 0.3531 0.3533 28 19 18
combined 78,823 19705 100 10−9 0.5299 0.2760 0.2336 100 99 8
connect-4 54,045 13512 126 10−7 6.8229 0.9698 0.5136 n/a 99 63
covtype 464,808 116204 54 10−8 1.4852 0.7217 0.5830 n/a 96 12
ijcnn1 35,000 91701 22 10−7 0.3582 0.2088 0.1857 89 98 3
mnist 60,000 10000 780 10−5 0.1200 0.1033 0.1012 75 28 3
rcv1 20,242 677399 47,236 10−7 0.0084 0.0035 0.0487 53 10 83

real-sim 57,846 14463 20,958 10−5 0.0602 0.0602 0.0602 6 5 7
w8a 49,749 14951 300 10−8 1.5146 0.1391 0.1292 n/a 45 13

iteration, and then arguing that only a limited number of
iterations can occur before some termination criteria (e.g.,
primal-dual gap) is satisfied. Here, we again use the dual
improvement argument, though we obtain somewhat differ-
ent results, given that the dual objective function changes
after each iteration due to the changing proximal regular-
ization terms. Our analysis is closely related to the online
learning framework of (Shalev-Shwartz & Kakade, 2009).

Lemma 3. Let w1, . . . ,wt−1 ∈ R
n and α ∈ R

t−1 be
vectors such thatα � 0 andα

T 1 ≤ t − 1. If we define

wt :=
Pt−1

i=1 (τiwi−αiai)

λ(t−1)+τ1:t−1
, then

D′
t([α; 1]) −D′

t−1(α) = f(wt) −
‖λwt + at‖

2

2(λt + τ1:t)
. (12)

Using this lower bound, we can then bound the best subop-
timality obtained by our algorithm aftert steps:

Proposition 3. Let w∗ = arg minw∈Rn f(w). Suppose
that‖wt‖ ≤ R and‖at‖ ≤ At for t = 1, . . . , T . Then,

min
t∈{1,...,T}

f(wt) − f(w∗) ≤
1

T

T
X

t=1

»

2τtR
2 +

(λR + At)
2

2(λt + τ1:t)

–

.

Remarkably, the suboptimality guarantees in the proposi-
tion above have essentially the same form as the regret
bounds stated in Corollary 1. As a result, we can make use
of the balancing heuristic for choosing the proximal con-
stantsτ1, . . . , τT . Furthermore, the optimistic strategy for
bounding the optimal parameter norm, as described in Sec-
tion 3.4, also carries over with little modification. For the
sake of space, we show only the proximal bundle method
using the balancing heuristic in Algorithm 4; we do not
give pseudocode for the optimistic extension explicitly. Us-
ing Proposition 3 and the argument in Theorem 1, we have
the following theorem,

Theorem 5. Suppose that‖wt‖ ≤ R and ‖at‖ ≤ A for
t = 1, . . . , T . Then, Algorithm 4 achieves,

min
t∈{1,...,T}

f(wt)− f(w∗) ≤ (λR + A)2(1 + log T)

λT
.

Provided thatλR + A = Õ(1), then our analysis yields a
worst case convergence rate ofÕ(1

λT
), matching the con-

vergence rate of our online algorithm, as well as the best
known convergence rates for bundle methods.

We note that the idea of stabilizing standard bundle method
algorithms to improve convergence has been suggested pre-
viously in the bundle method literature. Proximal bundle
methods originated with (Kiwiel, 1983), and are closely
related to trust region (Schramm & Zowe, 1992) and level
set (Lemaŕechal et al., 1995) techniques for bundle method
improvement. In practice, each of these prior methods re-
quire considerable parameter tuning on the part of the user.
In contrast, our bundle algorithm is straightforward, with
the curvature termsτt automatically chosen in order to min-
imize a regret bound.

5. Experiments

We carried out two sets of experiments with proximal al-
gorithms. For the first set of tasks, we tested online algo-
rithms for large-scale binary classification. For the second
set of tasks, we performed batch training of structured out-
put SVMs for RNA folding and web ranking. In both the
online and batch cases, we ran the optimistic version of our
proximal algorithm, settingǫ = 0 andδ = 1, stopping after
a fixed number of iterations, and returningwT+1 instead of
wr, as in (Shalev-Shwartz et al., 2007).

5.1. Online learning with binary classification

In this experiment, we tested the behavior of our algorithm
on nine binary classification datasets.9 For each of these
datasets, we first determined the optimal setting ofλbest

for ensuring good generalization performance using cross-
validation. We then compared theProximal online al-

9http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/. For
each dataset where a binary classification version was not avail-
able, we reduced multiclass to a single class vs. rest problem.
When separate testing sets were not available, we reserved 80%
of the data set for training and 20% for testing.

Proximal regularization for online and batch learning

10
0

10
1

10
2

10
−0.6

10
−0.4

10
−0.2

R
e

g
u

la
ri
ze

d
 t
ra

in
in

g
 lo

ss

λ = 0.0001

Iterations

Pegasos
Adaptive
Proximal

10
0

10
1

10
2

10
0

R
e

g
u

la
ri
ze

d
 t
ra

in
in

g
 lo

ss

λ = 1e−005

Iterations

Pegasos
Adaptive
Proximal

10
0

10
1

10
2

10
−2

10
0

10
2

10
4

R
e

g
u

la
ri
ze

d
 t
ra

in
in

g
 lo

ss

λ = 1e−006

Iterations

Pegasos
Adaptive
Proximal

10
0

10
1

10
2

10
−0.2

10
0

10
0.2

R
e

g
u

la
ri
ze

d
 t
ra

in
in

g
 lo

ss

λ = 1e−006

Iterations

Pegasos
Adaptive
Proximal

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

R
e

g
u

la
ri
ze

d
 t
ra

in
in

g
 lo

ss

λ = 1e−007

Iterations

Pegasos
Adaptive
Proximal

10
0

10
1

10
2

10
−2

10
0

10
2

10
4

R
e

g
u

la
ri
ze

d
 t
ra

in
in

g
 lo

ss

λ = 1e−008

Iterations

Pegasos
Adaptive
Proximal

Figure 1.Convergence ofPegasos, Adaptive, and Proximal for
combined and covtype. Left column: combined; Right column:
covtype. Each row corresponds to a regularization parameterλ.
Bottom row: λ = λbest, middle row: λ = 10λbest, top row:
λ = 100λbest. Effective iterations are shown on thex-axis.

gorithm againstPegasos(Shalev-Shwartz et al., 2007) and
Adaptiveonline gradient descent (Bartlett et al., 2008) by
running each algorithm for 100 effective iterations10 under
a variety of regularization parameter settings.

In Table 1, we provide some statistics on the training and
testing datasets used. We record the best objective value
f̂ = mint∈1,...,T f(wt) obtained for each algorithm over
the 100 effective iterations. We also record the number of
iterations needed to achieve a objective function reduction
of 0.99(f(w1) − f̂) for each algorithm. TheProximalal-
gorithm achieves the best objective on 7 out of 9 datasets,
while consistently requiring few effective iterations.

Figures 1 and 2 show learning curve plots and test error
plots for two of the datasets (combined and covtype). As
shown, the proximal algorithm enjoys a comfortable ad-
vantage over the other methods, especially for smallλbest.

5.2. Batch learning with RNA folding and web ranking

In this experiment, we compared our batch proximal learn-
ing algorithm against standard bundle algorithms (Smola
et al., 2008) for learning RNA folding and web search rank-
ing models. Both of these problems can be formulated
as nonsmooth structured SVMs ((Chapelle et al., 2007)
for ranking and (Do et al., 2006) for RNA folding). To
date, the fastest approaches for dealing with this type of
nonsmooth optimization problem are cutting plane/bundle
methods (e.g., SVMPerf (Joachims, 2006) and BMRM
(Teo et al., 2007)).

10One pass through the entire dataset is an effective iteration.

10
0

10
1

10
2

10
−2

10
−1

10
0

C
la

ss
ifi

ca
tio

n
 e

rr
o

r

λ = 0.0001

Iterations

Pegasos
Adaptive
Proximal

10
0

10
1

10
2

10
−2

10
−1

10
0

C
la

ss
ifi

ca
tio

n
 e

rr
o

r

λ = 1e−005

Iterations

Pegasos
Adaptive
Proximal

10
0

10
1

10
2

10
−2

10
−1

10
0

C
la

ss
ifi

ca
tio

n
 e

rr
o

r

λ = 1e−006

Iterations

Pegasos
Adaptive
Proximal

10
0

10
1

10
2

10
−0.6

10
−0.5

C
la

ss
ifi

ca
tio

n
 e

rr
o

r

λ = 1e−006

Iterations

Pegasos
Adaptive
Proximal

10
0

10
1

10
2

10
−0.6

10
−0.5

10
−0.4

C
la

ss
ifi

ca
tio

n
 e

rr
o

r

λ = 1e−007

Iterations

Pegasos
Adaptive
Proximal

10
0

10
1

10
2

10
−0.6

10
−0.5

10
−0.4

C
la

ss
ifi

ca
tio

n
 e

rr
o

r

λ = 1e−008

Iterations

Pegasos
Adaptive
Proximal

Figure 2.Test errors ofPegasos, Adaptive, andProximalfor com-
bined and covtype during the course of optimization. Each row
corresponds to a regularization parameterλ. Bottom row: λ =
λbest, middle row:λ = 10λbest, top row: λ = 100λbest. Effective
iterations are shown on thex-axis.

In the RNA folding experiment, the dataset contained RNA
sequences taken from 151 separate RNA families (Do et al.,
2006), and we used a model with approximately 350 dis-
tinct features based largely on existing thermodynamic
scoring schemes for RNA folding. In the ranking experi-
ment, the dataset contained 1000 queries for training, 1000
queries for validation, with an average of 50 documents
per query. In both cases, we compared the performance
of the proximal bundle method against the standard bundle
method for various values ofλ.

Figure 3 shows training loss curves depicting the best train-
ing loss obtained so far for a standard bundle method com-
pared to our proximal variant. In both methods, many it-
erations pass before the algorithms are able to identify pa-
rameters which improve upon the initial parameter set; for
the standard bundle method, this problem is especially pro-
nounced for small regularization parameters. Again, the
results show that the proximal variant significantly outper-
forms the standard algorithm, especially whenλ is small.

6. Discussion

Functions with low curvature are the Achilles’s heel of
optimization algorithms in machine learning. In this pa-
per, we propose new online and batch learning algorithms,
which sequentially modify the objective functions used
during optimization. By choosing these modified tasks
carefully, our methods ensure that (1) the sequence of solu-
tions given by these modified tasks will lead to a good ap-
proximate minimizer of the original optimization problem,
and (2) the regret bounds obtained in the online setting and

Proximal regularization for online and batch learning

10
0

10
1

10
2

10
3

10
2.15

10
2.16

iterations

re
gu

la
riz

ed
 tr

ai
ni

ng
 lo

ss λ = 10

Bundle
Proximal Bundle

10
0

10
1

10
2

10
3

10
2.153

10
2.167

iterations

re
gu

la
riz

ed
 tr

ai
ni

ng
 lo

ss λ = 1

Bundle
Proximal Bundle

10
0

10
1

10
2

10
3

10
2.154

10
2.167

iterations

re
gu

la
riz

ed
 tr

ai
ni

ng
 lo

ss λ = 0.1

Bundle
Proximal Bundle

10
0

10
1

10
2

10
3

10
2.152

10
2.167

iterations

re
gu

la
riz

ed
 tr

ai
ni

ng
 lo

ss λ = 0.01

Bundle
Proximal Bundle

10
0

10
1

10
2

10
3

10
−3.17

10
−3.15

iterations

re
g

u
la

ri
ze

d
 t
ra

in
in

g
 lo

ss λ = 1e−05

Bundle

Proximal Bundle

10
0

10
1

10
2

10
3

10
−3.17

10
−3.15

iterations

re
g

u
la

ri
ze

d
 t
ra

in
in

g
 lo

ss λ = 1e−06

Bundle

Proximal Bundle

10
0

10
1

10
2

10
3

10
−3.17

10
−3.15

iterations

re
g

u
la

ri
ze

d
 t
ra

in
in

g
 lo

ss λ = 1e−07

Bundle

Proximal Bundle

10
0

10
1

10
2

10
3

10
−3.17

10
−3.15

iterations

re
g

u
la

ri
ze

d
 t
ra

in
in

g
 lo

ss λ = 1e−08

Bundle

Proximal Bundle

Figure 3.Comparison of a standard bundle method to our prox-
imal bundle method for SVM structured learning with various
choices ofλ. Left column: RNA folding; Right column: Web
ranking. Each row corresponds to a regularization parameterλ.
The regularization parameter decreases from top to bottom.

the convergence rates obtained in the batch setting will be
improved due to the increased curvature.

The idea of adding curvature in order to improve regret
bounds for online algorithms was introduced in (Bartlett
et al., 2008), and the online algorithmic schemes proposed
there have much in common with the basic online meth-
ods proposed here. We apply these ideas to the problem
of training linear SVMs and structured prediction models,
where we introduce a new adaptive strategy for optimisti-
cally bounding the norm of the optimal parameters. We
also transfer these ideas to the batch setting, where we
present improved bundle methods for structured learning.

Experimentally, we show that the problem of low curva-
ture is not simply a matter of theoretical concern. Rather,
for many real world large-scale learning problems, the opti-
mal regularization penalty (as determined by holdout cross-
validation) is often very small. For problems where high
regularization is appropriate (e.g., when the dimensional-
ity of the data is large relative to the number of training
examples), our algorithm performs as well as the best ex-
isting methods, such as Pegasos. When low regularization
is needed, however, our algorithm offers dramatic improve-
ments over state-of-the-art techniques, converging in a few
passes through the dataset when other algorithms may fail
to converge at all.

Acknowledgments

We thank Andrew Ng for his support in this project. We
thank anonymous reviewers for their comments on the
manuscript. CBD was supported by an NSF Graduate Re-
search Fellowship. CSF was supported by an A*STAR Na-
tional Science Scholarship.

References
Abernethy, J., Bartlett, P. L., Rakhlin, A., & Tewari, A.

(2008). Optimal strategies and minimax lower bounds
for online convex games.Proceedings of the 21st Annual
Conference on Computational Learning Theory.

Bartlett, P., Hazan, E., & Rakhlin, A. (2008). Adaptive
online gradient descent. In J. Platt, D. Koller, Y. Singer
and S. Roweis (Eds.),Advances in Neural Information
Processing Systems 20, 65–72. MIT Press.

Chapelle, O., Le, Q. V., & Smola, A. J. (2007). Large mar-
gin optimization of ranking measures.NIPS Workshop:
Machine Learning for Web Search.

Do, C. B., Woods, D. A., & Batzoglou, S. (2006). CON-
TRAfold: RNA secondary structure prediction without
physics-based models.Bioinformatics, 22, e90–e98.

Hazan, E., Agarwal, A., & Kale, S. (2007). Logarithmic
regret algorithms for online convex optimization.Mach
Learn, 69, 169–192.

Joachims, T. (2006). Training linear SVMs in linear time.
Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(pp. 217–226).

Kiwiel, K. C. (1983). Proximity control in bundle methods
for convex nondifferentiable minimization.Math Pro-
gram, 27, 320–341.

Lemaŕechal, C., Nemirovskii, A., & Nesterov, Y. (1995).
New variants of bundle methods.Math Program, 69,
111–147.

Schramm, H., & Zowe, J. (1992). A version of the bundle
idea for minimizing a nonsmooth function: conceptual
idea, convergence analysis, numerical results.SIAM J
Optim, 2, 121–152.

Shalev-Shwartz, S., & Kakade, S. M. (2009). Mind the du-
ality gap: Logarithmic regret algorithms for online opti-
mization. In D. Koller, D. Schuurmans, Y. Bengio and
L. Bottou (Eds.),Advances in Neural Information Pro-
cessing Systems 21, 1457–1464. MIT Press.

Shalev-Shwartz, S., Singer, Y., & Srebro, N. (2007). Pega-
sos: Primal Estimated sub-GrAdient SOlver for SVM.
Proceedings of the 24th Annual International Confer-
ence on Machine Learning(pp. 807–814).

Smola, A., Vishwanathan, S. V. N., & Le, Q. (2008). Bun-
dle methods for machine learning. In J. Platt, D. Koller,
Y. Singer and S. Roweis (Eds.),Advances in Neural
Information Processing Systems 20, 1377–1384. MIT
Press.

Teo, C. H., Smola, A., Vishwanathan, S. V., & Le, Q. V.
(2007). A scalable modular convex solver for regular-
ized risk minimization. Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining(pp. 727–736).

Zinkevich, M. (2003). Online convex programming and
generalized infinitesimal gradient ascent.Proceedings
of the 20th Annual International Conference on Machine
Learning.

