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Welcome to Neighborhood Semantics for Modal Logic! The course will consist of
five 90 minute lectures roughly organized as follows:

Day 1: Introduction, Motivation and Basic Concepts

Day 2: Non-normal Modal Logics: Completeness, Decidability and
Complexity

Day 3: Advanced Topics I

Day 4: Advanced Topics II

Day 5: Applications and Extensions

The precise topics for the course will depend in part on the interests and back-
ground of the students attending the lectures. This document contains an intro-
duction to the course including some pointers to relevant literature. The focus is
on the basics of neighborhood semantics with only pointers to literature relating
to the more advanced topics. The website for the course is

staff.science.uva.nl/∼epacuit/nbhd esslli.html

On this website you will find the lecture slides (and possibly course notes) updated
daily. Two other sources will also be useful:

1. Brian Chellas, Modal Logic: an Introduction (Cambridge University Press,
1980), Chapters 7 - 9 cover basic results about classical modal logic, and
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2. Helle Hvid Hansen, Monotonic modal logics, Master’s Thesis, Institute for
Logic, Language and Information (2003). Available at

http://www.few.vu.nl/∼hhhansen/papers/scriptie pic.pdf.

Although the course will be self-contained, it is recommended to have basic knowl-
edge of modal logic. For example, it will be useful to be familiar with:

1. The first four chapters (skipping the advanced track sections) of Modal Logic
by P. Blackburn, M. de Rijke and Y. Venema (Cambridge University Press,
2001), and/or

2. Modal Logic: an Introduction by Brian Chellas (Cambridge University
Press, 1980).

The main goal of the corse is to understand the basic techniques, results and ap-
plications of neighborhood semantics for modal logic and to understand the exact
relationship with the standard relational semantics. Enjoy the course and please
remember to ask questions during the lecture, point out any mistakes and/or
omitted references in this text and my lecture notes.

1 Introduction and Motivation

Neighborhood models are a generalization of the standard Kripke, or relational,
models for modal logic invented by1 Dana Scott and Richard Montague (indepen-
dently in [32] and [26]). Before diving into the details of neighborhood models
we take some time to review some key ideas about relational semantics for modal
logic (please consult [4] for a complete discussion).

Early on (in 1971) Krister Segerbeg wrote an essay [33] presenting some basic
results about neighborhood models and the classical systems that correspond to
them and later on Brian Chellas incorporated these and other salient results in part
III of his textbook [6]. Nevertheless for more than 15 years or so after 1971, in the
apparent absence of applications or in the absence of guiding intuitions concerning
the role of neighborhoods, non-normal classical modal logics were studied mainly
in view of their intrinsic mathematical interest. This situation has changed in
important ways during the last 18 or so years.

1In fact, the idea for neighborhood semantics for modal logic is already implicit in the seminal
work of McKinsey and Tarski [25].
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1.1 Relational Semantics for Modal Logic

The basic modal language, denoted L(At), where At is a (finite or infinite)
set of atomic sentences (we will often write L when At is clear from context) is
generated by the following grammar2:

p | ¬φ | φ ∧ φ | 2φ | 3φ

where p ∈ At. The usual abbreviations will be used.

Definition 1.1 (Relational Structures) A relational frame is a pair 〈W,R〉
where W is a nonempty set and R is a relation on W (i.e., R ⊆ W ×W ). We
write wRv if (w, v) ∈ R. A relational model based on a frame F = 〈W,R〉 is a
tuple 〈W,R, V 〉 where V : At → 2W is called a valuation function. The set W
called the domain of M (F) and may be denote D(M) (D(F)). /

The intuition is that each state is a propositional model (i.e., a boolean valuation3)
with the boolean connectives interpreted locally. The additional structure in a
relational model (i.e., the relation R) is used to give a truth value to formulas
where the modal operator is the main connective. Formulas from L are interpreted
at states (elements of W ).

Definition 1.2 (Truth in Relational Models) Let M = 〈W,R, V 〉 be a rela-
tional model. Truth of a formula φ ∈ L at a state w ∈ W is defined inductively
as follows:

1. M, w |= p iff w ∈ V (p)

2. M, w |= ¬φ iff M, w 6|= φ

3. M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ

4. M, w |= 2φ iff for each v ∈ W , if wRv then M, v |= φ

5. M, w |= 3φ iff there is a v ∈ W such that wRv and M, v |= φ

We say a formula φ ∈ L is valid in a model M, written M |= φ, if for each state
w in W , M, w |= φ. The formula φ is valid in a frame F, written F |= φ, if
for all models M based on that frame, M |= φ. Finally, a formula φ is said to be
satisfiable in a model M if there is a state w ∈ D(M) such that M, w |= φ. /

2Typically only one of 2 and 3 is taken as primitive and the other is defined to be the dual,
for example 3φ is sometimes defined to be ¬2¬φ. We have opted to take both 2 and 3 as
primitive for reasons which will become clear later in Section 2.

3To make this precise, think of the valuation function V as a function from W ×At to {0, 1}
where V (w, p) = 1 iff w ∈ V (p) and V (w, p) = 0 iff w 6∈ V (p).
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The above models have successfully been used to model a number of different in-
tensional notions. For example, we can interpret 2φ as “an agent knows φ”. From
this point of view, the accessibility relation R in a model has a clear interpreta-
tion — wRv is intended to mean “according to the agent’s current information
the states w and v are indistinguishable”. Here we see the role of the relation R
in the above models is to provide us with information that is not provided by the
set of states W — the information the agent has about the states W . In other
words, for every sentence φ ∈ L, the relation R provides a mechanism to deter-
mine whether or not the agent knows φ. So we can think of relational models as a
simple and elegant way to represent ground facts (i.e., the facts about the current
state of affairs), the agent’s knowledge of these facts, the agent’s knowledge of its
knowledge about these facts, and so on ad infinitum.

Using relations to represent this additional information forces us to accept a
number of principles. It is not hard to see (and well-known) that the following
formulas are valid in any relational model:

1. 2(φ ∧ ψ) → 2φ ∧2ψ

2. 2φ ∧2ψ → 2(φ ∧ ψ)

3. 2>

4. 2(φ→ ψ) → (2φ→ 2ψ)

5. 2φ↔ ¬3¬φ

We give the details that the first formula is valid in any relational model and leave
the simple but illuminating proofs of the other facts to the reader.

Observation 1.3 The formula 2(φ ∧ ψ) → 2φ ∧ 2ψ is valid on any relational
model.

Proof. Let F = 〈W,R〉 be any relational frame and M = 〈W,R, V 〉 any model
based on F. Suppose w ∈ W and M, w |= 2(φ∧ψ). Let v ∈ W be any state with
wRv. Then M, v |= φ∧ψ and hence M, v |= φ. Thus, for any v ∈ W , if wRv then
M, v |= φ; and so, M, w |= 2φ. Similarly, M, w |= 2ψ. Hence M, w |= 2φ ∧ 2ψ.
Therefore, M, w |= 2φ ∧ 2ψ. As M is an arbitrary model based on F and w an
arbitrary state, F |= 2(φ ∧ ψ) → 2φ ∧2ψ. qed

Exercise 1.4 Prove that all of the above formulas are valid on any relational
frame.
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1.2 Motivating Examples

Thus, when one uses relational structures to interpret modal formulas, one is
forced to accept the above principles. For many interpretations this is relatively
uncontroversial. However, there are interpretations in which the validity of some
of the above axioms can be called into question. We now run through some of the
most convincing examples. We do not go into full details, but only give the main
ideas. The relevant references are provided in Section ??

Logics of High Probability: Suppose that the intended interpretation
of 2φ is “φ is assigned ‘high’ probability”, where “high” probability means above
a certain threshold r ∈ [0, 1]. Under this interpretation, the second formula is not
longer valid. To see this, suppose that p and q represent independent events (i.e.,
there are no states that satisfy both p and q) and suppose that the threshold r = 2

3
.

Suppose that both p and q are assigned probability 3
4
. Then 2p and 2q holds (i.e.,

their probability is higher than the threshold). However, the probability of ‘p and
q’ is 9

16
, which is less than the threshold. Thus 2(p ∧ q) does not hold. There-

fore, 2φ ∧ 2ψ → 2(φ ∧ ψ) is not valid under this interpretation. Note that this
argument does not work if we take the threshold to be 1. What happens if r < 1

2
? /

Game Logics: Consider the following game between Ann (A) and Bob (B):

As1

Bs3

po1 p, qo2

Bs4

p, qo3 qo4

Here Ann has the first move followed by a choice for Bob. It is also indicated
which of the propositional variables p and q are true at the outcome nodes (labeled
o1, o2, o3 and o4).

We say that a player can force a set of outcome states X if that player has a
strategy that guarantees the game will end in one of the states in X. For example,
in the above game, Ann can force the set X1 = {o1, o2}. This follows because
Ann has a strategy (move left) such that no matter what action Bob chooses, the
outcome of the game will be a state in X1. Similarly, Ann can also force the set
X2 = {o3, o4}. However, Ann cannot force the set X3 = {o2, o3} since Bob has the
freedom to select either o1 or o3 depending on Ann’s choice. We can make this
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observation more formal: given an internal state s, we write s |= 2φ if Ann4 has
a strategy to force the outcome of the game to be a state that satisfies φ. Then
in the above example, s1 |= 2p ∧2q but s1 6|= 2(p ∧ q). /

The preceding frameworks provide natural counterexamples to the validity of
the second formula (2φ∧2ψ → 2(φ∧ ψ). What about the other formulas listed
above?

Exercise 1.5 Which of the formulas 1-4 are valid under the probabilistic inter-
pretation? What about the game-theoretic forcing interpretation?

One difficulty in answering this question about formula 5 (2φ↔ ¬3¬φ) is that
we must provide an interpretation for the 3 operator. Let us consider the game-
theoretic forcing example. A natural interpretation of 3φ is “Bob has a starategy
to ensure that φ is true”. A natural assumption about the game is consistency:
it cannot be the case that can force φ to be true and Bob can force ¬φ to be
true. In other words, ¬(2φ ∧ 3¬φ) is valid under this consistency assumption.
Using propositional reasoning, this formula is equivalent to 2φ → ¬3¬φ. The
validity of the converse requires a stronger game-theoretic assumption. Rewriting
¬3¬φ→ 2φ as 3¬φ∨2φ, this formulas says “either Bob has a strategy to force
¬φ to be true or Ann has a strategy to force φ to be true.” If we think of the
formula φ as stating that Ann has won the game, then the validity of this formula
amounts to assuming the games are determined (either Ann has a winning strategy
or Bob has a winning strategy). Thus 2φ ↔ ¬3¬φ is valid with respect to all
consistent, two-person determined games.

We now consider the validity of the first formula (2(φ∧ψ) → 2φ∧2ψ). It is
more convenient to work with a rule (called the monotonic rule) which is equiv-
alent to assuming that this formula is valid: from φ → ψ infer 2φ → 2ψ. For
now, we will not go into details, but will return to this fact in Chapter ??.

Deontic Logics: Deontic logicians interpret 2φ as “it is obliged that φ”.
We claim that under this interpretation, the monotonicity rule described above
should not be valid. The following “Paradox of Gentle Murder” of J. Forrester
illustrates the problem (we follow the discussion from L. Goble’s “Murder Most
Gentle: The Paradox Deepens”[14]). See also [15]. Consider the following three
statements:

1. Jones murders Smith,

4In fact, there are many choices here. We could have taken 2φ to mean Bob has a strategy
for force φ to be true or even label the modalities with each player. See [37] for a complete
discussion.
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2. Jones ought not to murder Smith,

3. If Jones murders Smith, then Jones ought to murder Smith gently.

Intuitively, these sentences appear to be consistent. However, 1 and 3 together
imply that

4. Jones ought to murder Smith gently

Also we have the following fact:

5. If Jones murders Smith gently, then Jones murders Smith.

Of course, this not a logical validity, but rather a fact about the world we live in.
Now, if we assume that the monotonicity rule is valid, then 5. entails

6. If Jones ought to murder Smith gently, then Jones ought to murder Smith.

And so, 4. and 6. together imply

7. Jones ought to murder Smith.

But this contradicts statement 2. This argument strongly suggests that deontic
logics should not validate the monotonicity rule. Of course, this is only strong
evidence that the monotonicity rule should not be valid under the deontic inter-
pretation rather than a specific counterexample to the rule (as in the previous two
examples). But this is enough for our purposes: it is at least plausible that one
may want to consider logics in which the the monotonicity rule (hence formula 1)
is not valid. /

There are a number of other motivations for studying weak systems of modal
logic. For example, [27] looks that the modal logic of derivability which turns
out to be a non-normal modality. Other applications include logics for reasoning
about strategic abilities of agents [1, 31], weak epistemic logics without “logical
omniscience” [29, 3] and certain logics for knowledge representation [28].

2 Basic Concepts

2.1 Preliminaries

Sets paired with a distinguished collections of subsets are ubiquitous in many
areas of mathematics. They show up as topologies or simple games to name two
of the most usual suspects. More formally, let W be a non-empty set and ℘W
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the collection of all subsets of W . We are interested in pairs 〈W,F〉 where W
is a non-emtpy set and F ∈ ℘℘W . Typically, the sets F ⊆ ℘W satisfy certain
algebraic properties. We list some relevant properties below:

1. F is closed under intersections if for any collections of sets {Xi}i∈I such
that for each i ∈ I, Xi ∈ F , then ∩i∈IXi ∈ F . If we assume |I| = 2 then we
say F is closed under binary intersections. If I is finite, then we say F
is closed under finite intersections. Generally, for any cardinal κ, we say
that F is closed under ≤ κ-intersections if for each collections of sets
{Xi}i∈I from F with |I| ≤ κ, ∩i∈IXi ∈ F .

2. F is closed under unions if for any collections of sets {Xi}i∈I such that
for each i ∈ I, Xi ∈ F , then ∪i∈IXi ∈ F . (The same comments as above
about binary and finite collections apply here as well: in particular, for any
cardinal κ, we say that F is closed under ≤ κ-unions if for each collections
of sets {Xi}i∈I from F with |I| ≤ κ, ∪i∈IXi ∈ F .)

3. F is closed under complements if for each X ⊆ W , if X ∈ F , then
XC ∈ F .

4. F is supplemented, or closed under supersets provided for each X ⊆
W , if X ∈ F and X ⊆ Y ⊆ W , then Y ∈ F .

5. F contains the unit provided W ∈ F ; and F contains the empty set
if ∅ ∈ F .

6. Call the set ∩X∈FX the core of F . F contains its core provided ∩X∈FX ∈
F .

7. F is proper if X ∈ F implies XC 6∈ F .

8. F is consistent if ∅ 6∈ F and F 6= ∅.

We gather some useful observations about the above properties. Our first obser-
vation provides an alternative characterization of supplemented collections.

Lemma 2.1 F is supplemented iff if X ∩ Y ∈ F then X ∈ F and Y ∈ F .

Proof. The left to right direction is trivial as X ∩ Y ⊆ X and X ∩ Y ⊆ Y . For
the right to left direction, suppose that for any X, Y ⊆ W , if X ∩ Y ∈ F then
X ∈ F and Y ∈ F . Let Z ⊆ Z ′ ⊆ W and Z ∈ F . We must show Z ′ ∈ F . Since
Z ⊆ Z ′, Z ∩ Z ′ = Z and so we have Z ∩ Z ′ = Z ∈ F . By our assumption, Z ∈ F
and Z ′ ∈ F , as desired. qed
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Property 6 above deserves some comments. If F contains the unit, then intuitively
F contains a maximal element (under the subset relation). Similarly, if F contains
its core, then F contains a minimal element (under the subset relation). The
following definition lists some well-known collections of sets.

Definition 2.2 Let W be a non-empty set and F ⊆ ℘W , then

1. F is a filter if F contains the unit, closed under binary intersections and
supplemented. F is a proper filter if in addition F does not contain the
emptyset.

2. F is an ultrafilter if F is proper filter and for each X ⊆ W , either X ∈ F
or XC ∈ F .

3. F is a topology if F contains the unit, the emptyset, is closed under finite
intersections and arbitrary unions.

4. F is augmented if F contains its core and is supplemented. /

Let us consider augmented collections in a bit more detail. The following fact is
straightforward and left as an exercise.

Lemma 2.3 If F is augmented, then F is closed under arbitrary intersections.
In fact, if F is augmented then F is a filter.

Proof. Left as an exercise for the reader. qed

Of course, the converse is false. But that is not very interesting since it is easy to
construct collections of sets closed under intersections that are not supplemented.
What is more interesting is that there are consistent filters that are not augmented.

Fact 2.4 There are consistent filters that are not augmented.

Proof. Suppose W = (−1, 1) = {x | x ∈ R and − 1 ≤ x ≤ 1} and F =
{X ⊆ (−1, 1) | (− 1

n
, 1

n
) ⊆ Xfor some natural number n ≥ 1}. Clearly ∅ 6∈ F

(and F is non-empty), so F is consistent. By construction F is closed under
supersets. Finally, F is easily seen to be closed under finite intersections: let
X1, X2 ∈ F . Then there is a n ≥ 1 and m ≥ 1 such that (− 1

n
, 1

n
) ⊆ X1 and

(− 1
m
, 1

m
) ⊆ X2. Either n ≤ m or m > n. If n = m we are done since in this case

(− 1
n
, 1

n
) = (− 1

m
, 1

m
) ⊆ X1 ∩X2 and so X1 ∩X2 ∈ F . This leaves the cases n > m

and m > n. Suppose n > m. Then (− 1
n
, 1

n
) ⊆ (− 1

m
, 1

m
). Hence, (− 1

n
, 1

n
) ⊆ X1∩X2

and so X1 ∩X2 ∈ F . The case when m > n is similar. So F is a consistent filter.
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Now, ∩F = ∅ and as noted above ∅ 6∈ F ; therefore, F is not augmented.
To see ∩F = ∅, note that for each x ∈ (−1, 1) there is a large enough n such
that x 6∈ (− 1

n
, 1

n
) (this is a standard fact about real numbers). This shows that

∩n≥1(− 1
n
, 1

n
) = ∅. Thus, since ∩F ⊆ ∩n≥1(− 1

n
, 1

n
), we have ∩F = ∅. qed

However, as is well-known, the situation is much better if W is finite. To see this,
we first note the following well-known fact.

Lemma 2.5 If F is closed under binary intersections (i.e., if X,Y ∈ F then
X ∩ Y ∈ F), then F is closed under finite intersections.

Proof. The proof is standard, but we repeat it here in the interest of exposition.
Suppose that F is closed under binary intersections. We must show for every
collections of sets {Xi}i∈I with I finite and Xi ∈ F for each i ∈ I, we have
∩i∈IXi ∈ F . The proof is by induction on the size of I. The base case (|I| = 2)
is true by assumption. Suppose the statement holds for index sets of size n and
consider the collection of sets {Xi}i∈I with |I| = n+1 and for each i ∈ I, Xi ∈ F .
Choose any j ∈ I (such an index exists as |I| > 2). Then ∩i∈IXi = ∩i∈I−{j}Xi∩Xj.
Since |I − {j}| = n, by the induction hypothesis, ∩i∈I−{j}Xi ∈ F . Thus, since F
is closed under binary intersections and Xj ∈ F , ∩i∈IXi = ∩i∈I−{j}Xi ∩Xj ∈ F ,
as desired. qed

Corollary 2.6 If W is finite and F is a filter over W , then F is augmented.

Proof. Since W is finite and F ⊆ ℘W , F is finite. Since F is a filter, by
definition F is closed under binary intersection. By Lemma 2.5, F is closed under
finite intersections. In particular, since F is itself a finite collection of sets from
F , ∩F ∈ F . qed

We end this section with a number of operations on collections of sets that will
be useful in the subsequent chapters. Let W be a set and F ⊆ ℘W any collection
of sets.

• Let sup(F) be the smallest collections of subsets of W that contains F and
is closed under supersets.

• Let aug(F) be the smallest augmented collection of sets containing F . That
is aug(F) = sup(F ∪ {∩F}).
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2.2 Neighborhood Frames and Models

We are now ready to present our basic object of study. Recall from our discussion
of relational structures in Chapter 1 that we are after a mathematical structure
that can tell us, for each state, the set of necessary propositions. We proceed in the
simplest way possible: at each state list all the sets that are considered “necessary”
(or “known” or “believed” or . . .). To that end, a function N : W → ℘℘W is
called a neighborhood function5.

Definition 2.7 (Neighborhood Frames) A pair 〈W,N〉 is a called a neigh-
borhood frame, or a neighborhood system, if W a non-empty set and N is
a neighborhood function. /

We say that 〈W,N〉 is a filter provided for each w ∈ W , N(w) is a filter. Similarly
for the other properties discussed above. Admittedly, this is an abuse of notation
since a filter is a property of collections of sets not of neighborhood systems.
However, we trust that this will not cause any confusion.

One of the main goals of the text is to highlight the similarities and differences
between neighborhood frames and relational frames as a semantics for the basic
modal language. With this goal in mind, we clarify which neighborhood frames
correspond to relational frames (in a technical sense defined below). Given a
relation R on a set W (i.e., R ⊆ W ×W ), define the following functions:

1. R→ : W → ℘W : for each w ∈ W , let R→(w) = {v | wRv}.

2. R← : ℘W → ℘W : for eachX ⊆ W , R←(X) = {w | ∃v ∈ X such that wRv}.

Definition 2.8 (R-Necessity) Given a relation R on a set W and a state w ∈
W . A set X ⊆ W is R-necessary at w if R→(w) ⊆ X. Let NR

w be the set of sets
that are R-necessary at w (we simple write Nw if R is clear from context). That
is,

NR
w = {X | R→(w) ⊆ X}

/

The following lemma shows that the collection of necessary sets have very nice
properties.

Lemma 2.9 Let R be a relation on W . Then for each w ∈ W , Nw is augmented.

Proof. Left as an exercise. qed

5The motivation for calling these functions neighborhood functions is discussed in the historical
notes at the end of this chapter (see also Chapter ??)
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Furthermore, properties of R are reflected in these collection of sets.

Observation 2.10 Let W be a set and R ⊆ W ×W .

1. If R is reflexive, then for each w ∈ W , w ∈ ∩Nw

2. If R is transitive then for each w ∈ W , if X ∈ Nw, then {v | X ∈ Nv} ∈ Nw.

Proof. Suppose that R is reflexive. Let w ∈ W be an arbitrary state. Suppose
that X ∈ Nw. Then since R is reflexive, wRw and hence w ∈ R→(w). Therefore
by the definition of Nw, w ∈ X. Since X was an arbitrary element of Nw, w ∈ X
for each X ∈ Nw. Hence w ∈ ∩Nw.

Suppose that R is transitive. Let w ∈ W be an arbitrary state. Suppose
that X ∈ Nw. We must show {v | X ∈ Nv} ∈ Nw. That is, we must show
R→(w) ⊆ {v | X ∈ Nv}. Let x ∈ R→(w). Then wRx. To complete the proof
we need only show X ∈ Nx. That is, we must show R→(x) ⊆ X. Since R is
transitive, R→(x) ⊆ R→(w) (why?). Hence since R→(w) ⊆ X, R→(x) ⊆ X. qed

Exercise 2.11 State and prove analogous results for the situations when R is
serial, Euclidean and symmetric respectively.

From this point of view, we can think of relational frames and neighborhood frames
as two different ways of presenting the same information. It should be clear that
with neighborhood frames, there is more freedom in which collection of sets can
be necessary at a particular state. On the other hand, in relational frames this
information is presented in a simple and elegant fashion. A natural question to
ask is under what circumstances do a neighborhood frame and a relational frame
represent the same information.

Definition 2.12 (Equivalence of Neighborhood and Relational Frames)
Let 〈W,N〉 be a neighborhood frame and 〈W,R〉 be a relational frame. We say
that 〈W,N〉 and 〈V,R〉 are equivalent if X ⊆ W , X ∈ N(w) iff X ∈ NR

w . /

The following theorems give the situations when relational frames and neighbor-
hood frame are equivalent.

Theorem 2.13 Let 〈W,R〉 be a relational frame. Then there is an equivalent
augmented neighborhood frame.

Proof. The proof is trivial given Lemma 2.9: for each w ∈ W , let N(w) = Nw.
qed

Theorem 2.14 Let 〈W,N〉 be an augmented neighborhood frame. Then there is
an equivalent relational frame.
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Proof. Let 〈W,N〉 be a neighborhood frame. We must define a relation RN onW .
Since 〈W,N〉 is augmented, for each w ∈ W , ∩N(w) ∈ N(w). For each w, v ∈ W ,
we say wRNv iff v ∈ ∩N(w). To show 〈W,RN〉 and 〈W,N〉 are equivalent, we must
show for each w ∈ W , Nw = N(w). Let w ∈ W and X ⊆ W . If X ∈ Nw. Then
R→N (w) ⊆ X. Since R→N (w) = ∩N(w) and N contains its core, R→N (w) ∈ N(w).
Furthermore, since N is supplemented and R→N (w) = ∩N(w) ⊆ X, X ∈ N(w).
Suppose that X ∈ N(w). Then clearly ∩N(w) ⊆ X. Hence X ∈ Nw. qed

2.3 Truth in Neighborhood Models

Recall the definition of the basic modal language, denoted by L(At), where At is
a set of atomic sentences:

p | ¬φ | φ ∧ φ | 2φ | 3φ

where p ∈ At. The intended interpretation of 2φ is “φ is necessary” and of 3φ is
“φ is possible”. Of course, both necessary and possible can be interpreted in many
different ways.

Definition 2.15 (Neighborhood Model) Let F = 〈W,N〉 be a neighborhood
frame. A model based on F is a tuple 〈W,N, V 〉 where V : At → 2W is a valuation
function. /

Truth of modal formulas in neighborhood models is defined in much the same
way as in Definition 1.2. Of course, the only difference can be seen with the
definition of truth of the modal operators.

Definition 2.16 (Truth in a Neighborhood Model) Let M = 〈W,N, V 〉 be
a model and w ∈ W . Truth of a formula φ ∈ L(At) is defined inductively as
follows:

1. M, w |= p iff w ∈ V (p)

2. M, w |= ¬φ iff M, w 6|= φ

3. M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ

4. M, w |= 2φ iff (φ)M ∈ N(w)

5. M, w |= 3φ iff W − (φ)M 6∈ N(w)

where (φ)M denotes the truth set of φ. That is (φ)M = {w | M, w |= φ}. /

13
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The definition of truth of the modal operators (items 4 and 5 above) where cho-
sen to ensure that 2 and 3 would be dual operators. The intuition is that the
neighborhood function N is simply a list of the necessary propositions. Hence,
2φ is true at a state just in case the truth set of φ is a member of that list.
Furthermore, φ is a possibility if the proposition expressed by ¬φ is not a member
of that list. Other options for the definition of truth of the modal operators have
been considered in the literature. Some of these will be considered below. We first
spend some time getting a feel for the above definition of truth.

The following properties of the truth set will be used throughout this text. We
first need some notation. Let N : W → ℘℘W be a neighborhood function. Define
mN : ℘W → ℘W as follows: for X ⊆ W ,

mN(X) = {w | X ∈ N(w)}

Intuitively, mN(X) is the set of states in which X is necessary. Let M = 〈W,N, V 〉
be a neighborhood model.

1. (p)M = V (p) for p ∈ At

2. (¬φ)M = W − (φ)M

3. (φ ∧ ψ)M = (φ)M ∩ (ψ)M

4. (2φ)M = mN((φ)M)

5. (3φ)M = W −mN(W − (φ)M)

The proof of the above statements is an easy application of the definition of truth
and is left to the reader. We say φ is valid in M, denoted M |= φ, if for each
w ∈ W , M, w |= φ. Also, φ is valid in a frame F if for each model M based on F,
M |= φ.

Detailed Example: Suppose W = {w, s, v} is the set of states and define a neigh-
borhood model M = 〈W,N, V 〉 as follows:

• N(w) = {{s}, {w, v}}

• N(s) = {{w, v}, {w}, {w, s}}

• N(v) = {{s, v}, {w}, ∅}

Suppose that V (p) = {w, s} and V (q) = {s, v}. We can picture this model as
follows:

14
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w s v

{s} {v} {w, v} {w, s} {w} {s, v} ∅

We now run through the calculation of truth of various formulas in order to
develop a feeling for this semantics.

1. Since (p)M = V (p) = {w, s} ∈ N(w), we have M, s |= 2p

2. Since (¬p)M = {v} 6∈ N(s), we have M, s |= 3p.

3. Since (3p)M = {s, v} ∈ N(v), we have M, v |= 23p

4. Since (2p)M = {s} ∈ N(w), we have M, w |= 22p.

5. Since (22p)M = {w} ∈ N(s) ∩ N(v), we have M, s |= 222p and M, v |=
222p.

6. Since (222p)M = {w, v} ∈ N(w) ∩ N(s), we have M, w |= 2222p and
M, s |= 2222p.

7. Finally, since (⊥)M = ∅ ∈ N(v), M, v |= 2⊥

Note that M, w |= 2(p ∧ q) but M, w 6|= 2p. Note that if we fix the valuations
of p and q, it is not possible to define a relational structure such that 2(p ∧ q) is
true at w but 2p is false at w. Let us see why. The condition that 2p is false at
w forces w to have an accessible world in which p is false. There is only one such
world (v) where p is false. However, if v is accessible from w, then 2(p ∧ q) will
no longer be true at w (since if p is false at v then so is p ∧ q). /

The above example shows that the axiom 2(φ∧ψ) → 2φ∧2ψ is not valid in
the class of all neighborhood frames. In addition, each of the following formulas
discussed in Chapter 1 can be falsified in a neighborhood model.

1. 2φ ∧2ψ → 2(φ ∧ ψ)

2. 2(φ→ ψ) → (2φ→ 2ψ)

3. 2>

4. 2φ→ φ

5. 2φ→ 22φ

15
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Let us consider the first two formulas and leave the last three for exercises.

Observation 2.17 The following formulas are not valid on the class of all neigh-
borhood frames.

1. 2φ ∧2ψ → 2(φ ∧ ψ)

2. 2(φ→ ψ) → (2φ→ 2ψ)

Proof. For the first formula, consider the neighborhood model M = 〈W,N, V 〉
with W = {w, v}, N(w) = {{w}, {v}}, N(v) = {∅} and V (p) = {w} and V (q) =
{v}. Thus, M, w |= 2p ∧2q, but since (p ∧ q)M = ∅ 6∈ N(w), M, w 6|= 2(p ∧ q).

For the second formula, we construct the following neighborhood model M =
〈W,N, V 〉 with W = {w, v, s}, N(w) = {{w}, {w, v, s}}, V (p) = {w} and V (q) =
{w, v}. Then (p)M = {w}, (q)M = {w, v} and (p→ q)M = (¬p ∨ q)M = {w, v, s}.
Thus we have, M, w |= 2(p→ q) ∧2p but M, w 6|= 2q. qed

Exercise 2.18 1. Show that the following formulas are not valid on the class
of all neighborhood frames

• 2>
• 2φ→ φ

• 2φ→ 22φ

• 23φ→ 32φ

2. Can you find a neighborhood model with a state in which all 2-formulas are
false, but all 3-formulas are true? Is this possible with relational semantics?

So, which formulas are valid on all neighborhood frames? As noted above, Def-
inition ?? was chosen to ensure that 2 and 3 are duals. We now make this
formal.

Lemma 2.19 The scheme 2φ↔ ¬3¬φ is valid in all neighborhood models.

Proof. Let M = 〈W,N, V 〉 be a neighborhood model.

M, w |= 2φ iff (φ)M ∈ N(w)

(naive set theory) iff W − (W − (φ)M) ∈ N(w)

(Observation ??) iff W − ((¬φ)M) ∈ N(w)

(Definition ??) iff M, w 6|= 3¬φ
(Definition ?? ) iff M, w |= ¬3¬φ

qed
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A complete discussion of the logics is left for Chapter ??. For now, we note that
the following rule of inference is valid. The simple and instructive proof is left for
the reader.

Lemma 2.20 On the class of all neighborhood frames, If φ ↔ ψ is valid then
2φ↔ 2ψ is valid.

Proof. Left as an exercise for the reader. qed

Of course, depending on the intended interpretation of the modal operators, one
may even want to work with a semantics where 2φ↔ ¬3¬φ is not valid. Recall
the discussion in Chapter ?? regarding the game-theoretic forcing operator. In
light of Lemma 2.19, this can only be achieved by changing the definition of the
modal operators. Let us explore some options that have been considered in the
literature. Extend the basic modal language L with the following modalities: [ 〉,
〈 ], 〈 〉, [ ]. Truth for these modalities is defined below.

• M, w |= 〈 ]φ iff ∃X ∈ N(w) such that ∀v ∈ X, M, v |= φ

• M, w |= [ 〉φ iff ∀X ∈ N(w) such that ∃v ∈ X, M, v |= φ

• M, w |= 〈 〉φ iff ∃X ∈ N(w) such that ∃v ∈ X, M, v |= φ

• M, w |= [ ]φ iff ∀X ∈ N(w) such that ∀v ∈ X, M, v |= φ

Our first easy observation is that we really only have two modalities.

Observation 2.21 The following formulas are valid on all neighborhood models.

• 〈 ]φ↔ ¬[ 〉¬φ

• [ ]φ↔ ¬〈 〉¬φ

Proof. Left as an exercise for the reader. qed

The first two modalities above will play an important role later in Chapter ??.
Therefore, let us look at these modalities in more detail.

Lemma 2.22 Let M = 〈W,N, V 〉 be a neighborhood model. The for each w ∈ W ,

1. if M, w |= 2φ then M, w |= 〈 ]φ

2. if M, w |= [ 〉φ then M, w |= 3φ

However, the converses of the above statements are false.
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Proof. Let M = 〈W,N, V 〉 be a neighborhood model and w ∈ W . Suppose that
M, w |= 2φ. Then (φ)M ∈ N(w). Then, clearly there is an X ∈ N(w) such that
for each v ∈ X, M, v |= φ (let X = (φ)M). The reasoning is analogous for the
second statement above and so will be left to the reader.

As for the converse of the first statement. Consider the model M = 〈W,N, V 〉
where W = {w, v}, N(w) = {{w}, {v}}, and V (p) = W . Then M, w |= 〈 ]p;
however, M, w 6|= 2φ. Again the reasoning is analogous for the second statement
as so is left for the reader. qed

Exercise 2.23 Prove that

1. If φ→ ψ is valid in M, then so is 〈 ]φ→ 〈 ]ψ.

2. 〈 ](φ ∧ ψ) → (〈 ]φ ∧ 〈 ]ψ) is valid in M

Investigate analogous results for the other modal operators defined above.

2.4 Defining Properties of Neighborhood Frames

One of the main slogans from the main text on modal logic [4] describes the modal
language as a language for talking about graphs, or relational structures ([4], pg.
??). This is made precise as follows. The key idea is that some modal formulas
can be shown to define interesting properties of a relation. For example, it is
well-known that a relational frame F = 〈W,R〉 validates 2φ→ φ iff R is reflexive.
Similarly, in the current setting, modal formulas can be understood as expressing
properties of neighborhood frames.

Definition 2.24 A modal formula φ defines a property P of neighborhood func-
tions if any neighborhood frame F has property P iff F validates φ. /

Consider the formulas 3> and 2φ→ 3φ. On relational frames, these formulas
both define the same property: that the relation is serial. This is not surprising
since these formulas are semantically equivalent on the class of relational frames
(i.e., they are true at exactly the same points in all relational models). However,
on the class of neighborhood frames, these formulas express different properties.
The first formula 3> is easily seen to express the fact that the empty set is not
an element of the neighborhoods. That is, 3> is valid on a neighborhood frame
F iff the empty set is not an element of any neighborhood (the proof follows
immediately from the definition of truth of modal formulas). The second formula
expresses a more interesting property about neighborhood frames.

Lemma 2.25 Let F = 〈W,N〉 be a neighborhood frame. Then F |= 2φ→ 3φ iff
F is proper (i.e., if X ∈ N (w) then XC 6∈ N(w)).
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Proof. The right-to-left direction is straightforward. For the other direction,
suppose that F = 〈W,N〉 is not proper. Then there is a state w ∈ W and set
X ⊆ W such that X ∈ N(w) and XC ∈ N(w). Define a model M = 〈W,N, V 〉
with V (p) = X. Then, by definition, M, w |= 2p and since (¬p)M = XC ∈ N(w)
we have M, w |= ¬3p. qed

Lemma 2.26 Let F = 〈W,N〉 be a neighborhood frame. Then F |= 2φ ∧ 2ψ →
2(φ ∧ ψ) iff F is closed under finite intersections.

Proof. Suppose that F = 〈W,N〉 is a neighborhood frame that is closed under
finite intersections. We must show F |= 2φ∧2ψ → 2(φ∧ψ). Let M = 〈W,N, V 〉
be any model based on F and w ∈ W . Suppose that M, w |= 2φ ∧ 2ψ. Then
(φ)M ∈ N(w) and (ψ)M ∈ N(w). Since N(w) is closed under finite intersections,
(φ)M ∩ (ψ)M ∈ N(w). Hence (φ ∧ ψ)M ∈ N(w) and therefore M, w |= 2(φ ∧ ψ).

Suppose that F = 〈W,N〉 is not closed under finite intersections. Then there
are sets X1, . . . Xk such that Xi ∈ N(w) for i = 1, . . . , k but ∩1≤i≤kXi 6∈ N(w). We
claim that there are two sets Y and Y ′ such that Y, Y ′ ∈ N(w) but Y ∩Y ′ 6∈ N(w).
If ∩k−1

i=1Xi ∈ N(w), then let Y = ∩k−1
i=1Xi ∈ N(w) and Y ′ = Xk. If not, then

∩k−1
i=1 6∈ N(w). If ∩k−2

i=1Xi ∈ N(w), then let Y = ∩k−2
i=1Xi ∈ N(w) and Y ′ = Xk−1.

If not, then ∩k−2
i=1Xi 6∈ N(w). Continue in this manner until we find and l ≤ k

such that ∩l
i=1Xi, Xl+1 ∈ N(w) but ∩l+1

i=1Xi 6∈ N(w). Notice that such an l must
exists since Xi ∈ N(w) for each i = 1, . . . , k. Then define a valuation function
so that V (p) = Y and V (q) = Y ′. Hence, M, w |= 2p ∧ 2q. However, since
Y ∩ Y ′ 6∈ N(w), M, w 6|= 2(p ∧ q). qed

Lemma 2.27 Let F = 〈W,N〉 be a neighborhood frame. Then F |= 2(φ ∧ ψ) →
2φ ∧2ψ iff F is closed under supersets.

Proof. The right to left direction is left as an exercise for the reader. Suppose
that F = 〈W,N〉 is not closed under supersets. Then there are sets X and Y such
that X ⊆ Y , X ∈ N(w) but Y 6∈ N(w). Define a valuation V such that V (p) = X
and V (q) = Y . Then since X ⊆ Y , (p∧q)M = X ∈ N(w). Hence M, w |= 2(p∧q).
However since, (q)M = Y 6∈ N(w), M, w 6|= 2q. Hence M, w 6|= 2p ∧2q. qed

Lemma 2.28 Let F = 〈W,N〉 be a neighborhood frame. Then F |= 2> iff F

contains the unit.

Proof. Left as an exercise for the reader. qed

Lemma 2.29 Let F = 〈W,N〉 be a neighborhood frame such that for each w ∈ W ,
N(w) 6= ∅.
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1. F |= 2φ→ φ iff for each w ∈ W , w ∈ ∩N(w)

2. F |= 2φ→ 22φ iff for each w ∈ W , if X ∈ N(w), then {v | X ∈ N(v)} ∈
N(w)

Proof. Suppose that F = 〈W,N〉 is a neighborhood frame. Suppose that for each
w ∈ W , w ∈ ∩N(w). Let M be any model based on F and w ∈ W . Suppose
that M, w |= 2φ. Then (φ)M ∈ N(w). Since w ∈ ∩N(w) ⊆ (φ)M, w ∈ (φ)M.
Hence M, w |= φ. As for the converse, suppose that w 6∈ ∩N(w). Since N(w) 6= ∅,
there is an X ∈ N(w) (note that X may be empty) such that w 6∈ X, otherwise
w ∈ ∩N(w). Define a valuation V such that V (p) = X. Then it is easy to see
that M, w |= 2p but M, w 6|= X.

Suppose that for each w ∈ W , if X ∈ N(w), then {v | X ∈ N(v)} ∈ N(w).
Suppose that M is any model based on F and M, w |= 2φ. Then (φ)M ∈ N(w).
Therefore, by assumption {v | (φ)M ∈ N(v)} ∈ N(w). Since (2φ)M = {v | (φ)M ∈
N(w)}, M, w |= 22φ. For the other direction, suppose that there is some state
w ∈ W and set X such that X ∈ N(w) but {v | X ∈ N(v)} 6∈ N(w). The define
a valuation V such that V (p) = X. It is easy to verify that M, w |= 2p but
M, w 6|= 22p. qed

Exercise 2.30 Find properties on frames that are defined by the following for-
mulas:

1. 3>

2. ¬2φ→ 2¬2φ

3. 2φ→ 3φ

3 Classical Modal Logics: The Basics

In this section we will be interested in the following axiom schemas and rules.

PC Any axiomatization of propositional calculus

E 2φ↔ ¬3¬φ

M 2(φ ∧ ψ) → (2φ ∧2ψ)

C (2φ ∧2ψ) → 2(φ ∧ ψ)

N 2>

K 2(φ→ ψ) → (2φ→ 2ψ)
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RE
φ↔ ψ

2φ↔ 2ψ

Nec
φ

2φ

MP
φ φ→ ψ

ψ

Let E be the smallest set of formulas closed under instances of PC,E and the
rules RE and MP . E is the smallest classical modal logic. The logic EC extends
E by adding the axiom scheme C. Similarly for EM, EN, ECM, and EMCN.
The logic K is the smallest set of formulas closed under instances of PC, K, E
and the rules Nec and MP . Let S be any of the above logics, we write `S φ if
φ ∈ S.

Our first observation about these axiom systems, is that we can prove a uniform
substitution theorem in E. Given a formulas φ, ψ, ψ′ ∈ L, let φ[ψ/ψ′] be the
formula φ but replace some occurrences of ψ with ψ′. For example, suppose that
φ is the formula 2(3p∧22q)∧2p, ψ is the formula p and ψ′ is the formula 2p.
Then φ[ψ/ψ′] can be any of the following

• 2(3p ∧22q) ∧2p

• 2(32p ∧22q) ∧2p

• 2(3p ∧22q) ∧22p

• 2(32p ∧22q) ∧22p

The uniform substitution theorem states that we can always replace logically
equivalent formulas.

Theorem 3.1 (Uniform Substitution) The following rule can be derived in E

ψ ↔ ψ′

φ↔ φ[ψ/ψ′]

Proof. Suppose that `E ψ ↔ ψ′. We must show `E φ ↔ φ[ψ/ψ′]. First of all,
note that if φ and ψ are the same formula. Then either φ[ψ/ψ′] is φ (when ψ is
not replaced) or φ[ψ/ψ′] is ψ′ (when ψ is replaced). In the first case, φ↔ φ[ψ/ψ′]
is the formula φ ↔ φ and so trivially, `E φ ↔ φ[ψ/ψ′]. In the second case,
φ ↔ φ[ψ/ψ′] is the formula ψ ↔ ψ′, which can be deduced in E by assumption.
Thus we may assume that φ and ψ are distinct formulas.
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The proof is by induction on φ. The base case and boolean connectives are
left as an exercise for the reader. We demonstrate the modal operator. Suppose
that φ is 2γ and `E ψ ↔ φ′. The induction hypothesis is `E γ ↔ γ[ψ/ψ′]. Using
the RE rule, `E 2γ ↔ 2(γ[ψ/ψ′]). Note that 2(γ[ψ/ψ′]) is the same formula as
2γ[ψ/ψ′]. Hence `E 2γ ↔ 2γ[ψ/ψ′]. qed

The above theorem will often be used (without reference). We will now pro-
ceed to show a number of basic facts about the above axiom systems. Much more
information can be found in [6], Chapter 8. The first is an alternative character-
ization of EM. The alternative axiomatization is in terms of a rule. The rule,
called right monotonicity (RM) is

φ→ ψ
2φ→ 2ψ

Lemma 3.2 The logic EM equals the logic E plus the rule RM .

Proof. The proof follows easily if we can show that RM is a derived rule in EM
and M can be derived in the logic E plus the rule RM . We first show that RM
can be derived in EM.

1. φ→ ψ Assumption
2. φ↔ (φ ∧ ψ) Follows from 1 and propositional reasoning
3. 2φ↔ 2(φ ∧ ψ) 2 and RE
4. 2(φ ∧ ψ) → 2φ ∧2ψ Instance of M
5. 2φ→ 2φ ∧2ψ Follows from 3,4 using propositional reasoning
6. 2φ→ 2ψ Follows form 5 using propositional reasoning

Thus RM is a derived rule of EM. We now show that we can derive M in the
logic E plus the rule RM .

1. (φ ∧ ψ) → φ Propositional Tautology
2. 2(φ ∧ ψ) → 2φ Follows from 1 using RM
3. (φ ∧ ψ) → ψ Propositional Tautology
4. 2(φ ∧ ψ) → 2ψ Follows from 3 using RM
5. 2(φ ∧ ψ) → 2φ ∧2ψ Follows from 2,4 using propositional reasoning

Thus M can be derived using the rule RM . qed

The logic K is the smallest normal, or Kripkean, modal logic. The logics E, EM,
etc. are strictly weaker than K.

Lemma 3.3 The logic EMC equals the logic E plus the axiom scheme K.
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Proof.
The fact that `K M and `K C is left for the reader. We only show that K can
be derived in EMC. First of all note that since EMC contains M , the rule RM
is derivable (see Lemma 3.2).

1. ((φ→ ψ) ∧ φ) → ψ Propositional Tautology
2. 2((φ→ ψ) ∧ φ) → 2ψ From 1 and RM
3. (2(φ→ ψ) ∧2φ) → 2((φ→ ψ) ∧ φ) Instance of C
4. (2(φ→ ψ) ∧2φ) → 2ψ Follows from 2,3 using6 PR
5. 2(φ→ ψ) → (2φ→ 2ψ) Follows from 4 using PR

qed

Lemma 3.4 The logic EN equals the logic E plus the rule Nec.

Proof. It is easy to see that using Nec, we can prove 2>. Suppose that `EN φ.
We must show that `EN 2φ. Using propositional reasoning since φ is derivable
in EN, `EN (> ↔ φ). Using RE, `EN 2> ↔ 2φ. Hence `EN 2> → 2φ. Since
2> is obviously provable in EN, `EN 2φ. qed

Putting these two lemmas together, we see that EMCN is the smallest normal
modal logic.

Corollary 3.5 The logic EMCN equals the logic K.

In this section we have define eight modal logics between E and K. Of course,
there still remains a question as to whether all eight logics are in fact distinct.
This will be answered in the following section.

3.1 Soundness and Completeness

In this section we will prove soundness and completeness results. It is assumed that
the reader is familiar with basic soundness and completeness results in modal logic
(with respect to relational frames), see [4, 6] for more information. We quickly
review some some basic terminology.

3.1.1 Preliminaries

Let F be a collection of neighborhood frames. A formula φ ∈ L is valid in F, or
F-valid if for each F ∈ F, F |= φ. We say that a logic L is sound with respect
to F, provided L ⊆ F. That is for each formula φ ∈ L, `L φ implies φ is valid in
F. Given a set of formulas Γ, a formula φ and a collection of frames F, we say Γ
semantically entails φ with respect to F, denoted Γ |=F φ, if for each F ∈ F, if
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F |= Γ then F |= φ. Here F |= Γ means for each φ ∈ Γ, F |= φ. Finally we write
|=F φ if for each F ∈ F, F |= φ. A logic L is weakly complete with respect to
a class of frames F, if |=F φ implies `L φ. A logic L is strongly complete with
respect to a class of frames F, if for each set of formulas Γ, Γ |=F φ implies Γ `L φ.

Let L be any modal logic. A formula φ ∈ L is said to be inconsistent in L,
orL-inconsistent if `L ¬φ. A set of formulas Γ is said to be L-inconsistent if
Γ `L ⊥. The set Γ is L-consistent if it is not inconsistent. A consistent set of
formulas Γ is called a maximally consistent set if for each formula φ, either
φ ∈ Γ or ¬φ ∈ Γ.

Let ML be the set of L-maximally consistent sets of formulas. Recall that
Lindenbaum’s Lemma (see [6] and [4] for an extended discussion) states that given
any consistent collection of formulas Γ′ there is a maximally consistent set of
formulas that contains Γ′. Given a formula φ ∈ L, let |φ|L be the proof set of φ
in L. Formally, |φ|L = {∆ | ∆ ∈ WL and φ ∈ ∆}. We first note that proof sets
share a number of properties in common with truth sets.

Lemma 3.6 Let L be a logic and φ, ψ ∈ L. Then

1. |φ ∧ ψ|L = |φ|L ∩ |ψ|L

2. |¬φ|L = ML − |φ|L

3. |φ ∨ ψ|L = |φ|L ∪ |ψ|L

4. If |φ|L ⊆ |ψ|L then `L φ→ ψ

5. `L φ↔ ψ iff |φ|L = |ψ|L

Proof. The proofs are standard facts about maximally consistent sets and left
for the reader. qed

Finally, one more fact about proof sets that will be of interest.

Lemma 3.7 For each φ ∈ L, ψ ∈ ∩|φ|L iff `L φ→ ψ.

Proof. Suppose that `L φ → ψ. Then for each maximally consistent set Γ,
φ → ψ ∈ Γ. Hence since for each Γ ∈ |φ|L, φ ∈ Γ, we have ψ ∈ Γ. Thus
φ ∈ ∩|φ|L.

Suppose that ψ ∈ ∩|φ|L but it is not the case that `L φ→ ψ. Then ¬(φ→ ψ)
is consistent in L. Using Lindenbaum’s Lemma, we can construct a maximally
consistent set Γ such that ¬(φ → ψ) ∈ Γ. That is, φ,¬ψ ∈ Γ. Since φ ∈ Γ,
Γ ∈ |φ|L. But then ¬ψ ∈ Γ contradicts the fact that ψ ∈ ∩|φ|L. qed
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3.2 The Proofs

Given any model M = 〈W,N, V 〉 and a set X ⊆ W , we say that X is definable
in M if there is a formula φ ∈ L such that (φ)M = X. Let DM be the set of all
sets that are definable in M. First of all note, that DM 6= 2W . A simple counting
argument will show this fact. For there are only countably many formulas of L
and hence only countably many definable subsets. However (if W is countable)
2W is uncountable. A subset X ⊆ML is called a proof set provided there is some
formula φ ∈ L such that X = |φ|L. Again notice that there are only countably
many proof sets; however, if At is countable, then ML is uncountable, and hence
there are uncountably many subsets of ML.

As usual, when constructing a canonical model the states of the world will be
maximally consistent sets, i.e., elements of ML. Suppose that the logic L contains
E. Consider any function NL : ML → 22ML such that for each Γ ∈ML

|φ|L ∈ NL(Γ) iff 2φ ∈ Γ

Intuitively, given a set Γ, NL(Γ) contains at least all the proof sets of necessary
formulas from Γ. When defining any function, the first question one should ask
is is the function well-defined? This may be a strange question to ask about NL,
since we were assuming that it is in fact a function. So, what can go wrong?
Well, NL is any function that maps maximally consistent sets Γ to sets of subsets
of ML. The only requirement on NL is that for each Γ ∈ ML, |φ|L ∈ N(Γ) iff
2φ ∈ Γ. In particular, this requirement ensures that for each set X ∈ NL(Γ) such
that X = |φ|L, 2φ ∈ Γ. Say that a proof set |φ|L is necessary at Γ provided
2φ ∈ Γ. Thus the functions we are interested in map maximally consistent sets
Γ to collections of subsets of ML that can be broken into to parts: the proof sets
that are necessary at Γ and non-proof sets (i.e., sets not of the form |φ|L for some
φ). However, as we see from Lemma 3.6 it is possible that a proof set X is defined
by two different formulas. Thus to ensure that any functions can be defined that
satisfy the above property, we must check that if |φ|L ∈ NL(Γ) and |φ|L = |ψ|L,
then 2ψ ∈ Γ.

Lemma 3.8 For any logic L containing the rule RE, if NL : ML → 22ML is a
function such that for each Γ ∈ ML, |φ|L ∈ NL(Γ) iff 2φ ∈ Γ. Then if |φ|L ∈
NL(Γ) and |φ|L = |ψ|L, then 2ψ ∈ Γ.

Proof. Let φ and ψ be two formulas such that |φ|L = |ψ|L. Further suppose
that 2φ ∈ Γ and |φ|L ∈ NL(Γ). Since |φ|L ∈ NL(Γ), 2φ ∈ Γ. Also, by Lemma
3.6, since |φ|L = |ψ|L, `L φ ↔ ψ. Using the RE rule, `L 2φ ↔ 2ψ. Hence
2φ↔ 2ψ ∈ Γ. Hence 2ψ ∈ Γ. qed
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Define the canonical valuation, VL : At → 2ML as follows. Let p ∈ At, then
VL(p) = |p|L = {Γ | Γ ∈ML and p ∈ Γ}.

Definition 3.9 (Canonical for L) A neighborhood model M = 〈W,N, V 〉 is
called a canonical for L if

1. W = ML

2. for each Γ ∈ W and each formula φ, |φ|L ∈ N(Γ) iff 2φ ∈ Γ

3. V = VL

/

For example, let Mmin
L = 〈ML, N

min
L , VL〉, where for each Γ ∈ ML, Nmin

L (Γ) =
{|φ|L | 2φ ∈ Γ}. The model Mmin

L is easily seen to be a canonical for L. Fur-
thermore, it is the minimal canonical for L in the sense that for each Γ, NL(Γ) is
defined to be the smallest set still satisfying the requisite property. Let PL be the
set of all proof sets of ML. Alternatively the largest canonical, Mmax

L can be de-
fined as 〈ML, N

max
L , VL〉, where for each Γ ∈ML, Nmax

L (Γ) = Nmin
L (Γ)∪{X | X ⊆

ML, X 6∈ PL}

Lemma 3.10 (Truth Lemma) For any consistent logic L and any consistent
formula φ, if M is canonical for L,

(φ)M = |φ|L

Proof. The boolean connectives are as usual and left for the reader. We focus on
the modal case. Let M = 〈W,N, V 〉 be canonical for L. Suppose that Γ ∈ (2φ)M,
then by definition (φ)M ∈ N(Γ). By the induction hypothesis, (φ)M = |φ|L, hence
|φ|L ∈ N(Γ). By part 2 of Definition 3.9, 2φ ∈ Γ. Hence Γ ∈ |2φ|L. Conversely,
suppose that Γ ∈ |2φ|L. Then by definition of a truth set, 2φ ∈ Γ. Hence by
part 2 of Definition 3.9, |φ|L ∈ N(Γ). By the induction hypothesis, |φ|L = (φ)L,
hence (φ)M ∈ N(Γ). Hence Γ ∈ (2φ)M. qed

Theorem 3.11 The logic E is sound and strongly complete with respect to the
class of all neighborhood frames.

Proof. The proof is standard and so will only be sketched. Soundness is straight-
forward (and in fact already shown in earlier exercises). As for strong complete-
ness, we will show that every consistent set of formulas can be satisfied in some
model. Before proving this, we briefly explain why this implies strong complete-
ness. The proof is by contrapositions. Suppose that it is not the case that Γ `L φ.
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Then Γ ∪ {¬φ} is consistent. Since any such set has a model, there Γ ∪ {¬φ} is
true in some model. But then Γ cannot semantically entail φ. Thus if Γ 6`L φ
then Γ 6|=F φ (where F is the class of all neighborhood frames).

Let Γ be a consistent set of formulas. By Lindenbaum’s Lemma, there is a
maximally consistent set Γ′ such that Γ ⊆ Γ′. Then consider the model Mmin

E . By
the Truth Lemma (Lemma 3.10), Mmin

L ,Γ′ |= Γ′. Thus Γ is true is some model,
namely the minimal canonical model. qed

Notice that in the above proof, the choice to use the minimal canonical model for
E was somewhat arbitrary. It is easy to see that the proof would go through if we
had used Mmax

E instead of Mmin
E . Indeed, any canonical model for E could have

been used in the above proof. That there is such a choice of canonical models,
will be of great use when proving completeness of systems above E. The strategy
for proving strong completeness for systems above E is similar to the strategy
for proving strong completeness of some well-known normal modal logics, such
as S4 or S5. Given the above construction and proof lemma, all that remains is
to show that a particular canonical model belongs to the class of frames under
consideration. This argument, called by [4] completeness-via-canonicity, can be
adapted to the neighborhood setting. For example, consider the system EC. We
argued in the previous section that C corresponds to the neighborhoods being
closed under (finite) intersections. We now show that EC is sound and strongly
complete with respect to neighborhood frames that are closed under intersections.
We first show that C is canonical for this property (see [4] Chapter 4 for an
extended discussion of this notion).

Lemma 3.12 If C ∈ L, then 〈ML, N
min
L 〉 is closed under finite intersections.

Proof. Suppose that C ∈ L. Further, suppose that X, Y ∈ Nmin
L (Γ). By

definition of Nmin
L , X = |φ|L and Y = |ψ|L where 2φ ∈ Γ and 2ψ ∈ Γ. Hence

2φ∧2ψ ∈ Γ and so using C, 2(φ∧ψ) ∈ Γ. Hence, |φ∧ψ|L ∈ Nmin
L (Γ). Therefore,

since |φ|L ∩ |ψ|L = |φ ∧ ψ|L, Nmin
L is closed under intersections. qed

Given the above proof, strong completeness is straightforward.

Theorem 3.13 The logic EC is sound and strongly complete with respect to the
class of neighborhood frames that are closed under intersections.

Proof. The proof is left as an exercise for the reader. qed

Exercise 3.14 Prove that EN is sound and strongly complete with respect to
neighborhood frames that contain the unit.
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Moving on to the logic EM, we see that the argument is not quite so straightfor-
ward. It is here where we make use of the fact that we have a choice of canonical
models. The main roadblock is that 〈MEM, N

min
EM 〉 is not closed under supersets.

Observation 3.15 Show that 〈MEM, N
min
EM 〉 is not closed under supersets.

Proof. Let p be a propositional variable and let Γ be a maximally consistent
set such that 2p ∈ Γ (such a set exists by Lindenbaum’s Lemma since 2p is
consistent). Then |p|EM ∈ Nmin

EM (Γ). Let Y be any non-proof set that extends
|p|EM. To see that such a set exists, let Y ′ be any non-proof set (there are
uncountably many subsets of MEM but only countably many proof sets.) Then
Y = Y ′ ∪ |p|EM is not a proof set. For if Y = |ψ|EM for some formula ψ, then
Y ′ = |ψ ∧ ¬p|EM (why?), which contradicts the fact that Y ′ is a non-proof set.
Clearly Y 6∈ Nmin

EM (Γ) (why?). But then we have found a set X in Nmin
EM (Γ) such

there is a superset of X not contained in Nmin
EM (Γ). qed

However, we can easily skirt this difficulty by choosing a different, better behaved,
canonical models. Recall from Section 2, that if F is any collection of subsets of
W , then sup(F) = {X | ∃Y ∈ F where Y ⊆ X}. Given any frame F = 〈W,N〉,
let the supplementation of F, denoted sup(F), be the frame 〈W,N sup〉, where
for each w ∈ W , N sup(w) = sup(N(w)). Use a similar definition for models, i.e.,
given M = 〈W,N, V 〉, the sup(M) = 〈W,N sup, V 〉. The main argument is to show
that the supplementation of the minimal canonical model is a canonical for EM.

Lemma 3.16 Suppose that M = sup(Mmin
EM). Then M is canonical for EM.

Proof. Suppose that M = 〈W,N, V 〉, where W = MEM and for each Γ ∈ W ,
N(Γ) = sup(Nmin

EM (Γ), and V = VEM. Let Γ ∈ W be arbitrary. We must show for
each formula φ,

|φ|EM ∈ N(Γ) iff 2φ ∈ Γ

The right to left direction is trivial since Nmin
EM (Γ) ⊆ N(Γ). Suppose that |φ|EM ∈

N(Γ). Then there is some proof set X such that X ⊆ |φ|EM. Since X is a proof
set, there is some formula ψ such that X = |ψ|EM. Since |ψ|EM ⊆ |φ|EM, by
Lemma ?? `EM φ→ ψ. Since EM satisfies the RM rule, `EM 2φ→ 2ψ. Thus
2φ→ 2ψ ∈ Γ. Hence 2ψ ∈ Γ. qed

Theorem 3.17 The logic EM is sound and strongly complete with respect to the
class of supplemented frames.

Proof. Left as an exercise for the reader. qed
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Putting everything together, we have a characterization of the smallest normal
modal logic K.

Theorem 3.18 The logic K is sound and strongly complete with respect to the
class of filters.

Exercise 3.19 Prove that K is sound and strongly complete with respect to the
class of augmented frames.

Exercise 3.20 Find an axiomatization and prove soundness and completeness for
modal logics with the following modalities: [ 〉, 〈 ], [ ], 〈 〉

3.2.1 General Neighborhood Frames

General frames are an important tool for modal logicians. There is no inherent
difficulty in adapting the definition to the neighborhood setting.

Definition 3.21 (General Neighborhood Frames) A general neighborhood
frame is a tuple Fg = 〈W,N,A〉, where W is a non-empty set of states, N is a
neighborhood function, and A is a collection of subsets of W closed under inter-
sections, complements, and the mN operator. /

We say a valuation V : At → 2W is admissible for a general frame 〈W,N,A〉 if
for each p ∈ At, V (p) ∈ A.

Definition 3.22 (General Neighborhood Model) Suppose that Fg = 〈W,N,A〉
is a general neighborhood frame. A general modal based on Fg is a tuple Mg =
〈W,N,A, V 〉 where V is an admissible valuation. /

Truth in a general model is defined as in the beginning of this section.

Lemma 3.23 Let Mg be an general neighborhood model. Then for each φ ∈ L,
(φ)Mg ∈ A.

Proof. The proof follows from an easy induction over the structure of φ. qed

Given a logic L, it is easy to show that the set AL = {|φ|L | φ ∈ L} is a
boolean algebra and closed under the mN operator. A general frame is called a
L-frame, if L is valid on that frame. We show that for each modal logic L the
canonical frame is a L-frame.

Lemma 3.24 Let L be any logic extending E. Then the general canonical fram
Fg

L |= L.
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Proof. Let φ ∈ L and V an arbitrary admissible valuation. We must show that
Mg = 〈ML, N, V 〉 validates φ. Since V is admissible, for each propositional letter
pi occurring in φ, V (pi) ∈ AL. Hence for each (there are only finitely many), pi,
V (pi) = |ψi|L for some formula ψi. Let φ′ be φ where each pi is replaced with ψi.
We prove by induction of φ that (φ)Mg

= (φ′)Mg
L .

The base case is when φ = p. Then φ′ = ψ for some ψ ∈ L where V (p) = |ψ|L ∈
AL. Then Γ ∈ (p)Mg

iff Γ ∈ V (p) = |ψ|L iff Γ ∈ (p)Mg
L . The boolean connectives

are straightforward. Suppose that φ is of the form 2γ and (γ)Mg
= (γ′)Mg

L . Note
that φ′ = 2γ′. Hence Γ ∈ (φ)Mg

iff (γ)Mg ∈ N(Γ) iff (γ′)Mg
L ∈ N(Γ) iff Γ ∈ φ′.

qed

4 Advanced Topics

The majority of the course will be spent discussing the following topics.

Tableaux for Classical Modal Logics: Tableaux systems have been devel-
oped for many non-normal modal logics (see, for example, [17, 19]).

Decidability and Complexity: It is not surprising that classical modal logic is
decidable. What perhaps is more surprising is that the complexity of many classi-
cal systems is NP -complete (as opposed to the “usual” PSPACE-completeness
for normal modal logics). This is discussed in detail in [40, 39].

Neighborhood Incompleteness: Martin Gerson [12] found two logics that are
incomplete with respect to neighborhood semantics. This phenomena is explored
in more detail in [35, 34, 5, 24].

Relation with Relational Semantics: As we have seen in Section 1, there
is a 1-1 correpsondance between augmented neighborhood frames and relational
frames. This fact can be used to show:

Theorem 4.1 For every Kripke model 〈W,R, V 〉, there is an pointwise equivalent
classical model 〈W,N, V 〉, and vice versa

But does this result imply that metatheoretic results using relational semantics
can be transfered to the neighborhood setting? The following list of results demon-
strates the difficulty in answering this question.

• There are logics which are complete with respect to a class of neighborhood
frames but not complete with respect to relational frames. This was first
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shown by Dov Gabbay [9] and later Martin Gerson [11] showed that in fact
there is such a logic which is an extension of S4.

• Martin Gerson [13] showed that there is a neighborhood frame for T with
no equivalent relational frame. That is, there is a neighborhood frame such
that no relational frame can model exactly the same formulas.

A second line of inquiry discovered independently by Kracht and Wolter [22] and
Gasquet and Herzig [10] is that non-normal modal logics can be simulated by a
normal modal logic with three modalities. The key idea is to translate the model
as well as the formulas.

Definition 4.2 (Normal Translation) Given a neighborhood modelM = 〈W,N, V 〉,
define a Kripke model M◦ = 〈V,RN , R63, Rν , P t, V 〉 as follows:

• V = W ∪ 2W

• R3 = {(v, w) |w ∈ W, v ∈ 2W , v ∈ w}

• R 63 = {(v, w) |w ∈ W, v ∈ 2W , v 6∈ w}

• RN = {(w, v) | w ∈ W, v ∈ 2W , v ∈ N(w)}

• Pt = W

/

We can interpret a standard modal language in such models. Let L′ be the lan-
guage

φ := p | ¬φ | φ ∧ ψ | [3]φ | [ 63]φ | [N ]φ | Pt

where p ∈ At and Pt is a unary modal operator. Truth is defined as usual: for
example [3]φ is true at w just in case for each v, if wR3v then φ is true at v. We
can now define a truth-preserving translation from sentences of L to sentences of
L′. Define ST : L → L′ as follows

• ST (p) = p

• ST (¬φ) = ¬ST (φ)

• ST (φ ∧ ψ) = ST (φ) ∧ ST (φ)

• ST (2φ) = 〈ν〉([3]ST (φ) ∧ [ 63]¬ST (φ))
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Lemma 4.3 For each neighborhood model M = 〈W, ν, V 〉 and each formula φ ∈
L, for any w ∈ W ,

M, w |= φ iff M◦, w |= Pt → ST (φ)

Duality Results: As with normal modal logics, there is a duality between neigh-
borhood frames and modal algebras. This was first studied by Dosen [7] and later
by Hansen [18] in the context of monotonic modal logic.

Topology and Modal Logic: Much of the original motivation for neighborhood
frames as a semantics form modal logics comes from elementary point-set topology.
The idea is to think of the propositions in N(w) to be close to the point w. We
begin by reviewing some very basic point-set topology. More information can be
found in any point-set topology text book (Dugundji [8] is an excellent choice).

Definition 4.4 (Topological Space) A topological space is a neighborhood
frame 〈W, T 〉 where W is a nonempty set and

1. W ∈ T , ∅ ∈ W

2. T is closed under finite intersections

3. T is closed under arbitrary unions.

/

The collection T is called a topology. Elements O ∈ T are called opens. A set
C such that W − C ∈ T is called closed. Given a topology 〈W, T 〉, let TC be
the collection of closed subsets of W , i.e., TC = {C | W −C ∈ T }. The following
observation is an easy consequence of the above definition.

Observation 4.5 Let 〈W, T 〉 be a topological space. Then TC has the following
properties:

1. ∅,W ∈ TC

2. TC is closed under finite unions

3. TC is closed under arbitrary intersections

Proof. Left as an exercise for the reader. qed

Given a topological space 〈W, T 〉 and a point w ∈ W , a neighborhood of w is
any open set that contains w. Let Tw = {O | O ∈ T and w ∈ O} be the collection
of all neighborhoods of w.
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Lemma 4.6 Let 〈W, T 〉 be a topological space. Then for each w ∈ W , the collec-
tion Tw contains W , is closed under finite intersections and closed under arbitrary
unions.

Definition 4.7 (Neighborhood System) Let 〈W, T 〉 be a topological space.
A pair 〈W,N〉 is called a neighborhood system provided N : W → T is defined
as follows: N(w) = Tw. /

Let 〈W, T 〉 be a topological space and X ⊆ W any set. The largest open subset
of X is called the interior of X, denoted Int(X). Formally,

Int(X) = ∪{O | O ∈ T and O ⊆ X}

The smallest closed set containing X is called the closure of X, denoted Cl(X).
Formally,

Cl(X) = ∩{C | W − C ∈ T and X ⊆ C}
It is easy to see that a set X is open if Int(X) = X and closed if Cl(X) = X.
The following Lemma will be helpful when studying the topological semantics of
the next section.

Lemma 4.8 Let 〈W, T 〉 be a topological space and X ⊆ W . Then

1. Int(X ∩ Y ) = Int(X) ∩ Int(Y )

2. Int(∅) = ∅, Int(W ) = W

3. Int(X) ⊆ X

4. Int(Int(X)) = Int(X)

5. Int(X) = W − Cl(W −X)

Exercise 4.9 Use the last fact in the above lemma to derive corresponding prop-
erties for the closure operator.

Topological semantics for modal logic has been around for nearly 60 years
and is usually attributed to McKinsey and Tarski [25]. The literature on this
topic is much to vast to survey here (the reader is referred to [38] for a complete
discussion). A topological model is a tuple MT = 〈W, T , V 〉, where 〈W, T 〉 is a
topological space and V is a valuation function. Formulas in L are interpreted at
states w ∈ W . The boolean connectives and atomic propositions are interpreted
as usual. We only give the definition of truth of the modal operator:

MT , w |= 2φ iff ∃O ∈ T , w ∈ O such that ∀v ∈ O,MT , v |= φ
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Notice the similarity between this definition an the definition of truth of the modal
operator 〈 ]. The only difference is the extra clause w ∈ O. However, recall the
function w 7→ Tw, where Tw is the set of neighborhoods of w. Then, the above
clause can be written as

MT , w |= 2φ iff ∃O ∈ Tw such that ∀v ∈ O,MT , v |= φ

Although this difference is a trivial change in terminology, it demonstrates a close
connection between neighborhood frames and topological frames. Finally it is
easy to see that

(2φ)MT

= Int((φ)MT

)

The classic result of Tarski and McKinsey shows that S4 is sound and complete
with respect to the class of all topologies

Let 〈W,N, V 〉 be a neighborhood models. Suppose that N satisfies the follow-
ing properties

• for each w ∈ W , N(w) is a filter

• for each w ∈ W , w ∈ ∩N(w)

• for each w ∈ W and X ⊆ W , if X ∈ N(w), then mN(X) ∈ N(w)

We can now show that there is a topological model that is point-wise equiva-
lent to M. Consider the set B = {mN(X) | X ⊆ W}. We will show that B
is a base. That is we must show that 1. ∪B = W and 2. for each X,Y ∈ B
and each x ∈ X ∩ Y there is a Z ∈ B such that x ∈ Z ⊆ X ∩ Y . Suppose
that X = mN(x1) and Y = mN(X2) and x ∈ X ∩ Y . Since N(w) is a filter,
mN(X1)∩mN(X2) = mN(X1∩X2). Thus x ∈ mN(X1∩X2) ⊆ mN(X1)∩mN(X2).
Thus we are done if we can show that mN(X1 ∩X2) ∈ B. But this follows form
the third property above since X1 ∩X2 ∈ N(w).

Model Theory of Modal Logic with Respect to Neighborhood Seman-
tics: Modal logic has a rich model theory with respect to relational semantics
(cf.[16]). What about the situation with respect to neighborhood semantics? Con-
cerning monotonic neighborhood models, the situation is well-understood [18, 30].
We will explore the more general setting with discussions on various model con-
structions (eg. bounded morphisms, disjoint unions, bisimulations, generated sub-
models and ultrafilter extensions) [21], generalizations of some classic results in
modal logic (eg. the van Benthem characterization theorem) [21] and a notion of
neighborhood canonicity [36]
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Applications and Extensions: Much of the interest in neighborhood semantics
is generated by the fact that a neighborhood frame is a natural example of a
coalgebra [41]. We will discuss this fact and other relations between non-normal
modal logics and work in coalgebra (cf. [20]).

We will end the course with two “applications” of neighborhood models for
modal logic. This first is the somewhat surprising result that one can prove
a strong completeness result for certain classical modal logics with a common
knowledge operator [23]. Secondly, we show how the neighborhood models can be
used to give an interesting new perspective on classic results in first-order modal
logic [2].
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