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We are interested in reasoning about rational agents interacting in
social situations.
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We are interested in reasoning about rational agents interacting in
social situations.

» Philosophy (social philosophy, epistemology)
» Game Theory
» Social Choice Theory

» Al (multiagent systems)
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We are interested in reasoning about rational agents interacting in
social situations.

What is a rational agent?

maximize expected utility (instrumentally rational)

react to observations

revise beliefs when learning a surprising piece of information
understand higher-order information

plans for the future

asks questions
77
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We are interested in reasoning about rational agents interacting in
social situations.

There is a jungle of formal systems!
» logics of informational attitudes (knowledge, beliefs,
certainty)
> logics of action & agency
» temporal logics/dynamic logics
» logics of motivational attitudes (preferences, intentions)

(Not to mention various game-theoretic/social choice models
and logical languages for reasoning about them)

I EEEE—
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We are interested in reasoning about rational agents interacting in
social situations.

There is a jungle of formal systems!

» How do we compare different logical systems studying
the same phenomena?

» How complex is it to reason about rational agents?

» (How) should we merge the various logical systems?

» What do the logical frameworks contribute to the
discussion on rational agency?

and logical languages for reasoning about them)

Eric Pacuit



We are interested in reasoning about rational agents interacting in
social situations.

> playing a game (eg. a card game)

» having a conversation

» executing a social procedure

» making a group decision (eg., coordination problem)
> ...
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Example (1)

Suppose there are two friends Ann and Bob are on a bus separated
by a crowd.
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Example (1)

Suppose there are two friends Ann and Bob are on a bus separated
by a crowd. Before the bus comes to the next stop a mutual friend
from outside the bus yells “get off at the next stop to get a
drink?".
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Example (1)

Suppose there are two friends Ann and Bob are on a bus separated
by a crowd. Before the bus comes to the next stop a mutual friend
from outside the bus yells “get off at the next stop to get a
drink?".

Say Ann is standing near the front door and Bob near the back
door.
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Example (1)

Suppose there are two friends Ann and Bob are on a bus separated
by a crowd. Before the bus comes to the next stop a mutual friend
from outside the bus yells “get off at the next stop to get a
drink?".

Say Ann is standing near the front door and Bob near the back
door. When the bus comes to a stop, will they get off?
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Example (1)

Suppose there are two friends Ann and Bob are on a bus separated
by a crowd. Before the bus comes to the next stop a mutual friend
from outside the bus yells “get off at the next stop to get a
drink?".

Say Ann is standing near the front door and Bob near the back
door. When the bus comes to a stop, will they get off?

D. Lewis. Convention. 1969.

M. Chwe. Rational Ritual. 2001.
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Example (2)

A and B are players in the same football team. A has the ball, but
an opposing player is converging on him.
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Example (2)

A and B are players in the same football team. A has the ball, but
an opposing player is converging on him. He can pass the ball to
B, who has a chance to shoot.
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Example (2)

A and B are players in the same football team. A has the ball, but
an opposing player is converging on him. He can pass the ball to
B, who has a chance to shoot. There are two directions in which A
can move the ball, left and right, and correspondingly, two
directions in which B can run to intercept the pass.
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Example (2)

A and B are players in the same football team. A has the ball, but
an opposing player is converging on him. He can pass the ball to
B, who has a chance to shoot. There are two directions in which A
can move the ball, left and right, and correspondingly, two
directions in which B can run to intercept the pass. If both choose
left there is a 10% chance that a goal will be scored.
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Example (2)

A and B are players in the same football team. A has the ball, but
an opposing player is converging on him. He can pass the ball to
B, who has a chance to shoot. There are two directions in which A
can move the ball, left and right, and correspondingly, two
directions in which B can run to intercept the pass. If both choose
left there is a 10% chance that a goal will be scored. If they both
choose right, there is a 11% change.

I —
Eric Pacuit 17



Example (2)

A and B are players in the same football team. A has the ball, but
an opposing player is converging on him. He can pass the ball to
B, who has a chance to shoot. There are two directions in which A
can move the ball, left and right, and correspondingly, two
directions in which B can run to intercept the pass. If both choose
left there is a 10% chance that a goal will be scored. If they both
choose right, there is a 11% change. Otherwise, the chance is
zero.
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Example (2)

A and B are players in the same football team. A has the ball, but
an opposing player is converging on him. He can pass the ball to
B, who has a chance to shoot. There are two directions in which A
can move the ball, left and right, and correspondingly, two
directions in which B can run to intercept the pass. If both choose
left there is a 10% chance that a goal will be scored. If they both
choose right, there is a 11% change. Otherwise, the chance is
zero. There is no time for communication; the two players must
act simultaneously.
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Example (2)

A and B are players in the same football team. A has the ball, but
an opposing player is converging on him. He can pass the ball to
B, who has a chance to shoot. There are two directions in which A
can move the ball, left and right, and correspondingly, two
directions in which B can run to intercept the pass. If both choose
left there is a 10% chance that a goal will be scored. If they both
choose right, there is a 11% change. Otherwise, the chance is
zero. There is no time for communication; the two players must
act simultaneously.

What should they do?

R. Sugden. The Logic of Team Reasoning. Philosophical Explorations (6)3, pgs.
165 - 181 (2003).
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Goals for today

1. An Introduction to (Formal) Tools for Analytic Philosophy

e Strategic reasoning
e Epistemic reasoning

focus on intuitions not technical details

2. Epistemic Reasoning in Games
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Just Enough Game Theory

Just Enough Game Theory

“Game theory is a bag of analytical tools designed to
help us understand the phenomena that we observe when
decision-makers interact.”

Osborne and Rubinstein. Introduction to Game Theory. MIT Press .
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Just Enough Game Theory

Just Enough Game Theory

“Game theory is a bag of analytical tools designed to
help us understand the phenomena that we observe when
decision-makers interact.”

Osborne and Rubinstein. Introduction to Game Theory. MIT Press .

A game is a description of strategic interaction that includes

» actions the players can take

» description of the players’ interests (i.e., preferences),
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Just Enough Game Theory

Just Enough Game Theory

“Game theory is a bag of analytical tools designed to
help us understand the phenomena that we observe when
decision-makers interact.”

Osborne and Rubinstein. Introduction to Game Theory. MIT Press .

A game is a description of strategic interaction that includes

» actions the players can take

» description of the players’ interests (i.e., preferences),

It does not specify the actions that the players do take.

I —
Eric Pacuit 24



Just Enough Game Theory

A solution concept is a systematic description of the outcomes
that may emerge in a family of games.

This is the starting point for most of game theory and includes
many variants: Nash equilibrium, backwards inductions, or iterated
dominance of various kinds.

These are usually thought of as the embodiment of “rational
behavior” in some way and used to analyze game situations.
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Just Enough Game Theory

A solution concept is a systematic description of the outcomes
that may emerge in a family of games.

This is the starting point for most of game theory and includes
many variants: Nash equilibrium, backwards inductions, or iterated
dominance of various kinds.

These are usually thought of as the embodiment of “rational
behavior” in some way and used to analyze game situations.

For this course, solution concepts are more of an endpoint.
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Just Enough Game Theory

Some Formal Details

» Strategic Games
» Nash Equilibrium
» Extensive Games

» Backwards Induction
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Just Enough Game Theory
I EEEEE—————

Strategic Games

A strategic games is a tuple (N, {A;}ien, {=i}ien) where

» N is a finite set of players
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Just Enough Game Theory
I EEEEE—————

Strategic Games

A strategic games is a tuple (N, {A;}ien, {=i}ien) where

» N is a finite set of players

» for each i € N, A; is a nonempty set of actions
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Just Enough Game Theory
I EEEEE—————

Strategic Games

A strategic games is a tuple (N, {A;}ien, {=i}ien) where

» N is a finite set of players
» for each i € N, A; is a nonempty set of actions

» for each /i € N, >; is a preference relation on A = I;cnA;
(Often »=; are represented by utility functions u; : A — R)
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Just Enough Game Theory
I —

Strategic Games: Comments on Preferences

» Preferences may be over a set of consequences C. Assume
g:A— Cand {=F | i € N} a set of preferences on C. Then
fora,b € A,

a=biff g(a)=; g(b)

» Consequences may be affected by exogenous random variable
whose realization is not known before choosing actions. Let Q
be a set of states, then define g : Ax Q — C. Where g(al-) is
interpreted as a lottery.

» Often »; are represented by utility functions u; : A — R
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Just Enough Game Theory
I EEEEE—————

Strategic Games: Example

Column
r I

Row

» N = {Row, Column}
> ARow = {u7 d}: AcColumn = {r> /}

> (u, I‘) > Row (d7 /) > Row (u7 /) ~ Row (d7 r)
(Ua r) Z Column (d7 /) > Column (Ua I) ~ Column (d, r)
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Just Enough Game Theory
I EEEEE—————

Strategic Games: Example

ColumnI
_u[22)](0,0)
4000 [ (1)

» N = {Row, Column}

> ARow = {Ua d}, Acolumn = {r7 I}

> Urow : ARow X AColumn — {07 1, 2},
UColumn : ARow X AColumn — {O) 1, 2} with
uROW(”a I‘) = UCqumn(Ua r) =2,
URow(d7 /) = UColumn(d7 I) =2,
and uy(u,!l) = ux(d,r) =0 for x € N.
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Just Enough Game Theory
I EEEEE—————

Nash Equilibrium

Let (N, {Ai}ien,{=i}tien) be a strategic game
Fora_;je A_;, let
B,-(a_,-) = {a,- c A; | (a_,~, a,-) =i (a_,-, a;) W af- € A,'}

B; is the best-response function.
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Just Enough Game Theory
I EEEEE—————

Nash Equilibrium

Let (N, {Ai}ien,{=i}tien) be a strategic game

Fora_;je A_;, let
B,-(a_,-) = {a,- c A; | (a_,~, a,-) =i (a_,-, a;) W af- € A,'}

B; is the best-response function.

a* € Ais a Nash equilibrium iff af € B;j(a*;) for all i € N.
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Just Enough Game Theory

Strategic Games Example: Bach or Stravinsky?

b. Se
b, 2100
ss [00]12
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Just Enough Game Theory

Strategic Games Example: Bach or Stravinsky?

b. Se
b, 2100
ss [00]12

N = {r, C} A= {brysr}aAc = {basc}
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Just Enough Game Theory

Strategic Games Example: Bach or Stravinsky?

be s
b, [2170,0
ss 0012

N = {r, C} A= {brysr}aAc = {basc}

B,(bc) = {b:} Bi(sc) = {sr}
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Just Enough Game Theory

Strategic Games Example: Bach or Stravinsky?

b. Se
b, 2100
ss [00]12

N={r,c} A ={bys},Ac={bc, s}
B,(bc) = {b-} Bi(sc) = {sr}

Be(br) = {bc} Be(sr) = {sc}
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Just Enough Game Theory

Strategic Games Example: Bach or Stravinsky?

b. Se
b, 2100
ss [00]12

N = {r, C} A= {brysr}aAc = {bC7SC}

B:(bc) = {br} Br(sc) = {sr}
Bc(br) = {bc} Bc(sr) = {sc}
(br, be) is a Nash Equilibrium (sr,sc) is a Nash Equilibrium
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Just Enough Game Theory

Another Example: Mozart or Mahler?

Mo Ma

Eric Pacuit 41



Just Enough Game Theory

Another Example: Prisoner’s Dilema

D C
D 3304
C 40|11
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Just Enough Game Theory
I EEEEE—————

Extensive Games

In strategic games, strategies are chosen once and for all at the
start of the game

Extensive games are explicit descriptions of the sequential
structure of the decision problem encountered by the players in a
strategic situation.
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Just Enough Game Theory
I EEEEE—————

Extensive Games

» A set N of players

» A set H is a set of sequences, or histories, that is “closed”
and contains all finite prefixes. l.e.,

e The empty sequence is in H

= LE€H

o If (ak)k:;l,__,7K € H and L < K then (ak)k 1

geee

e If an infinite sequence (ax)?2; satisfies (ax)k=1,...1 € H for
each L > 1, then (ax)2, € H
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Just Enough Game Theory
I EEEEE—————

Extensive Games

» Let Z C H be the set of terminal histories.

» A function P H—-Z2 — N

» For each i € N, a relation =; on Z.

» For an nonterminal history h, let A(h) ={a | (h,a) € H}
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Just Enough Game Theory

Extensive Games: Example

Suppose two people use the following procedure to share two
desirable goods. One of them proposes an allocation, which the
other accepts or rejects. In the event of rejection, neither person
receives either of the objects. Each person cares only about the
number of objects he obtains.

Eric Pacuit 46



Just Enough Game Theory

Example
1
(2,0)/(1,[)\(0,2)
y n /y n y n\
2,{ 0,0 1,1 },0 0,2 0,0
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Just Enough Game Theory
I EEEEE—————

Backwards Induction

Invented by Zermelo, Backwards Induction is an iterative algorithm
for “solving” and extensive game.
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Just Enough Game Theory

(3,1) (4,4)
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Just Enough Game Theory

(3,1) (4,4)
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Just Enough Game Theory

(3,1) (4,4)
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Just Enough Game Theory

(3,1) (4,4)
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Just Enough Game Theory

(3,1) (4,4)
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Just Enough Game Theory

(3,1) (4,4)
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Just Enough Game Theory

(3,1) (4,4)
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Just Enough Game Theory

(3,1) (4,4)
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Just Enough Game Theory

(3,1) (4,4)
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Just Enough Game Theory

(3,1) (4,4)
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Just Enough Game Theory
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Just Enough Game Theory
I EEEEE—————

Is anything missing in these models?
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Just Enough Game Theory
I EEEEE—————

Formally, a game is described by its strategy sets and payoff
functions.
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Just Enough Game Theory
I EEEEE—————

Formally, a game is described by its strategy sets and payoff
functions. But in real life, may other parameters are relevant; there
is a lot more going on. Situations that substantively are vastly
different may nevertheless correspond to precisely the same
strategic game.
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Just Enough Game Theory
I —

Formally, a game is described by its strategy sets and payoff
functions. But in real life, may other parameters are relevant; there
is a lot more going on. Situations that substantively are vastly
different may nevertheless correspond to precisely the same
strategic game. For example, in a parliamentary democracy with
three parties, the winning coalitions are the same whether the
parties hold a third of the seats, or, say, 49%, 39%, and 12%
respectively.
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Just Enough Game Theory
I —

Formally, a game is described by its strategy sets and payoff
functions. But in real life, may other parameters are relevant; there
is a lot more going on. Situations that substantively are vastly
different may nevertheless correspond to precisely the same
strategic game. For example, in a parliamentary democracy with
three parties, the winning coalitions are the same whether the
parties hold a third of the seats, or, say, 49%, 39%, and 12%
respectively. But the political situations are quite different.
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Just Enough Game Theory
I —

Formally, a game is described by its strategy sets and payoff
functions. But in real life, may other parameters are relevant; there
is a lot more going on. Situations that substantively are vastly
different may nevertheless correspond to precisely the same
strategic game. For example, in a parliamentary democracy with
three parties, the winning coalitions are the same whether the
parties hold a third of the seats, or, say, 49%, 39%, and 12%
respectively. But the political situations are quite different. The
difference lies in the attitudes of the players, in their expectations
about each other, in custom, and in history, though the rules of
the game do not distinguish between the two situations.

R. Aumann and J. H. Dreze. Rational Expectation in Games. American Eco-
nomic Review (2008).
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Just Enough Game Theory

Two questions

» What should the players do in a game-theoretic situation and
what should they expect? (Assuming everyone is rational and
recognize each other's rationality)

» What are the assumptions about rationality and the players’
knowledge/beliefs underlying the various solution concepts?
Why would the agents' follow a particular solution concept?
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Just Enough Game Theory
I —

To answer these questions, we need a (mathematical) framework
to study each of the following issues:

» Rationality: “Ann is rational”

» Knowledge/Beliefs: "Bob believes (knows) Ann is rational”

» Higher-order Knowledge/Beliefs: “Ann knows that Bob knows
that Ann is rational”, “it is common knowledge that all
agents are rational”.
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Just Enough Game Theory
I EEEEE—————

Rationality

...to understand the fundamental ideas of game theory, one should
begin by studying decision theory. -R. Myerson (Game Theory)
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Just Enough Game Theory
I EEEEE—————

Rationality

...to understand the fundamental ideas of game theory, one should
begin by studying decision theory. -R. Myerson (Game Theory)

» Any rational decision-maker’s behaviour should be describable
by a utility function, which gives a quantitative
characterization of his preference for outcomes and prizes and
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Just Enough Game Theory

Rationality

...to understand the fundamental ideas of game theory, one should
begin by studying decision theory. -R. Myerson (Game Theory)

» Any rational decision-maker’s behaviour should be describable
by a utility function, which gives a quantitative
characterization of his preference for outcomes and prizes and

> a subjective probability distribution, which characterizes his
beliefs about all relevant unknown factors.
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Just Enough Game Theory

Rationality

...to understand the fundamental ideas of game theory, one should
begin by studying decision theory. -R. Myerson (Game Theory)

» Any rational decision-maker’s behaviour should be describable
by a utility function, which gives a quantitative
characterization of his preference for outcomes and prizes and

> a subjective probability distribution, which characterizes his
beliefs about all relevant unknown factors.

We assume each agent rational in the sense that the agent
maximizes his expected utility given his current information

(See Savage, Ramsey, Aumann & Anscombe, Jeffrey, etc.)
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Just Enough Game Theory

Game Theory: Uncertainty

The players may be

» uncertain about the objective parameters of the environment
» imperfectly informed about events that happen in the game

» uncertain about action of the other players that are not
deterministic

» uncertain about the reasoning of the other players

Much more to discuss here!
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Just Enough Game Theory
I —

Describing the Players Knowledge and Beliefs

Fix a set of possible states (complete descriptions of a
situation). Two main approaches to describe beliefs (knowledge):

» Set-theortical (Kripke Structures, Aumann Structures): For
each state and each agent /, specify a set of states that /
considers possible.

» Probabilistic (Bayesian Models, Harsanyi Type Spaces): For
each state, define a (subjective) probability function over the
set of states for each agent.
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Just Enough Epistemic Logic
I —

J. Hintikka. Knowledge and Belief. 1962, recently republished.
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Just Enough Epistemic Logic

Single-Agent Epistemic Logic: The Language
¢ is a formula of Epistemic Logic (£) if it is of the form

o = plop|leny | Kp
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Just Enough Epistemic Logic

Single-Agent Epistemic Logic: The Language
¢ is a formula of Epistemic Logic (£) if it is of the form

o = plop|leny | Kp

» p € At is an atomic fact.
e "It is raining”
e "The talk is at 2PM”
e "“The card on the table is a 7 of Hearts”
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Just Enough Epistemic Logic

Single-Agent Epistemic Logic: The Language
¢ is a formula of Epistemic Logic (£) if it is of the form

o = plop|leony| Kp

» p € At is an atomic fact.

» The usual propositional language (Lo)
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Just Enough Epistemic Logic

Single-Agent Epistemic Logic: The Language
¢ is a formula of Epistemic Logic (£) if it is of the form

o = plop|leny | Kp

» p € At is an atomic fact.
» The usual propositional language (Lo)

» Ky is intended to mean “The agent knows that ¢ is true”.
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Just Enough Epistemic Logic

Single-Agent Epistemic Logic: The Language
¢ is a formula of Epistemic Logic (£) if it is of the form

o = plop|leny | Kp

p € At is an atomic fact.

The usual propositional language (£o)

K is intended to mean “The agent knows that ¢ is true”.
The usual definitions for —, Vv, < apply

vV v v vy

Define Ly as - K-
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Just Enough Epistemic Logic

Single-Agent Epistemic Logic: The Language
¢ is a formula of Epistemic Logic (£) if it is of the form

o = plop|leny | Kp

K(p — q): “Ann knows that p implies ¢"
KpV —Kp:
KpV K=p:
Lp:
KLyp:
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Just Enough Epistemic Logic

Single-Agent Epistemic Logic: The Language
¢ is a formula of Epistemic Logic (£) if it is of the form

o = plop|leny | Kp

K(p — q): “Ann knows that p implies ¢"
Kp V —Kp: “either Ann does or does not know p"
KpV K=p: “Ann knows whether p is true”
Lp:
KLyp:
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Just Enough Epistemic Logic

Single-Agent Epistemic Logic: The Language
¢ is a formula of Epistemic Logic (£) if it is of the form
= ploplend | Ky
K(p — q): “Ann knows that p implies ¢"

Kp V —Kp: “either Ann does or does not know p"
KpV K=p: “Ann knows whether p is true”

Lyp: “p is an epistemic possibility”
KLp: "Ann knows that she thinks ¢ is
possible”
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Just Enough Epistemic Logic

Single-Agent Epistemic Logic: Kripke Models

M= (W,R,V)
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Just Enough Epistemic Logic

Single-Agent Epistemic Logic: Kripke Models

M= (W,R,V)

> W £ () is the set of all relevant situations (states of affairs,
possible worlds)
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Just Enough Epistemic Logic

Single-Agent Epistemic Logic: Kripke Models

M= (W,R,V)

» W # () is the set of all relevant situations (states of affairs,
possible worlds)

» R C W x W represents the information of the agent:
wRv provided “w and v are epistemically indistinguishable”

I EEEE—
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Just Enough Epistemic Logic

Single-Agent Epistemic Logic: Kripke Models

M= (W,R,V)

» W #£ () is the set of all relevant situations (states of affairs,
possible worlds)

» R C W x W represents the information of the agent:
wRv provided “w and v are epistemically indistinguishable”

» V : At — p(W) is a valuation function assigning propositional
variables to worlds

I EEEE—
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Just Enough Epistemic Logic
I —

Example

Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,
one of the cards is placed face
down on the table and the third
card is put back in the deck.
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Just Enough Epistemic Logic
I —

Example

Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,
one of the cards is placed face
down on the table and the third
card is put back in the deck.

What are the relevant states?
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Just Enough Epistemic Logic

Example

Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,

one of the cards is placed face wy Wy
down on the table and the third

card is put back in the deck.

What are the relevant states?

1% Whx

w3 We
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Just Enough Epistemic Logic

Example

Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,

one of the cards is placed face wy Wy
down on the table and the third

card is put back in the deck.

Ann receives card 3 and card 1

is put on the table
wo Wy

w3 We
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Just Enough Epistemic Logic

Example

Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,

one of the cards is placed face wy Wy
down on the table and the third

card is put back in the deck.

What information does Ann

have?
wo Wy

w3 We
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Just Enough Epistemic Logic

Example

Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,

one of the cards is placed face wy Wy
down on the table and the third I

card is put back in the deck.

What information does Ann

have?
1% I Whx

w3 We
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Just Enough Epistemic Logic

Example

Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,
one of the cards is placed face
down on the table and the third
card is put back in the deck.

What information does Ann
have?

Eric Pacuit

0 @

Clen) (0D

w3 We
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Just Enough Epistemic Logic

Example

Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,
one of the cards is placed face
down on the table and the third
card is put back in the deck.

Suppose H; is intended to
mean “Ann has card /"

T; is intended to mean “card i
is on the table”

Eg., V(H1) = {wi, wy}

Eric Pacuit
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Just Enough Epistemic Logic

Example

Suppose there are three cards:

1, 2 and 3.
Ann is dealt one of the cards, C. .:)
one of the cards is placed face wy

down on the table and the third
card is put back in the deck.

Suppose H; is intended to ( )
mean “Ann has card /"

T; is intended to mean “card i

is on the table”

w3 We
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Just Enough Epistemic Logic

Single Agent Epistemic Logic: Truth in a Model

Given ¢ € L, a Kripke model M = (W ,R,V) and w € W

M, w = ¢ means “in M, if the actual state is w, then ¢ is true”

I —
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Just Enough Epistemic Logic

Single Agent Epistemic Logic: Truth in a Model

Given ¢ € L, a Kripke model M = (W,R, V) and w € W

M, w = @ is defined as follows:

>» M,w = piff we V(p) (with p € At)

> M,w E - if Myw £ o

> MiwEeAYif Myw = pand M,w =9

» M,w = Ky if for each v € W, if wRv, then M,v = ¢
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Just Enough Epistemic Logic

Single Agent Epistemic Logic: Truth in a Model

Given ¢ € L, a Kripke model M = (W,R, V) and w € W

M, w = @ is defined as follows:

vV M,w = piff we V(p) (with p € At)

> M,w E - if Myw £ o

> MiwEeAYif Myw = pand M,w =9

» M,w = Ky if for each v € W, if wRv, then M,v = ¢
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Just Enough Epistemic Logic

Single Agent Epistemic Logic: Truth in a Model

Given ¢ € L, a Kripke model M = (W,R, V) and w € W

M, w = @ is defined as follows:

v M,w = piff we V(p) (with p € At)

V MowE —pif Myw

V MiwEpAYif Myw = @and M,w =19

» M,w = Ky if for each v € W, if wRv, then M,v |= ¢
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Just Enough Epistemic Logic

Single Agent Epistemic Logic: Truth in a Model

Given ¢ € L, a Kripke model M = (W,R, V) and w € W

M, w = @ is defined as follows:

v M,w = piff we V(p) (with p € At)

vV MowE - if Mow £ ¢

V MiwEeAYif M,wlE¢and M,w =9

v M,w | Ky if for each v € W, if wRv, then M,v = ¢
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Just Enough Epistemic Logic

Example

Suppose there are three cards:

1, 2 and 3.
Ann is dealt one of the cards, C. .D
one of the cards is placed face

wiq
down on the table and the third
card is put back in the deck.

) .:>

w3 We
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Just Enough Epistemic Logic

Example

Suppose there are three cards:

1, 2 and 3.
Ann is dealt one of the cards, C. .D
one of the cards is placed face

wiq
down on the table and the third
card is put back in the deck.

Suppose that Ann receives card ( )
1 and card 2 is on the table.

w3 We
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Just Enough Epistemic Logic

Example

Suppose there are three cards:

1, 2 and 3.

Ann is dealt one of the cards, < .: >
one of the cards is placed face

down on the table and the third

card is put back in the deck.

Suppose that Ann receives card ( )
1 and card 2 is on the table.
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Just Enough Epistemic Logic

Example

Suppose there are three cards:

1, 2 and 3.
Ann is dealt one of the cards, C D
one of the cards is placed face

down on the table and the third
card is put back in the deck.

|
M, w1 |= KH; C :)

w2 W5
w3 II II We
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Just Enough Epistemic Logic

Example

Suppose there are three cards:

1, 2 and 3.
Ann is dealt one of the cards, C D
one of the cards is placed face

down on the table and the third
card is put back in the deck.

I
M, w1 |= KH; C :)

9/
Cimn) (D
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Just Enough Epistemic Logic

Example

Suppose there are three cards:

1, 2 and 3.
Ann is dealt one of the cards, C D
one of the cards is placed face

down on the table and the third
card is put back in the deck.

T Y
M, wq ’: K-Ty
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Just Enough Epistemic Logic

Example

Suppose there are three cards:

1, 2 and 3.
Ann is dealt one of the cards, C D
one of the cards is placed face

down on the table and the third
card is put back in the deck.

|
R =

0/ @
Cimn) (D
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Just Enough Epistemic Logic

Some Questions

Should we make additional assumptions about R (i.e., reflexive,
transitive, etc.)

What idealizations have we made?
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Just Enough Epistemic Logic

Some Notation

A Kripke Frame is a tuple (W, R) where R C W x W.

¢ is valid in a Kripke model M if M, w |= ¢ for all states w (we
write M = ).

¢ is valid on a Kripke frame F if M = ¢ for all models M based
on F.
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Just Enough Epistemic Logic
I —

Modal Formula ‘ Property ‘ Philosophical Assumption

I —
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Just Enough Epistemic Logic
I —

Modal Formula ‘ Property ‘ Philosophical Assumption
Klp—19)— (Ko —Ky¢)| — | Logical Omniscience

I —
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Just Enough Epistemic Logic
I —

Modal Formula ‘ Property ‘ Philosophical Assumption

Kle = ¢) = (Ko = K¢) —
Ko — ¢ Reflexive

Logical Omniscience
Truth
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Just Enough Epistemic Logic
I —

Modal Formula ‘ Property ‘ Philosophical Assumption
K(p — ) — (Kp — Kv) — Logical Omniscience
Kp — ¢ Reflexive Truth
Ko — KKy Transitive Positive Introspection
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Just Enough Epistemic Logic
I —

Modal Formula ‘ Property ‘ Philosophical Assumption
K(p — ) — (Kp — Kv) — Logical Omniscience
Kp — ¢ Reflexive Truth
Ko — KKy Transitive Positive Introspection
-Kp — K=Ky Euclidean Negative Introspection
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Just Enough Epistemic Logic
I —

Modal Formula ‘ Property ‘ Philosophical Assumption
K(p — ) — (Kp — Kv) — Logical Omniscience
Kp — ¢ Reflexive Truth
Ko — KKy Transitive Positive Introspection
-Kp — K=Ky Euclidean Negative Introspection
-KL Serial Consistency
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Just Enough Epistemic Logic

Multi-agent Epistemic Logic

The Language: ¢ = p| ~¢ | AP | Kp
Kripke Models: M = (W,R, V) and w € W
Truth: M, w = ¢ is defined as follows:

» M,w = piff w e V(p) (with p € At)

> M,w =g if M,w & @

>» MiwlE oAy if MywE @ and M,w =1

» M,w [= Ky if for each v € W, if wRv, then M,v |= ¢
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Just Enough Epistemic Logic

Multi-agent Epistemic Logic

The Language: ¢ = p| ¢ | @AY | Kip withi e A
Kripke Models: M = (W,{R;}ica,V) and w € W
Truth: M, w = ¢ is defined as follows:

» M,w = piff w e V(p) (with p € At)

> M,w = - if M,w & @

>» MiwlE oAy if MywE @ and M,w =1

» M,w = Kjp if for each v € W, if wR;v, then M, v |E ¢
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Just Enough Epistemic Logic

Multi-agent Epistemic Logic

» KaKgp: “Ann knows that Bob knows ¢"
> Ka(Kge V Kg—¢): “Ann knows that Bob knows whether ¢

» ~KgKaKg(p): “Bob does not know that Ann knows that
Bob knows that ¢”
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Just Enough Epistemic Logic

Example

Suppose there are three cards:

1, 2 and 3.

Ann is dealt one of the cards, < .: >
one of the cards is placed face

down on the table and the third

card is put back in the deck.

Suppose that Ann receives card ( )
1 and card 2 is on the table.
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Just Enough Epistemic Logic

Example

Suppose there are three cards:

1, 2 and 3.
Ann is dealt one of the cards, C .D
Bob is given one of the cards

and the third card is put back

in the deck.
Suppose that Ann receives card ( )
1 and Bob receives card 2.
wo Ws
W. . e
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Just Enough Epistemic Logic

Example

Suppose there are three cards:

1, 2 and 3.
Ann is dealt one of the cards, C D
Bob is given one of the cards

w1 Wy
and the third card is put back I I
in the deck.

Suppose that Ann receives card C )
1 and Bob receives card 2.
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Just Enough Epistemic Logic

Example

Suppose there are three cards:

1, 2 and 3.
Ann is dealt one of the cards, .
Bob is given one of the cards wy I I Wy

and the third card is put back
in the deck.

Suppose that Ann receives card
1 and Bob receives card 2.

w2 I I Whg
w3 We
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Just Enough Epistemic Logic

Example

Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,
Bob is given one of the cards wy I I Wy

and the third card is put back
in the deck.

Suppose that Ann receives card
1 and Bob receives card 2.

Wo Wg
M, w ): KB(KAHl V KA—|H1) I I

w3 I II We
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Just Enough Epistemic Logic

Example

Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,
Bob is given one of the cards wy I I Wy

and the third card is put back
in the deck.

Suppose that Ann receives card
1 and Bob receives card 2.

Wo Wg
M, w ): KB(KAHl V KA—|H1) I I

w3 I II We
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Just Enough Epistemic Logic

Example

Suppose there are three cards:
1, 2 and 3.

Ann is dealt one of the cards,
Bob is given one of the cards wy I I Wy

and the third card is put back
in the deck.

Suppose that Ann receives card
1 and Bob receives card 2.

Wo Wg
M, w ): KB(KAHl\/KA—\Hl) I I

w3 I II We
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Just Enough Epistemic Logic
I —

Example (1)

Suppose there are two friends Ann and Bob are on a bus separated
by a crowd. Before the bus comes to the next stop a mutual friend
from outside the bus yells “get off at the next stop to get a
drink?".

Say Ann is standing near the front door and Bob near the back
door. When the bus comes to a stop, will they get off?

D. Lewis. Convention. 1969.

M. Chwe. Rational Ritual. 2001.

I —
Eric Pacuit 126



Just Enough Epistemic Logic

Three Views of Common Knowledge

1. v := i knows that ¢, j knows that ¢, i knows that j knows
that ¢, j knows that i/ knows that ¢, i knows that j knows
that / knows that ¢, ...

D. Lewis. Convention, A Philosophical Study. 1969.
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Just Enough Epistemic Logic

Three Views of Common Knowledge

1. v := i knows that ¢, j knows that ¢, i knows that j knows
that ¢, j knows that i/ knows that ¢, i knows that j knows
that / knows that ¢, ...

D. Lewis. Convention, A Philosophical Study. 1969.

2. = iand j know that (¢ and 7)
G. Harman. Review of Linguistic Behavior. Language (1977).
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Just Enough Epistemic Logic

Three Views of Common Knowledge

1. v := i knows that ¢, j knows that ¢, i knows that j knows
that ¢, j knows that i/ knows that ¢, i knows that j knows
that / knows that ¢, ...

D. Lewis. Convention, A Philosophical Study. 1969.

2. = iand j know that (¢ and 7)
G. Harman. Review of Linguistic Behavior. Language (1977).

3. There is a shared situation s such that

e s entails ¢
e s entails / knows ¢
e s entails j knows ¢

H. Clark and C. Marshall. Definite Reference and Mutual Knowledge. 1981.

J. Barwise. Three views of Common Knowledge. TARK (1987).
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Just Enough Epistemic Logic

G. Sillari and P. Vanderscraaf. Common Knowledge. Stanford Encyclopedia of
Philosophy Entry.

R. Cubitt and R. Sugden. Common knowledge, salience and convention: a
reconstruction of David Lewis’ game theory. Economics and Philosophy 19
(2003) pgs 175 - 210.
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Just Enough Epistemic Logic
I —

Group Knowledge

KaP: "Ann knows that P"
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Just Enough Epistemic Logic
I —

Group Knowledge

KaP: "Ann knows that P"

KgP: “Bob knows that P"
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Just Enough Epistemic Logic
I —

Group Knowledge
KaP: "Ann knows that P"
KgP: “Bob knows that P"

KaKgP: “Ann knows that Bob knows that P”
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Just Enough Epistemic Logic
I —

Group Knowledge
KaP: “Ann knows that P”
KgP: “Bob knows that P"
KaKgP: “Ann knows that Bob knows that P"

KaP N KgP: “Every one knows P".
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Just Enough Epistemic Logic
I —

Group Knowledge
KaP: “Ann knows that P”
KgP: “Bob knows that P"
KaKgP: “Ann knows that Bob knows that P"

KaP N KgP: “Every one knows P". let EP := KaP A KgP

I —
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Just Enough Epistemic Logic
I —

Group Knowledge
KaP: "Ann knows that P"
KgP: “Bob knows that P”
KaKgP: “Ann knows that Bob knows that P”
KaP N KgP: “Every one knows P". let EP := KaP A KgP

KaEP: "Ann knows that everyone knows that P".
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Just Enough Epistemic Logic
I —

Group Knowledge
KaP: "Ann knows that P"
KgP: “Bob knows that P”
KaKgP: “Ann knows that Bob knows that P”
KaP N KgP: “Every one knows P". let EP := KaP A KgP
KaEP: "Ann knows that everyone knows that P".

EEP: "Everyone knows that everyone knows that P".
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Just Enough Epistemic Logic
I —

Group Knowledge
KaP: "Ann knows that P"
KgP: “Bob knows that P”
KaKgP: “Ann knows that Bob knows that P”
KaP A KgP: "Every one knows P". let EP := KaP A KgP
KAEP: “Ann knows that everyone knows that P".
EEP: "Everyone knows that everyone knows that P".
EEEP: "Everyone knows that everyone knows that everyone knows

that P."
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Just Enough Epistemic Logic
I —

Common Knowledge

CP: "It is common knowledge that P"
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Just Enough Epistemic Logic
I —

Common Knowledge

CP: "It is common knowledge that P — “Everyone knows that
everyone knows that everyone knows that --- P".
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Just Enough Epistemic Logic
I —

Common Knowledge

CP: "It is common knowledge that P — “Everyone knows that
everyone knows that everyone knows that --- P".

Is common knowledge different from everyone knows?

I —
Eric Pacuit 141



Just Enough Epistemic Logic
I —

Common Knowledge

CP: "It is common knowledge that P — “Everyone knows that
everyone knows that everyone knows that --- P".

Is common knowledge different from everyone knows?

A B %@ﬁ@% A B
:) A B

w3

wy ’: EP A —-CP
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Just Enough Epistemic Logic
I —

Common Knowledge

CP: “It is common knowledge that P" — “Everyone knows that
everyone knows that everyone knows that --- P".

Is common knowledge different from everyone knows?

A B %@ﬁ@% A B
:) A B

w3

wi ): EP A —-CP
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Just Enough Epistemic Logic
I —

Common Knowledge

CP: "It is common knowledge that P" — “Everyone knows that
everyone knows that everyone knows that --- P".

Is common knowledge different from everyone knows?

A B %@ﬁ:@% A B
:) A B

w3

wy ': EP N -CP
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Just Enough Epistemic Logic
I —

Common Knowledge

CP: "It is common knowledge that P" — “Everyone knows that
everyone knows that everyone knows that --- P".

Is common knowledge different from everyone knows?

A B %@ﬁ@% A B
:) A B

w3

wy ': EP N —-CP
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Just Enough Epistemic Logic

Common Knowledge

The operator “everyone knows P", denoted EP, is defined as
follows
EP = /\ KiP
icA

w = CP iff every finite path starting at w ends with a state
satisfying P.
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Just Enough Epistemic Logic
I —

CP — ECP
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Just Enough Epistemic Logic
I —

CP — ECP

Suppose you are told “Ann and Bob are going together,”
and respond “sure, that's common knowledge.” What
you mean is not only that everyone knows this, but also
that the announcement is pointless, occasions no
surprise, reveals nothing new; in effect, that the situation
after the announcement does not differ from that before.
...the event “Ann and Bob are going together’ — call it
P — is common knowledge if and only if some event —
call it @ — happened that entails P and also entails all
players’ knowing @ (like all players met Ann and Bob at
an intimate party). (Robert Aumann)
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Just Enough Epistemic Logic
I —

PAC(P— EP)— CP
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Just Enough Epistemic Logic

An Example

Two players Ann and Bob are told that the following will happen.
Some positive integer n will be chosen and one of n, n+ 1 will be
written on Ann's forehead, the other on Bob's. Each will be able

to see the other’s forehead, but not his/her own.
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Just Enough Epistemic Logic

An Example

Two players Ann and Bob are told that the following will happen.
Some positive integer n will be chosen and one of n, n+ 1 will be
written on Ann's forehead, the other on Bob's. Each will be able

to see the other’s forehead, but not his/her own.

Suppose the number are (2,3).
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Just Enough Epistemic Logic

An Example

Two players Ann and Bob are told that the following will happen.
Some positive integer n will be chosen and one of n, n+ 1 will be
written on Ann's forehead, the other on Bob's. Each will be able

to see the other’s forehead, but not his/her own.

Suppose the number are (2,3).

Do the agents know there numbers are less than 10007

I —
Eric Pacuit 152



Just Enough Epistemic Logic

An Example

Two players Ann and Bob are told that the following will happen.
Some positive integer n will be chosen and one of n, n+ 1 will be
written on Ann's forehead, the other on Bob's. Each will be able

to see the other’s forehead, but not his/her own.

Suppose the number are (2,3).

Do the agents know there numbers are less than 10007

Is it common knowledge that their numbers are less than 10007
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Just Enough Epistemic Logic

(6,7) -~
,
(45) 5 (65)
N
23} (43)
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Just Enough Epistemic Logic

Epistemic Foundations of Game Theory

A. Brandenburger. The Power of Paradox: Some Recent Developments in In-
teractive Epistemology. International Journal of Game Theory, Vol. 35, 2007,
465-492.

K. Binmore. Rational Decisions. Princeton University Press, 2009.

J. van Benthem. Logic in Games. Texts in Logic and Games, University of
Amsterdam Press (forthcoming in 2010).

EP and O. Roy. Interactive Rationality. Book manuscript (forthcoming).
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Coordination Problems
I —

Footballer Example

A and B are players in the same football team. A has the ball, but
an opposing player is converging on him. He can pass the ball to
B, who has a chance to shoot. There are two directions in which A
can move the ball, left and right, and correspondingly, two
directions in which B can run to intercept the pass. If both choose
left there is a 10% chance that a goal will be scored. If they both
choose right, there is a 11% change. Otherwise, the chance is
zero. There is no time for communication; the two players must
act simultaneously.

What should they do?

R. Sugden. The Logic of Team Reasoning. Philosophical Explorations (6)3, pgs.
165 - 181 (2003).
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Coordination Problems
I —

Column

Row
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Coordination Problems
I —

Column

I r
(10,10) [ ( 0,0 )
ri( 00 )]|(11,11)

Row
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Coordination Problems
I —

Column

I r
(10,10) [ ( 0,0 )
ri( 00 )]|(11,11)

Row

Row: What should | do?
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Coordination Problems
I —

Column

I r
(10,10)[( 0,0 )
ri( 00 )]|(11,11)

Row

Row: What should | do? (r if the probability of Column choosing
ris > 32 and / if the probability of Column choosing / is > 31)
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Coordination Problems
I —

Column

I r
(10,10) | ( 0,0 )
ri(00)[(11,11)

Row

Row: What should we do?
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Coordination Problems
I —

Column

I r
(10,10)[( 0,0 )
ri( 00 )]|(11,11)

Row

Team Reasoning: escape from the infinite regress? why should
this “mode of reasoning” be endorsed?
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Coordination Problems
I —

Reason to Believe

Ri(®): "agent i has reason to believe ¢" (deductive, inductive,
norm of practical reason)
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Coordination Problems
I —

Reason to Believe

Ri(¢): “agent i has reason to believe ¢" (deductive, inductive,
norm of practical reason)

If i is the subject of the proposition ¢;, consider

Ri(i) vs. Rj(¢i)
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Coordination Problems
I —

Reason to Believe

Ri(¢): “agent i has reason to believe ¢" (deductive, inductive,
norm of practical reason)

If i is the subject of the proposition ¢;, consider
Ri(i) vs. Rj(¢i)
inf(R) : x,y — z

inf(R) : x1,...%n, 2(X1,...,%p,72) = 2
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Coordination Problems
I —

Common Reason to Believe

Awareness of Common Reason: for all i € N and all propositions x,

RY(x) = RIR"(x)]
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Coordination Problems
I —

Common Reason to Believe

Awareness of Common Reason: for all i € N and all propositions x,

RY(x) = RIR"(x)]

Authority of Common Reason: for all i € N and all propositions x
for which i is not the subject

inf(R;) : RN(x) — x
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Coordination Problems

Common Reason to Believe

Awareness of Common Reason: for all i € N and all propositions x,

RY(x) = RIR"(x)]

Authority of Common Reason: for all i € N and all propositions x
for which i is not the subject

inf(R;) : RV(x) — x

Common Attribution of Common Reason: for all i € N, for all
propositions x for which 7 is not the subject
inf(RN) : x — Ri(x)
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Coordination Problems
I —

Common Reason to Believe to Common Belief

Theorem The three previous properties can generate any hierarchy
of belief (i has reason to believe that j has reason to believe that...
that x) for any x with RV(x).
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Coordination Problems

Team Maximising

inf(R;) : RN[opt(v, N, sN)],
RN[ each i € N endorses team maximising with respect to N and v ],
RN[ each member of N acts on reasons | — ought(i, s;)
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Coordination Problems

Team Maximising

inf(R;) : RN[opt(v, N, sN)],
RN[ each i € N endorses team maximising with respect to N and v ],
RN[ each member of N acts on reasons | — ought(i, s;)

Ri[ought(i,s;)]: i has reason to choose s;
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Coordination Problems

Team Maximising

inf(R;) : RN[opt(v, N, sN)],
RN[ each i € N endorses team maximising with respect to N and v ],
RN[ each member of N acts on reasons | — ought(i, s;)

i acts on reasons if for all s;, R[ought(i, s;)] = choice(i,s;)
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Coordination Problems

Team Maximising

inf(R;) : RN[opt(v, N, sM)],
RN[ each i € N endorses team maximising with respect to N and v ],
RN[ each member of N acts on reasons | — ought(i, s;)

opt(v, N, s"): sN is maximal for the group N w.r.t. v
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Coordination Problems

Team Maximising

inf(R;) : RN[opt(v, N, sN)],
RN[ each i € N endorses team maximising with respect to N and v ],
RN[ each member of N acts on reasons | — ought(i, s;)
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Thank you!
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