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Plan

X Arrow, Sen, Muller-Satterthwaite

X Characterizing Voting Methods: Majority (May, Asan &
Sanver), Scoring Rules (Young), Borda Count (Farkas and
Nitzan, Saari), Approval Voting (Fishburn)

X Voting to get things “right” (Distance-based measures,
Condorcet and extensions)

X Strategizing (Gibbard-Satterthwaite)

1. Generalizations

1.1 Infinite Populations
1.2 Judgement aggregation (List & Dietrich)

2. Logics

3. Applications
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Consider 3 votes, each with a confidence level p = 2/3.

The probability of at least m voters being correct is:

n∑
h=m

(
n

h

)
∗ ph ∗ (1− p)n−h

(
3

2

)
∗ (2/3)2 ∗ 1/31 +

(
3

3

)
2/33 ∗ 1/30

= 3 ∗ 4/27 + 1 ∗ 8/27

= 20/27
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Condorcet Jury Theorem

State of the world x takes values 0 and 1

Ri is the event that voter i votes correctly.

Mn is the event that a majority of n member electorate votes
correctly.

Independence R1,R2, . . . are independent conditional on x

Competence: for each x ∈ {0, 1}, Pr(Ri | x) > 1
2 and

Condorcet Jury Theorem. Suppose Independence and
Competence. As the group size increases, the probability Pr(Mn)
that a majority votes correctly (i) increases and (ii) converges to
one.
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D. Austen-Smith and J. Banks. Aggregation, Rationality and the Condorcet Jury
Theorem. The American Political Science Review, 90, 1, pgs. 34 - 45, 1996.

D. Estlund. Opinion Leaders, Independence and Condorcet’s Jury Theorem.
Theory and Decision, 36, pgs. 131 - 162, 1994.

F. Dietrich. The premises of Condorcet’s Jury Theorem are not simultaneously
justified. Episteme, 2008.
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Judgement Aggregation

Preference aggregations vs. judgement aggregation

I Judgements of preference, value judgements, beliefs

I What should be done? What is the best alternative?

I The Pareto conditions (see forthcoming work by W.
Rabinowicz, S. Hartmann and S. Rafiee Rad)
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Doctrinal Paradox

Suppose that three experts independently formed opinions about
three propositions. For example,

1. p: “Carbon dioxide emissions are above the threshold x”

2. p → q: “If carbon dioxide emissions are above the threshold
x , then there will be global warming”

3. q: “There will be global warming”
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Doctrinal Paradox

U p p → q q

Expert 1 True True True

Expert 2 True False False

Expert 3 False True False

Majority True True False
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The Logic of Group Decisions, II
(Kornhauser and Sager 1993)

p: a valid contract was in place
q: there was a breach of contract
r : the court is required to find the defendant liable.

p q (p ∧ q)↔ r r

1 yes yes yes yes

2 yes no yes no

3 no yes yes no
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The Logic of Group Decisions, II
(Kornhauser and Sager 1993)

Should we accept r? No, a simple majority votes no. and
(p ∧ q)↔ r is a legal doctrine. adfasdfasdf asdfdsafsd

p q (p ∧ q)↔ r r

1 yes yes yes yes

2 yes no yes no

3 no yes yes no
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The Logic of Group Decisions, II
(Kornhauser and Sager 1993)

Should we accept r? Yes, a majority votes yes for p and q and
(p ∧ q)↔ r is a legal doctrine.

p q (p ∧ q)↔ r r

1 yes yes yes yes

2 yes no yes no

3 no yes yes no
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Many Variants!

See
http://personal.lse.ac.uk/LIST/doctrinalparadox.htm

for many generalizations!

Kornhauser and Sager. Unpacking the court. Yale Law Journal, 1986.

C. List and P. Pettit. Aggregating Sets of Judgments: An Impossibility Result.
Economics and Philosophy 18: 89-110, 2002.
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The Judgement Aggregation Model: The Propositions

Propositions: Let L be a logical language (called propositions in
the literature) with the usual boolean connectives.

Consistency: The standard notion of logical consistency.

Aside: We actually need

1. {p,¬p} are inconsistent

2. all subsets of a consistent set are consistent

3. ∅ is consistent and each S ⊆ L has a consistent maximal
extension (not needed in all cases)
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The Judgement Aggregation Model: The Agenda

Definition The agenda is a non-empty set X ⊆ L, interpreted as
the set of propositions on which judgments are made (note: X is a
union of proposition-negation pairs {p,¬p}).

Example: In the discursive dilemma:
X = {a,¬a, b,¬b, a→ b,¬(a→ b)}.
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The Judgement Aggregation Model: The Judgement Sets

Definition: Given an agenda X , each individual i ’s judgement set
is a subset Ai ⊆ X .

Rationality Assumptions:

1. Ai is consistent

2. Ai is complete, if for each p ∈ X , either p ∈ Ai or ¬p ∈ Ai
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The Judgement Aggregation Model: Aggregation Rules

Let X be an agenda, N = {1, . . . , n} a set of voters, a profile is a
tuple (Ai , . . . ,An) where each Ai is a judgement set. An
aggregation function is a map from profiles to judgment sets.
I.e., F (A1, . . . ,An) is a judgement set.

Examples:

I Propositionwise majority voting: for each (A1, . . . ,An),

F (A1, . . . ,An) = {p ∈ X | |{i |p ∈ Ai}| ≥ |{i | p 6∈ Ai}|}

I Dictator of i : F (A1, . . . ,An) = Ai

I Reverse Dictator of i : F (A1, . . . ,An) = {¬p |p ∈ Ai}
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The Judgement Aggregation Model: Input Condition

Universal Domain: The domain of F is the set of all possible
profiles of consistent and complete judgement sets.
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The Judgement Aggregation Model: Output Condition

Collective Rationality: F generates consistent and complete
collective judgment sets.
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The Judgement Aggregation Model: Responsiveness
Conditions

Systematicity: For any p, q ∈ X and all (A1, . . . ,An) and
(A∗1, . . . ,A

∗
n) in the domain of F ,

if [for all i ∈ N, p ∈ Ai iff q ∈ A∗i ]
then [p ∈ F (A1, . . . ,An) iff q ∈ F (A∗1, . . .A

∗
n) ].

I independence

I neutrality

Independence: For any p ∈ X and all (A1, . . . ,An) and
(A∗1, . . . ,A

∗
n) in the domain of F ,

if [for all i ∈ N, p ∈ Ai iff p ∈ A∗i ]
then [p ∈ F (A1, . . . ,An) iff p ∈ F (A∗1, . . .A

∗
n) ].
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The Judgement Aggregation Model: Responsiveness
Conditions

Anonymity: For all profiles (A1, . . . ,An),
F (A1, . . . ,An) = F (Aπ(1), . . . ,Aπ(n) where π is a permutation of
the voters.

Unanimity: For all profiles (A1, . . . ,An) if p ∈ Ai for each i then
p ∈ F (A1, . . . ,An)

Monotonicity: For any p ∈ X and all (A1, . . .Ai , . . . ,An) and
(A1, . . . ,A

∗
i , . . . ,An) in the domain of F ,

if [p 6∈ Ai , p ∈ A∗i and p ∈ F (A1, . . . ,Ai , . . .An)]
then [p ∈ F (A1, . . . ,A

∗
i , . . .An)].
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The Judgement Aggregation Model: Responsiveness
Conditions

Non-dictatorship: There exists no i ∈ N such that, for any profile
(A1, . . . ,An), F (A1, . . . ,An) = Ai
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Baseline Result

Theorem (List and Pettit, 2001) If X ⊆ {a, b, a ∧ b}, there
exists no aggregation rule satisfying universal domain, collective
rationality, systematicity and anonymity.

See personal.lse.ac.uk/LIST/doctrinalparadox.htm for
many generalizations!
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Agenda Richness

Whether or not judgment aggregation gives rise to serious
impossibility results depends on how the propositions in the agenda
are interconnected.

Definition A set Y ⊆ L is minimally inconsistent if it is
inconsistent and every proper subset X ( Y is consistent.
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Agenda Richness

Definition An agenda X is minimally connected if

1. (non-simple) it has a minimal inconsistent subset Y ⊆ X with
|Y | ≥ 3

2. (even-number-negatable) it has a minimal inconsistent subset
Y ⊆ X such that

Y − Z ∪ {¬z | z ∈ Z} is consistent

for some subset Z ⊆ Y of even size.
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Impossibility Theorems

Theorem (Dietrich and List, 2007) If (and only if) an agenda is
non-simple and even-number negatable, every aggregation rule
satisfying universal domain, collective rationality, systematicity and
unanimity is a dictatorship (or inverse dictatorship).

Theorem (Nehring and Puppe, 2002) If (and only if) an agenda
is non-simple, every aggregation rule satisfying universal domain,
collective rationality, systematicity unanimity, and monotonicity is
a dictatorship.
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Characterization Result

p ∈ X conditionally entails q ∈ X , written p `∗ q provided there is
a subset Y ⊆ X consistent with each of p and ¬q such that
{p} ∪ Y ` q.

Totally Blocked: X is totally blocked if for any p, q ∈ X there
exists p1, . . . , pk ∈ X such that

p = p1 `∗ p2 `∗ · · · `∗ pk = q
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Characterization Result

Theorem (Dietrich and List, 2007, Dokow Holzman 2010) If
(and only if) an agenda is totally blocked and even-number
negatable, every aggregation rule satisfying universal domain,
collective rationality, independence and unanimity is a dictatorship.

Theorem (Nehring and Puppe, 2002, 2010) If (and only if) an
agenda is totally blocked, every aggregation rule satisfying
universal domain, collective rationality, independence unanimity,
and monotonicity is a dictatorship.
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Many Variants!

Christian List. The Theory of Judgement Aggregation: A Survey. Synthese,
forthcoming.
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How should we aggregate judgements without independence?

I Premiss-based aggregation

I Distance-based
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What is a premiss?

An employee-owned bakery must decide whether to buy a pizza
oven (P) or a fridge to freeze their outstanding Tiramisu (F ). The
pizza oven and the fridge cannot be in the same room. So they
also need to decide whether to rent an extra room in the back (R).
They all agree that they will rent the room if they decide to buy
both the pizza oven and the fridge: ((P ∧ F )→ R), but they are
contemplating renting the room regardless of the outcome of the
vote on the appliances.

F. Cariani. Judgement Aggregation. Philosophy Compass, 6, 1, pgs. 22 - 32,
2011.
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Distance-Based Aggregation

G. Pigozzi. Belief merging and the discursive dilemma: an argument-based
account of paradoxes in judgement aggregation. Synthese 152, pgs. 285 - 298,
2006.

M. Miller and D. Osherson. Methods for distance-based judgement aggregation.
Social Choice and Welfare, 32, pgs. 575 - 601, 2009.

C. Duddy and A. Piggins. A measure of distance between judgement sets.
Manuscript, 2011.
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Given (A1, . . . ,An), select the set consistent and complete A that
minimizes the total distance from the individual judgement sets:
find A such that

∑
i∈N d(A,Ai ) is minimized.

Hamming Metric: d(A,A′) = the number of propositions for
which A and A′ disagree

dH({p, q, p ∧ q}, {p,¬q,¬(p ∧ q)}) = 2

Duddy and Piggins: shouldn’t
d({p, q, p ∧ q}, {p,¬q,¬(p ∧ q)} = 1?
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Duddy and Piggins Measure

Judgement set C is between judgement sets A and B if A,B and
C are distinct and, on each proposition C agrees with A or with B
(or both). (C is a compromise between A and B)

Draw a graph where the nodes are possible judgement sets and
there is an edge between A and B provided there is no judgement
set between them.

The distance between A and B is the length of the shortest path
from A to B.
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¬p, q,¬(p ∧ q)

p, q, (p ∧ q) ¬p,¬q,¬(p ∧ q)

p,¬q,¬(p ∧ q)
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Axioms

Axiom 1 d(A,B) = 0 iff A = B
Axiom 2 d(A,B) = d(B,A)
Axiom 3 d(A,B) ≤ d(A,C ) + d(C ,B)

For all A,B,C , C is between A and B provided A 6= B 6= C and
(A ∩ B) ⊂ C .

Axiom 4 If there is a judgement set between A and B then there
exists C different from A and B such that
d(A,B) = d(A,C ) + d(C ,B)

Axiom 5 If there is no judgement set between A and B with
A 6= B then d(A,B) = 1
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Theorem (Duddy & Piggins) The previously defined metric is the
unique metric satisfying Axioms 1 - 5.
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p q p ∧ q

1 T T T
2 T F F
3 F T F

Majority T T F

DP-metric T T T

Hamming F T F

Premise T T T
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M. Miller and D. Osherson. Methods for distance-based judgement aggregation.
Social Choice and Welfare, 32, pgs. 575 - 601, 2009.
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Differing on {a, b ∧ c} may be considered more consequential than
differing on {a, a ∧ b}.

Let F be the set of all judgement sets and F◦ the set of all
consistent judgement sets.

d : F × F → R

Axiom 1 d(A,B) = 0 iff A = B
Axiom 2 d(A,B) = d(B,A)
Axiom 3 d(A,B) ≤ d(A,C ) + d(C ,B)

d(J, J ′) =
∑

i≤n d(Ji , J
′
i )

Eric Pacuit: The Logic Behind Voting 39/43

http://ai.stanford.edu/~epacuit


Differing on {a, b ∧ c} may be considered more consequential than
differing on {a, a ∧ b}.

Let F be the set of all judgement sets and F◦ the set of all
consistent judgement sets.

d : F × F → R

Axiom 1 d(A,B) = 0 iff A = B
Axiom 2 d(A,B) = d(B,A)
Axiom 3 d(A,B) ≤ d(A,C ) + d(C ,B)

d(J, J ′) =
∑

i≤n d(Ji , J
′
i )

Eric Pacuit: The Logic Behind Voting 39/43

http://ai.stanford.edu/~epacuit


For a profile P, M(P) ∈ F the judgement set resulting from
majority rule. P is majority consistent provided M(P) ∈ F◦

Fix a metric d and a profile J ∈ F◦

I Fulld(J) is the collection of M(J ′) ∈ F◦ such that J ′

minimizes d(J, J ′) over all majority consistent profiles J ′ in F◦

I Outputd(J) is the collection of M(J ′) ∈ F◦ such that J ′

minimizes d(J, J ′) over all majority consistent profiles J ′ in F
(allowing inconsistencies)

I Endpointd(J) is the collection of K ∈ F◦ that minimize
d(J, J ′) over all majority consistent profiles J ′

I Prototyped(J) is the collection of K ∈ F◦ that minimize∑
i≤n d(Ji ,K ) over all K ∈ F◦
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For J,K let Ham(J,K ) denote the Hamming distance (the number
of items on which J and K disagree)

d(J,K ) =

{
0.9 if J and K disagree only on a ∧ b√
Ham(p, q) otherwise
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a b a ∧ b a b a ∧ b a b a ∧ b
1 T T T T T T T T T
2 T T T T T T T T T
3 T F F T F F T F T
4 T F F T F F T F F
5 F T F F F F F T F

M T T F T F F T T T

I Fulld(J) = TFF (d(FTF ,FFF ) = 1)

I Outputd(J) = TTT (d(TFF ,TFT ) = 0.9)

I Endpointd(J) = TTT (d(TTF ,TTT ) = 0.9)

I Prototyped(J) = {TTT ,TFF} (
∑

i d(Ji ,TTT ) = 3
√

2,∑
i d(Ji ,TFF ) = 3

√
2,
∑

i d(Ji ,FTF ) = 4
√

2,∑
i d(Ji ,FFF ) = 2

√
3 + 3)
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Tomorrow: Logic!
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