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Plan

X Arrow, Sen, Muller-Satterthwaite

X Characterizing Voting Methods: Majority (May, Asan &
Sanver), Scoring Rules (Young), Borda Count (Farkas and
Nitzan, Saari), Approval Voting (Fishburn)

X Voting to get things “right” (Distance-based measures,
Condorcet and extensions)

X Strategizing (Gibbard-Satterthwaite)

1. Generalizations

1.1 Infinite Populations
X Judgement aggregation (List & Dietrich)

2. Logics

3. Applications
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Plan

I The logic of axiomatization results

I Logics for reasoning about aggregation methods

I Preference (modal) logics

I Applications
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Setting the Stage: Logic and Games

M. Pauly and W. van der Hoek. Modal Logic form Games and Information.
Handbook of Modal Logic (2006).

G. Bonanno. Modal logic and game theory: Two alternative approaches. Risk
Decision and Policy 7 (2002).

J. van Benthem. Extensive games as process models. Journal of Logic, Language
and Information 11 (2002).

J. Halpern. A computer scientist looks at game theory. Games and Economic
Behavior 45:1 (2003).

R. Parikh. Social Software. Synthese 132: 3 (2002).
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What do the (Im)possibility results say?

M. Pauly. On the Role of Language in Social Choice Theory. Synthese, 163, 2,
pgs. 227 - 243, 2008.

Given a semantic domain D and a target class T ⊆ D

Fix a language L and a satisfaction relation |=⊆ D × L

∆ ⊆ L be a set of axioms

∆ absolutely axiomatizes T iff for all M ∈ D, M ∈ T iff M |= ∆
(i.e., ∆ defines T )

∆ relatively axiomatizes T iff for all ϕ ∈ L, T |= ϕ iff ∆ |= ϕ
(i.e., ∆ axiomatizes the theory of T )
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What do the (Im)possibility results say?

May’s Theorem: ∆ is the set of aggregation functions w.r.t. 2
candidates, T is majority rule, L is the language of set theory, ∆ is
the properties of May’s theorem, then ∆ absolutely axiomatizes T .

Arrow’s Theorem: ∆ is the set of aggregation functions w.r.t. 3
or more candidates, T is a dictatorship, L is the language of set
theory, ∆ is the properties of May’s theorem, then ∆ absolutely
axiomatizes T .
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A Minimal Language

M. Pauly. Axiomatizing Collective Judgement Sets in a Minimal Logical Lan-
guage. 2006.

Let ΦI be the set of individual formulas (standard propositional
language)

VI the set of individual valuations

ΦC the set of collective formulas: �α | ϕ ∧ ψ | ¬ϕ

�α: The group collectively accepts α.
VC the set of collective valuations: v : ΦC → {0, 1}
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A Minimal Language

Let CON n = {v ∈ VC | v(�α) = 1 iff ∀i ≤ n, vi (α) = 1}

E. �ϕ↔ �ψ provided ϕ↔ ψ is a tautology

M. �(ϕ ∧ ψ)→ (�ϕ ∧�ψ)

C. (�ϕ ∧�ψ)→ (�ϕ ∧�ψ)

N. �>
D. ¬�⊥

Theorem [Pauly, 2005] VC (KD) = CON n, provided n ≥ 2|Φ0|.

(D = VC , T = CON n, ∆ = EMCND, then ∆ absolutely
axiomatizes T .)
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A Minimal Language

Let MAJ n = {v ∈ VC | v([>]α) = 1 iff |{i | vi (α) = 1}| > n
2}

STEM contains all instances of the following schemes

S. [>]ϕ→ ¬[>]¬ϕ
T. ([≥]ϕ1 ∧ · · · ∧ [≥]ϕk ∧ [≤]ψ1 ∧ · · · ∧ [≤]ψk)→

∧
1≤i≤k([=

]ϕi ∧ [=]ψi ) where ∀v ∈ VI :
|{i | v(ϕi ) = 1}| = |{i | v(ψi ) = 1}|

E. [>]ϕ↔ [>]ψ provided ϕ↔ ψ is a tautology

M. [>](ϕ ∧ ψ)→ ([>]ϕ ∧ [>]ψ)

Theorem [Pauly, 2005] VC (STEM) =MAJ .

(D = VC , T =MAJ n, ∆ = STEM, then ∆ absolutely
axiomatizes T .)
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I Compare principles in terms of the language used to express
them

M. Pauly. On the Role of Language in Social Choice Theory. Synthese, 163, 2,
pgs. 227 - 243, 2008.

T. Daniëls. Social choice and logic of simple games. Journal of Logic and
Computation, 21, 6, pgs. 883 - 906, 2011.

I How much “classical logic” is “needed” for the judgement
aggregation results?

T. Daniëls and EP. A general approach to aggregation problems. Journal of
Logic and Computation, 19, 3, pgs. 517 - 536, 2009.

F. Dietrich. A generalised model of judgment aggregation. Social Choice and
Welfare 28(4): 529 - 565, 2007.
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Judgement Aggregation Logic

T. Agotnes, W. van der Hoek, M. Wooldridge. On the logic of preference and
judgement aggregation. Autonomous Agent and Multi-Agent Systems, 22, pgs.
4 - 30, 2011.

Some Notation:

I N = {1, . . . , n} a set of agents

I A is the agenda (set of formulas of some logic L “on the
table” satisfying certain “fullness conditions”)

I Let J(A,L) is the set of judgements (eg. maximally
consistent subsets of A)

I γ ∈ J(A,L)n is a judgement profile with γi agent i ’s
judgement set
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Judgement Aggregation Logic: Semantics

Tables 〈F , γ, p〉
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Judgement Aggregation Logic: Semantics

Tables 〈F , γ, p〉

Example:

P P → Q Q

Individual 1 True True True

Individual 2 True False False

Individual 3 False True False

Fmaj True True False

A = {P,Q,P → Q,¬P,¬Q,¬(P → Q)}

F is an aggregations function F : J(A,L)n → J(A,L)
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Judgement Aggregation Logic: Language

Atomic Formulas: At = {i , σ,hp | p ∈ A, i ∈ N}

Formulas: ϕ ::= α | �ϕ | �ϕ | ϕ ∧ ϕ | ¬ϕ
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Judgement Aggregation Logic: Language
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Judgement Aggregation Logic: Truth

I F , γ, p |= hq iff q = p

I F , γ, p |= i iff p ∈ γi

I F , γ, p |= σ iff p ∈ F (γ)

I F , γ, p |= �ϕ iff ∀γ′ ∈ J(A,L)n, F , γ′, p |= ϕ

I F , γ, p |= �ϕ iff ∀p′ ∈ A, F , γ, p′ |= ϕ

I Boolean connectives as usual
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Judgement Aggregation Logic: Example

P P → Q Q

Individual 1 True True True

Individual 2 True False False

Individual 3 False True False

Fmaj True True False

A = {P,Q,P → Q,¬P,¬Q,¬(P → Q)}
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Judgement Aggregation Logic: Example

P P → Q Q

Individual 1 True True True

Individual 2 True False False

Individual 3 False True False

Fmaj True True False

A = {P,Q,P → Q,¬P,¬Q,¬(P → Q)}

Fmaj , γ,P |= 1 ∧ 2 ∧ ¬3

Eric Pacuit: The Logic Behind Voting 17/77

http://ai.stanford.edu/~epacuit


Judgement Aggregation Logic: Example

P P → Q Q

Individual 1 True True True

Individual 2 True False False

Individual 3 False True False

Fmaj True True False

A = {P,Q,P → Q,¬P,¬Q,¬(P → Q)}

Fmaj , γ,P |= σ
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Judgement Aggregation Logic: Example

P P → Q Q

Individual 1 True True True

Individual 2 True False False

Individual 3 False True False

Fmaj True True False

A = {P,Q,P → Q,¬P,¬Q,¬(P → Q)}

Fmaj , γ,P |= �(1 ∧ 3)
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Judgement Aggregation Logic: Example

P P → Q Q

Individual 1 True True True

Individual 2 True False False

Individual 3 False True False

Fmaj True True False

A = {P,Q,P → Q,¬P,¬Q,¬(P → Q)}
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Judgement Aggregation Logic: Example

P P → Q Q

Individual 1 True True True

Individual 2 True False False

Individual 3 True True True

Fmaj True True True

A = {P,Q,P → Q,¬P,¬Q,¬(P → Q)}

Fmaj , γ,P |= ♦((1↔ 2) ∧ (2↔ 3) ∧ (1↔ 3)︸ ︷︷ ︸)

All agents agree on P
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Judgement Aggregation Logic: Example

P P → Q Q

Individual 1 True True True

Individual 2 True True True

Individual 3 True True True

Fmaj True True True

A = {P,Q,P → Q,¬P,¬Q,¬(P → Q)}

Fmaj , γ,P |= ♦�((1↔ 2) ∧ (2↔ 3) ∧ (1↔ 3))︸ ︷︷ ︸
All agents agree on all propositions in the agenda
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Fmaj , γ,P |= ��(σ ↔
∨

G⊆{1,2,3},|G |≥2

∧
i∈G i)
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Judgement Aggregation Logic: Results

I Sound and complete axiomatization

I Model checking is decidable, but relatively difficult
I Expressivity:

• Discursive Dilemma: ♦((�MV )→ ⊥), where
MV := σ ↔

∨
G⊆N,|G |> n

2

∧
i∈G i ,

• Impossibility results:
Nondictatorship:

∧
i∈N ♦�¬(σ ↔ i),

Unanimity: ��((1 ∧ · · · ∧ n)→ σ)
Independence: �

∧
o∈O �((o ∧ σ)→ �(o → σ))

Given any judgement profile, any choice of the voters and
any P ∈ A, if society accepts P then for any profile (if the
choices are the same w.r.t. P then society should accept P)
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MV := σ ↔

∨
G⊆N,|G |> n

2

∧
i∈G i ,

• Impossibility results:
Nondictatorship:

∧
i∈N ♦�¬(σ ↔ i),

Unanimity: ��((1 ∧ · · · ∧ n)→ σ)
Independence: �

∧
o∈O �((o ∧ σ)→ �(o → σ))

Given any judgement profile, any choice of the voters and
any P ∈ A, if society accepts P then for any profile (if the
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U. Endriss. Logic and Social Choice. 2011.
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Plan

X The logic of axiomatization results

X Logics for reasoning about aggregation methods

I Preference (modal) logics

I Applications
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Preference (Modal) Logics

x , y objects

x � y : x is at least as good as y

1. x � y and y 6� x (x � y)

2. x 6� y and y � x (y � x)

3. x � y and y � x (x ∼ y)

4. x 6� y and y 6� x (x ⊥ y)

Properties: transitivity, connectedness, etc.
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Preference (Modal) Logics

Modal betterness model M = 〈W ,�,V 〉

Preference Modalities 〈�〉ϕ: “there is a world at least as good
(as the current world) satisfying ϕ”

M,w |= 〈�〉ϕ iff there is a v � w such that M, v |= ϕ

M,w |= 〈�〉ϕ iff there is v � w and w 6� v such that M, v |= ϕ
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Preference (Modal) Logics

1. 〈�〉ϕ→ 〈�〉ϕ
2. 〈�〉〈�〉ϕ→ 〈�〉ϕ
3. ϕ ∧ 〈�〉ψ → (〈�〉ψ ∨ 〈�〉(ψ ∧ 〈�〉ϕ))

4. 〈�〉〈�〉ϕ→ 〈�〉ϕ

Theorem The above logic (with Necessitation and Modus Ponens)
is sound and complete with respect to the class of preference
models.

J. van Benthem, O. Roy and P. Girard. Everything else being equal: A modal
logic approach to ceteris paribus preferences. JPL, 2008.
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Preference Modalities

ϕ ≥ ψ: the state of affairs ϕ is at least as good as ψ
(ceteris paribus)

G. von Wright. The logic of preference. Edinburgh University Press (1963).

〈Γ〉≤ϕ: ϕ is true in “better” world, all things being equal.

J. van Benthem, O. Roy and P. Girard. Everything else being equal: A modal
logic approach to ceteris paribus preferences. JPL, 2008.
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All Things Being Equal...

b, u b, r

u r

With boots (b), I prefer my raincoat (r) over my umbrella (u)

Without boots (¬b), I also prefer my raincoat (r) over my
umbrella (u)

But I do prefer an umbrella and boots over a raincoat and no
boots
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All Things Being Equal...

Let Γ be a set of (preference) formulas. Write w ≡Γ v if for all
ϕ ∈ Γ, w |= ϕ iff v |= ϕ.

1. M,w |= 〈Γ〉ϕ iff there is a v ∈W such that w ≡Γ v and
M, v |= ϕ.

2. M,w |= 〈Γ〉≤ϕ iff there is a v ∈W such that w(≡Γ ∩ ≤)v
and M, v |= ϕ.

3. M,w |= 〈Γ〉<ϕ iff there is a v ∈W such that w(≡Γ ∩ <)v
and M, v |= ϕ.

Key Principles:

〈Γ′〉ϕ→ 〈Γ〉ϕ if Γ ⊆ Γ′

±ϕ ∧ 〈Γ〉(α ∧ ±ϕ)→ 〈Γ ∪ {ϕ}〉α
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Preference Lifting, I

Given a preference ordering � over a set of objects X , we want to
lift this to an ordering �̂ over ℘(X ).

Given �, what reasonable properties can we infer about �̂?

S. Barberá, W. Bossert, and P.K. Pattanaik. Ranking sets of objects. In Hand-
book of Utility Theory, volume 2. Kluwer Academic Publishers, 2004.
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Preference Lifting, II

I You know that x ≺ y ≺ z
Can you infer that {x , y} ≺̂ {z}?

I You know that x ≺ y ≺ z
Can you infer anything about {y} and {x , z}?

I You know that w ≺ x ≺ y ≺ z
Can you infer that {w , x , y} �̂ {w , y , z}?

I You know that w ≺ x ≺ y ≺ z
Can you infer that {w , x} ≺̂ {y , z}?
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Preference Lifting, III

There are different interpretations of X �̂ Y :

I You will get one of the elements, but cannot control which.

I You can choose one of the elements.

I You will get the full set.
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Preference Lifting, IV

Kelly Principle

(EXT) {x} ≺̂ {y} provided x ≺ y

(MAX) A ≺̂ Max(A)

(MIN) Min(A) ≺̂ A

J.S. Kelly. Strategy-Proofness and Social Choice Functions without Single-
Valuedness. Econometrica, 45(2), pp. 439 - 446, 1977.
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Preference Lifting, IV

Gärdenfors Principle

(G1) A ≺̂ A ∪ {x} if a ≺ x for all a ∈ A

(G2) A ∪ {x} ≺̂ A if x ≺ a for all a ∈ A

P. Gärdenfors. Manipulation of Social Choice Functions. Journal of Economic
Theory. 13:2, 217 - 228, 1976.

Independence

(IND) A ∪ {x} �̂ B ∪ {x} if A �̂ B and x 6∈ A ∪ B
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Preference Lifting, V

Theorem (Kannai and Peleg). If |X | ≥ 6, then no weak order
satisfies both the Gärdenfors principle and independence.

Y. Kannai and B. Peleg. A Note on the Extension of an Order on a Set to the
Power Set. Journal of Economic Theory, 32(1), pp. 172 - 175, 1984.
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From Worlds to Sets, I

M,w |= ϕ �∃∃ ψ iff there is s, t such that M, s |= ϕ and
M, t |= ψ and s � t

M,w |= ϕ ≺∃∃ ψ iff there is s, t such that M, s |= ϕ and
M, t |= ψ and s ≺ t

M,w |= ϕ �∀∃ ψ iff for all s there is a t such that M, s |= ϕ
implies M, t |= ψ, and s � t

M,w |= ϕ �∀∃ ψ iff for all s there is a t such that M, s |= ϕ
implies M, t |= ψ, and s ≺ t
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From Worlds to Sets, II

ϕ �∃∃ ψ := E (ϕ ∧ ♦�ψ)

ϕ ≺∃∃ ψ := E (ϕ ∧ ♦≺ψ)

ϕ �∀∃ ψ := A(ϕ→ ♦�ψ)

ϕ ≺∀∃ ψ := A(ϕ→ ♦≺ψ)
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From Worlds to Sets, III

M,w |= ϕ �∀∀ ψ iff for all s, for all t, M, s |= ϕ and M, t |= ψ
implies s � t

M,w |= ϕ ≺∀∀ ψ iff for all s, for all t, M, s |= ϕ and M, t |= ψ
implies s ≺ t
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From Worlds to Sets,IV

ϕ �∀∀ ψ := A(ψ → ��¬ϕ)

ϕ ≺∀∀ ψ := A(ψ → �≺¬ϕ)

We must assume the ordering � is total
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From Sets to Worlds

P1 >> P2 >> P3 >> · · · >> Pn

x > y iff x and y differ in at least one Pi and the first Pi where
this happens is one with Pix and ¬Piy

F. Liu and D. De Jongh. Optimality, belief and preference. 2006.
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Logics of Knowledge and Preference

K (ϕ � ψ): “Ann knows that ϕ is at least as good as ψ”

Kϕ � Kψ: “knowing ϕ is at least as good as knowing ψ

M = 〈W ,∼,�,V 〉

J. van Eijck. Yet more modal logics of preference change and belief revision.
manuscript, 2009.

F. Liu. Changing for the Better: Preference Dynamics and Agent Diversity. PhD
thesis, ILLC, 2008.
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A(ψ → 〈�〉ϕ) vs. K (ψ → 〈�〉ϕ)

Should preferences be restricted to information sets?

M,w |= 〈� ∩ ∼〉ϕ iff there is a v with w ∼ v and w � v such
that M, v |= ϕ

K (ψ → 〈� ∩ ∼〉ϕ)
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D. Osherson and S. Weinstein. Preference based on reasons. Review of Symbolic
Logic, 2012.
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ϕ �X ψ “The agent considers ϕ at least as good as ψ for reason X”

i envisions a situation in which ϕ is true and that
otherwise differs little from his actual situation. Likewise
i envisions a world where ψ is true and otherwise differs
little from his actual situation. Finally, there utility
according to uX of the first imagined situation exceeds
that of the second.
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p: “i purchases a fire alarm”

p �1 ¬p: u1 measures safety

p ≺2 ¬p: u2 measures finances

What is the status of p �1,2 ¬p? p ≺1,2 ¬p?
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(p �1 >) �2 >: it’s in your financial interest that your buying a
low-power automobile is in you safety interesting — which might
well be true inasmuch as low-power vehicles are cheaper.

¬q �1 (p �2 q): from the point of view of family pride, you’d
rather that your brother not run for mayor than that Miss Smith be
the superior candidate.
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At a set of atomic proposition, S a set of reasons.

〈W , s, u,V 〉

I W is a set of states

I s : W × ℘6=∅(W )→W is a selection function (s(w ,A) ∈ A)

I u : W × S→ R is a utility function

I V : At→ ℘(W ) is a valuation function

M,w |= θ �X ψ iff uX (s(w , [[θ]]M)) ≥ uX (s(w , [[ψ]]M))

provided [[θ]]M 6= ∅ and [[ψ]]M 6= ∅
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♦ϕ =def ϕ �X ϕ
�ϕ =def ¬(¬ϕ �X ¬ϕ)
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Reflexive: for all w if w ∈ A then s(w ,A) = w .

M is reflexive implies (p �X >) ∨ (¬p �X >) is valid.

�(p → (p ≺X ¬p)) ∧�(¬p → (¬p �X p))
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Regular: if A ⊆ B and w1 ∈ A then If s(w ,B) = w1 then
s(w ,A) = w1.

M is regular implies ((p ∨ q) �X r)→ ((p �X r) ∨ (q �X r)) is
valid.
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M is regular and reflexive then
((p ≺1 >) �2 (q ≺1 >))→ (¬p �2 ¬q) is valid.

“If it is ecologically better for p than for q to politically backfire the
abstaining from p is ecologically better than abstaining from q. ”
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M is proximal if for all w and A 6= ∅, If s(w ,A) = w1 then there is
no w2 ∈ A such that V−1(w)∆V−1(w2) ⊂ V−1(w)∆V−1(w1),
where ∆ is the symmetric difference.

(((p ∧ r) �X (q ∧ r)) ∧ ((p ∧ ¬r) �X (q ∧ ¬r)))→ (p �X q) is
invalid in the class of regular and in the class of proximal models,
but valid in the class of models that are both proximal and regular.

(p ∧ ((p ∧ q) �X r))→ (q �X r)

Eric Pacuit: The Logic Behind Voting 63/77

http://ai.stanford.edu/~epacuit


M is proximal if for all w and A 6= ∅, If s(w ,A) = w1 then there is
no w2 ∈ A such that V−1(w)∆V−1(w2) ⊂ V−1(w)∆V−1(w1),
where ∆ is the symmetric difference.

(((p ∧ r) �X (q ∧ r)) ∧ ((p ∧ ¬r) �X (q ∧ ¬r)))→ (p �X q) is
invalid in the class of regular and in the class of proximal models,
but valid in the class of models that are both proximal and regular.

(p ∧ ((p ∧ q) �X r))→ (q �X r)

Eric Pacuit: The Logic Behind Voting 63/77

http://ai.stanford.edu/~epacuit


M is proximal if for all w and A 6= ∅, If s(w ,A) = w1 then there is
no w2 ∈ A such that V−1(w)∆V−1(w2) ⊂ V−1(w)∆V−1(w1),
where ∆ is the symmetric difference.

(((p ∧ r) �X (q ∧ r)) ∧ ((p ∧ ¬r) �X (q ∧ ¬r)))→ (p �X q) is
invalid in the class of regular and in the class of proximal models,
but valid in the class of models that are both proximal and regular.

(p ∧ ((p ∧ q) �X r))→ (q �X r)

Eric Pacuit: The Logic Behind Voting 63/77

http://ai.stanford.edu/~epacuit


Plan

X The logic of axiomatization results

X Logics for reasoning about aggregation methods

X Preference (modal) logics

I Applications
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Infinite Voting Populations

Given an aggregation method F , let D = {C | C is winning for F}

Given a set of winning coalitions D, we can define F as follows:

F (J) = {α | {i | i judges that α} ∈ D}

What is the general relationship between sets of coalitions and
aggregators?
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Infinite Voting Populations
F. Herzberg and D. Eckert. Impossibility results for infinite-electorate abstract
aggregation rules. Journal of Philosophical Logic, 41, pgs. 273 - 286, 2012.

F. Herzberg and D. Eckert. The model-theoretic approach to aggregation: Im-
possibility results for finite and infinite electorates. Mathematical Social Sciences,
64, pgs. 41 - 47, 2012.

L. Lauwers and L. van Liedekerke. Ultraproducts and aggregation. Journal of
Mathematical Economics, 24, pgs. 217 - 237, 1995.

Theorem. Let D be a filter and suppose that FD preserves ψ and
assume that there is some A ∈ ΩI with finite witness multiplicity
with respect to ψ. Then,

I If D is an ultrafilter, then it is principal (whence FD is a
dictatorship)

I If ϕ is free of negation, disjunction and universal quantification
then D contains a finite coalition (whence FD is an oligarchy)
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May’s Theorem: Notation

Fix an infinite set W .

Suppose that there are two alternatives, x and y , under
consideration.

We assume that each voter has a linear preference over x and y , so
for each w ∈W , either w prefers x to y or y to x , but not both.

Assume that a subset X ⊆W , represents the set of all voters that
prefer x to y .

Thus X represents the outcome of a particular vote.
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May’s Theorem: Notation

There are three possible outcomes to consider: 0 means that
alternative y was chosen, 1

2 means the vote was a tie, and 1 means
that alternative x was chosen.

An aggregation function is a function f : 2W → {0, 1
2 , 1}.

A set X ⊆W , f (X ) represents the social preference of the group
W ( 1

2 is interpreted as a tie).
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Properties of f

Consider f : 2W → {0, 1
2 , 1}

Decisiveness f is a total function.

Neutrality for all X ⊆W , f (XC ) = 1− f (X )

Positive Responsiveness if, for all X ,Y ⊆W , X ( Y and
f (X ) 6= 0 implies f (Y ) = 1.
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Anonymity

Anonymity states that it is the number of votes that counts when
determining the outcome, not who voted for what.

When W is finite, this condition is straightforward to impose:

Fix an arbitrary order on W , then each subset of W can be
represented by a finite sequence of 1s and 0s.

Then f satisfies anonymity if f is symmetric in this sequence of
1s and 0s.

Eric Pacuit: The Logic Behind Voting 70/77

http://ai.stanford.edu/~epacuit


Anonymity

Anonymity states that it is the number of votes that counts when
determining the outcome, not who voted for what.

When W is finite, this condition is straightforward to impose:

Fix an arbitrary order on W , then each subset of W can be
represented by a finite sequence of 1s and 0s.

Then f satisfies anonymity if f is symmetric in this sequence of
1s and 0s.

Eric Pacuit: The Logic Behind Voting 70/77

http://ai.stanford.edu/~epacuit


Anonymity for an Infinite Population

A permutation on a set X is a 1-1 map π : X → X .

f is anonymous iff for all π and X ⊆W , f (X ) = f (π[X ]).

Too strong! Let X ,Y be any (countably) infinite subsets of W ,
then there is a π such that π[X ] = Y . Hence, for all X ,Y ⊆W ,
f (X ) = f (Y ).
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Anonymity for an Infinite Population

A finite permutation on a set X is a 1-1 map π : X → X such
that there is a finite set F ⊆ X such that for all w ∈W − F ,
π(w) = w .

f is finitely anonymous iff for all finite permutations π and
X ⊆W , f (X ) = f (π[X ]).
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Digression: Bounded Anonymity and Density

Let X ⊆ N and n ∈ N, let X (n) = {m ∈ X | m ≤ n}

d(X ) = limn→∞
X (n)
n

d(E) = 1
2

Unfortunately, limn→∞
X (n)
n does not always exist.

π is a bounded permutation iff

lim
n→∞

|{k | k ≤ n < π(k)}|
n

= 0
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May’s Theorem Generalized

Bounded anonymity: F (A) = F (π[A]) for all bounded
permutations

Density positive responsiveness: f satisfies monotonicity and, if
f (A) = 1/2 and all sets with density D with A ∩ D 6= ∅ and
d(A) > 1, we have f (A ∪ D) = 1.

Theorem (Fey) If an aggregation rule f satisfies neutrality, density
positive responsiveness and bounded anonymity, then f agrees with
a density majority rule.

M. Fey. May’s Theorem with an Infinite Population. Social Choice and Welfare
(2004).
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Broader Applications

I Is it possible to choose rationally among rival scientific
theories on the basis of the accuracy, simplicity, scope and
other relevant criteria? No Yes

S. Okasha. Theory choice and social choice: Kuhn versus Arrow. Mind, 120,
477, pgs. 83 - 115, 2011.

M. Moureau. Mr. Accuracy, Mr. Simplicity and Mr. Scope: from social choice
to theory choice. FEW, 2012.

Is it possible to rationally merge evidence from multiple
methods?

J. Stegenga. An impossibility theorem for amalgamating evidence. Synthese,
2011.
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Broader Applications

I Is it possible to merge classic AGM belief revision with the
Ramsey test?

P. Gärdenfors. Belief revisions and the Ramsey Test for conditionals. The Philo-
sophical Review, 95, pp. 81 - 93, 1986.

H. Leitgeb and K. Segerberg. Dynamic doxastic logic: why, how and where to?.
Synthese, 2011.

H. Leitgeb. A Dictator Theorem on Belief Revision Derived From Arrow’s The-
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Plan

X Arrow, Sen, Muller-Satterthwaite

X Characterizing Voting Methods: Majority (May, Asan &
Sanver), Scoring Rules (Young), Borda Count (Farkas and
Nitzan, Saari), Approval Voting (Fishburn)

X Voting to get things “right” (Distance-based measures,
Condorcet and extensions)

X Strategizing (Gibbard-Satterthwaite)

X Generalizations

X Infinite Populations
X Judgement aggregation (List & Dietrich)

X Logics

X Applications
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Thank you!
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